JPS58208717A - Apparatus for connecting light radient generator and light waveguide path - Google Patents

Apparatus for connecting light radient generator and light waveguide path

Info

Publication number
JPS58208717A
JPS58208717A JP8243683A JP8243683A JPS58208717A JP S58208717 A JPS58208717 A JP S58208717A JP 8243683 A JP8243683 A JP 8243683A JP 8243683 A JP8243683 A JP 8243683A JP S58208717 A JPS58208717 A JP S58208717A
Authority
JP
Japan
Prior art keywords
light beam
block
radiation
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8243683A
Other languages
Japanese (ja)
Inventor
ピエ−ル・ノリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Industriel des Lasers CILAS SA
Original Assignee
Compagnie Industriel des Lasers CILAS SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Industriel des Lasers CILAS SA filed Critical Compagnie Industriel des Lasers CILAS SA
Publication of JPS58208717A publication Critical patent/JPS58208717A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は光幅躬発/l:器と光導波路とを結合りるため
の装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for coupling an optical waveguide to an optical waveguide.

このタイプの装置はシー1F光束放出器とこのレーデ光
束をAブヂカルノノフイバの先端に集中させることがで
きる集束光学系とを同一軸線、1に一列に並べて包含す
るという形式のものが公知Cある。
This type of device is known to include a SIE 1F beam emitter and a focusing optical system capable of concentrating this Radhe beam onto the tip of the A-butical nanofiber, arranged in a line on the same axis. There is C.

但しこの装置はさまざまな欠点を示乃。実際光学系とA
プブカルファイバ先端との間の距離の精密調整が必要と
される。他方では光束の集束領域内でのレーザエネルギ
の分布はこの調整の稈度に左右される。
However, this device exhibits various drawbacks. Actual optical system and A
Precise adjustment of the distance between the fiber tip and the fiber tip is required. On the other hand, the distribution of the laser energy within the focal region of the light beam depends on the degree of adjustment.

本発明はこれらの欠点を足止りることを目的とづる。The present invention aims to overcome these drawbacks.

本発明は光輻射光生器と、輻射集束手段と、この集束さ
れた輻射を先端の一つにd3いて受容するべく配置され
た光導波路とを包含し、前記の輻射集束手段が前記の輻
射を透過づるブl」ツクにり成り、こまブロックの外面
はそれぞれ凸及び11!Jの対向づる第−而及び第二面
を合lυでJ3す、第一面は第二面より大きく平行入射
光束に従って輻射を受容するべく配置され°〔おり、こ
の第−而の曲率は透過1日ツク内で屈折される入射光束
を第二面」。
The present invention includes an optical radiation generator, radiation focusing means, and an optical waveguide arranged to receive the focused radiation at one of its tips, said radiation focusing means directing said radiation. The outer surface of the top block is convex and 11! The sum of the opposing first and second surfaces of J is lυ, J3. The incident light flux that is refracted within one day is reflected on the second surface.

に集束させるべく決定され、第二面の曲率は集束された
光束が平行出射光栄に従って第二面を通っでブ[lツク
から出tAするべく決定され、出射光束の断面は入射光
束の断面J、り小さく、従って出QJ光朱は導波路の前
記の先端を通して導波路内に完全に吸収されることがで
きることを特徴とする光輻剣発牛器と光導波路とを結合
するだめの装置に係る。
The curvature of the second surface is determined such that the focused beam passes through the second surface and exits the block according to the parallel output beam, and the cross section of the output beam is equal to the cross section J of the incident beam. , is smaller and therefore the output QJ light can be completely absorbed into the waveguide through the tip of the waveguide. It depends.

添イNJ図面を参照しく本発明の具体例につさ以ドに詳
しく説明する。
Specific examples of the present invention will now be described in detail with reference to the accompanying drawings.

第1図にJ、れば、レー’f 1iJl出器1はll’
1l13に従う平行光束2を放出づる。軸3を中心とづ
るシー1f輻atを透過する円筒形ブロック4は平t1
光束2の軌跡上に配置されでいる。このブロック4は異
なる光学特性を持つ2秤類の1利により成る2つの部品
5及び6を含む。例えばこれらの1利は異なる屈折率、
異なる分散bb<は同時に異なる屈折甲と分散とを持つ
ことができる。部品5及び6(よ接合面7に従って相勾
に貼りつりられる。ブロック4の外面の底部【、1ブ【
」ツク内を透過する光束2の* 1,7Jる軸3上に中
心を定める例えば球面状の凸曲面8を含む。ブロック4
の外面のもう一方の底部は面8と対向し軸3上に中心を
定められた同様に球面状の凹曲面9を含む。光束2は面
8より小=J法の而91にレーザエネルギを集束させる
集束光束10内に従ってブロック4内で屈折される。
If J in Figure 1, then ray'f 1iJl output 1 is ll'
It emits a parallel light beam 2 according to 1l13. The cylindrical block 4 that passes through the sea 1f radiation at centered on the axis 3 is flat t1.
It is placed on the trajectory of the light beam 2. This block 4 comprises two parts 5 and 6 consisting of two scales with different optical properties. For example, these 1 interest points have different refractive indexes,
Different dispersions bb< can have different refractive insteps and dispersions at the same time. Parts 5 and 6 (attached in phase with each other according to the joint surface 7. At the bottom of the outer surface of block 4, 1 block
It includes a convex curved surface 8, for example a spherical surface, whose center is on the axis 3 of the light beam 2 transmitted through the lens. block 4
The other bottom of the outer surface of comprises a similarly spherical concave surface 9 opposite surface 8 and centered on axis 3 . The beam 2 is refracted within the block 4 according to a converging beam 10 which focuses the laser energy on a plane 91 smaller than the plane 8 = J law.

而9の曲率は光束10が光束2より小断面の平行光束1
1に従ってブロック4から出射されるにうにして決定さ
れる。オプチカルファイバ12の入射端面13は光束1
1を受容するようにして軸3上に中心を定められる。光
束11の直径はノア、イバ12の直径に比し小さいかま
たは等しく従つ−Cファイバ12はレーザエネルギを完
全に吸収づる。
The curvature of 9 is such that the light beam 10 has a smaller cross section than the light beam 2.
1, the output from the block 4 is determined as follows. The input end face 13 of the optical fiber 12 has a light beam 1
1 is centered on axis 3 to receive 1. Since the diameter of the beam 11 is smaller than or equal to the diameter of the fiber 12, the C fiber 12 completely absorbs the laser energy.

故にブロック4はコンバクl−な無焦点光学系を構成ゾ
る。異なる特性の相互に密着した2つの部品より成るこ
のブロックの具体例は色収差又は幾何学収差が生じた場
合にこれらを修正りることを可能ならしめる。
Therefore, block 4 constitutes a compact afocal optical system. This embodiment of the block, consisting of two mutually close-fitting parts of different properties, makes it possible to correct chromatic or geometrical aberrations if they occur.

本HfF?のは能が放出器1とファイバ12との間Cl
1113に沿っC行われるブロック4の移aノの影響を
受()ることは勿論あり冑’Jい。さらにこの秤の移動
は光束11内のレーIf :[ネルギの横断分布に変化
を!jえること一〇ない。
Book HfF? The function is to connect Cl between emitter 1 and fiber 12.
Of course, it is possible that it will be affected by the movement of block 4 which is carried out along line 1113. Furthermore, the movement of this scale causes a change in the transverse distribution of energy in the light beam 11! There's nothing I can say about it.

第2図にJ:れば半導体レーザ放出器14は細長い長方
形の放出面15を含む。この場合にt、L透過ブロック
は薄い平行六面体形状16を持つ、、放出器14のレー
If幅躬(図示されていない)はレーザ14の放出面1
5に対向して配置された凸面17によつτブl]ツク1
6内に入射覆る。レーザ”輻射出射面18は凹形をなす
。図示の如く而17及び18はブロック16の大断面の
対向162面に従って配置される。ブ[1ツク16から
出射される輻0・1は通常の場合平1゛i六面体形状を
持I)、IFI 4Jに平行六面体のh形導波路19の
端面を通って完勿論透過ブロックは単−個のガラスで形
成されるかまたは異なる光学特性を右づる2個以上のガ
ラスを含むことができる。さらに曲面8及び9は非球面
であってもよい。
In FIG. 2, the semiconductor laser emitter 14 includes an elongated rectangular emission surface 15. In FIG. In this case, the transmission block has a thin parallelepiped shape 16, and the beam width (not shown) of the emitter 14 is the emission surface 1 of the laser 14.
Due to the convex surface 17 placed opposite to 5,
Covers the incidence within 6. The laser radiation emitting surface 18 has a concave shape. As shown in the figure, 17 and 18 are arranged according to the opposing 162 plane of the large cross section of the block 16. The radiation 0 and 1 emitted from the block 16 is In the case of IFI 4J having a hexahedral shape, the transmission block is of course formed of a single piece of glass or has different optical properties. It can contain more than one piece of glass. Furthermore, the curved surfaces 8 and 9 can be aspherical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従う装置の一具体例の長さ方向の断面
図、 第2図は本発明に従う装置の別の具体例を間隔を於いて
配置した説明図である。 1・・・レーザ放出器、4・・・透過ブロック、7・・
・接合面、8・・・凸曲面、9・・・凹曲面、12・・
・導波路。 代F11人*s+士今  村   ル
FIG. 1 is a longitudinal sectional view of one embodiment of the device according to the invention, and FIG. 2 is a spaced illustration of another embodiment of the device according to the invention. 1... Laser emitter, 4... Transmission block, 7...
・Joint surface, 8... Convex curved surface, 9... Concave curved surface, 12...
・Waveguide. Substitute F11 people*s+Shiima Mura Ru

Claims (1)

【特許請求の範囲】 (1)光幅tJJR牛器と輻射集束手段と集束された該
輻射を先端の一つにおいて受容づるべく配置された光導
波路とを包含しCおり、前記の輻射集束手段が該輻射を
透過するブ[1ツクより成っており、前記のブ[1ツク
の外面は各々凸及び門形状の対向りる第−面及び第二面
を含んでおり、第一面は第二面J、り人であり平行入射
光束に従う光輻射を受容するべく配置されCおり、該第
−面の曲率は透過ブLJツク内(゛屈折される入射光束
を第二面1:に集束させるべく決定され、該第二面の曲
率は集束された光束が甲行用射光東に従っ(該第s二面
を通して該透過ブロックから出射するべく決定され、前
記光束の高面は入射光束の高面J、り小であり、従って
出射光束は)9波路の前記の先端を通し°(導波路内に
完全に吸収されることがぐきることを特徴とする光輻射
発生器と光導波路とを結合するための装置。 (2)透過ブロックが相互に密着した数個の部品を含ん
でおり、これらの部品が異なる光学特性を右する材料に
より成ることを特徴とする特許請求の範囲第1項に記載
のvi置。 (3)透過ブロックが円筒型の一般形状を右しており、
第−曲面及び第二曲面が該円筒形ブロックの収面上に配
設されていることを特徴とする特許請求の範囲第1項に
記載の装置。 (4)透過ブロックが薄い平行六面体形状を有しており
、第−及び第二曲面は前記のブロックの大断面の対向す
る2面に従って配置されることを特徴とする特!rT請
求の範囲第1項に記載の装置。 (5)入射光束、第一曲面、第二曲面及び導波路の前記
の先端が同一軸線上に中心を定められ(いることを特徴
とする特許請求の範囲第1項に記載の装置。 (6ン第−及び第1−曲面が球状であることを15昨と
する特許請求の範囲第5項に記載の装置。 (7)光輻剣発1゛器がレーザ放出器であり導波路がA
ブチ7]ルファイバであることを特徴とする特B′を請
求の範囲第1項に記載の装置。
[Scope of Claims] (1) The radiation focusing means includes an optical width tJJR, a radiation focusing means, and an optical waveguide arranged to receive the focused radiation at one of its tips. consists of a block that transmits said radiation, and the outer surface of said block includes opposing first and second surfaces that are convex and gate-shaped, respectively; The second surface J is arranged to receive the light radiation following the parallel incident light beam, and the curvature of the first surface is such that the curvature of the first surface is such that the incident light beam to be refracted is focused on the second surface 1. The curvature of the second surface is determined so that the focused light beam follows the incoming light beam east (through the s second surface and exits from the transmission block, and the high surface of the light beam follows the direction of the incident light beam. An optical radiation generator and an optical waveguide characterized in that the high surface J is small, so that the emitted light beam passes through the tip of the waveguide and is completely absorbed into the waveguide. (2) The transmission block comprises several parts in close contact with each other, and these parts are made of materials exhibiting different optical properties. (3) The transmission block has a cylindrical general shape,
2. Device according to claim 1, characterized in that the second curved surface and the second curved surface are arranged on the converging surface of the cylindrical block. (4) The transparent block has a thin parallelepiped shape, and the first and second curved surfaces are arranged according to two opposing sides of the large cross section of the block! rT A device according to claim 1. (5) The device of claim 1, wherein the incident beam, the first curved surface, the second curved surface, and the tip of the waveguide are centered on the same axis. The device according to claim 5, wherein the first and first curved surfaces are spherical. (7) The optical radiation emitter is a laser emitter and the waveguide is an A
7. The device according to claim 1, characterized in that the device is made of fiber.
JP8243683A 1982-05-14 1983-05-11 Apparatus for connecting light radient generator and light waveguide path Pending JPS58208717A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8208416 1982-05-14
FR8208416A FR2526961A1 (en) 1982-05-14 1982-05-14 DEVICE FOR CONNECTING AN OPTICAL RADIATION GENERATOR AND AN OPTICAL WAVEGUIDE

Publications (1)

Publication Number Publication Date
JPS58208717A true JPS58208717A (en) 1983-12-05

Family

ID=9274035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8243683A Pending JPS58208717A (en) 1982-05-14 1983-05-11 Apparatus for connecting light radient generator and light waveguide path

Country Status (4)

Country Link
JP (1) JPS58208717A (en)
DE (1) DE3317093A1 (en)
FR (1) FR2526961A1 (en)
GB (1) GB2120400B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161309U (en) * 1984-04-04 1985-10-26 株式会社 冨士化学工業所 Optical fiber receptacle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8312650D0 (en) * 1983-05-07 1983-06-08 Plessey Co Plc Optical connectors
DE3413749A1 (en) * 1984-04-12 1985-10-17 Telefunken electronic GmbH, 7100 Heilbronn Optical system
JPS60262119A (en) * 1984-06-08 1985-12-25 Olympus Optical Co Ltd Optical lighting system for endoscope
NL8403535A (en) * 1984-11-21 1986-06-16 Philips Nv DEVICE FOR OPTICALLY COUPLING A RADIANT SOURCE TO AN OPTICAL TRANSMISSION FIBER.
FR2579333B1 (en) * 1985-03-20 1987-07-03 Instruments Sa WAVELENGTH MULTIPLEXER-DEMULTIPLEXER CORRECTED FOR GEOMETRIC AND CHROMATIC ABERRATIONS
DE3782505T2 (en) * 1986-01-14 1993-03-25 Kobe Steel Ltd METHOD AND DEVICE FOR MEASURING THE OVEN TEMPERATURE IN AN ISOSTATIC HOT PRESSING UNIT.
US5111331A (en) * 1987-07-01 1992-05-05 Research Frontiers Incorporated Electro-optical light modulator
DK158169C (en) * 1987-08-31 1990-09-03 Dantec Elektronik Med LASER LIGHT CONNECTION MANIPULATOR FOR AN OPTICAL FIBER
DE19613755A1 (en) * 1996-04-06 1997-10-09 Sel Alcatel Ag Optical coupler for light guide structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867152A (en) * 1956-05-28 1959-01-06 Boolsky-Bogopolsky Raphael Optical system comprising two lens elements with one element having two separated concentric surfaces
US3422246A (en) * 1965-08-18 1969-01-14 Kearney & Trecker Corp Laser cutting machine tool
GB1567604A (en) * 1976-02-02 1980-05-21 Rank Organisation Ltd Optical system
GB1569615A (en) * 1976-10-19 1980-06-18 Standard Telephones Cables Ltd Coupling optical fibres
US4186995A (en) * 1978-03-30 1980-02-05 Amp Incorporated Light device, lens, and fiber optic package
DE2849543A1 (en) * 1978-11-15 1980-05-29 Messerschmitt Boelkow Blohm Optical and electrical coupling for laser therapy instrument - allowing automatic disconnection of laser when instrument handpiece is removed by using electrical contacts in socket bores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161309U (en) * 1984-04-04 1985-10-26 株式会社 冨士化学工業所 Optical fiber receptacle

Also Published As

Publication number Publication date
FR2526961B1 (en) 1984-12-07
GB2120400B (en) 1985-12-11
GB2120400A (en) 1983-11-30
GB8312476D0 (en) 1983-06-08
DE3317093A1 (en) 1983-11-17
FR2526961A1 (en) 1983-11-18

Similar Documents

Publication Publication Date Title
US4412720A (en) Optical system coupling a rectangular light source to a circular light receiver
US3476463A (en) Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface
US5058981A (en) Light source device
GB1571909A (en) Optical-fibre coupling device
US6204955B1 (en) Apparatus for dynamic control of light direction in a broad field of view
JPS58208717A (en) Apparatus for connecting light radient generator and light waveguide path
US4415239A (en) Reflection rejection spherical optical train composed of tipped lens elements
US9533514B2 (en) Near-infrared laser focusing lens and laser printing device
US5301249A (en) Catoptric coupling to an optical fiber
JPH01287531A (en) Light source unit
CN110231288B (en) Compact and stable optical path air chamber
CN106873168A (en) A kind of lens for being applied to semiconductor laser device beam shaping
JP2001503161A (en) Axial gradient index coupler
JPS5859420A (en) Compound lens
JPS59200211A (en) Optical multibranching device
JP2020533634A (en) An image forming method on a plurality of planes using a varifocal lens and an image forming device that realizes the method.
US3633985A (en) Concentration objective composed of four lenses
US3592523A (en) Angle multiplier apparatus
US5013120A (en) Monochromator to fiber-cable coupling system
JPH06208012A (en) Optical connecting element
US4209223A (en) Scanning device
JPS62144127A (en) Light receiving lens device
CN111913166B (en) Multi-angle light beam expanding system and laser radar
CN219302659U (en) Transmitting module and laser radar
JPS6238685B2 (en)