JPS6238685B2 - - Google Patents

Info

Publication number
JPS6238685B2
JPS6238685B2 JP12704582A JP12704582A JPS6238685B2 JP S6238685 B2 JPS6238685 B2 JP S6238685B2 JP 12704582 A JP12704582 A JP 12704582A JP 12704582 A JP12704582 A JP 12704582A JP S6238685 B2 JPS6238685 B2 JP S6238685B2
Authority
JP
Japan
Prior art keywords
light
light guide
optical
point
optical coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12704582A
Other languages
Japanese (ja)
Other versions
JPS5917518A (en
Inventor
Masahiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12704582A priority Critical patent/JPS5917518A/en
Publication of JPS5917518A publication Critical patent/JPS5917518A/en
Publication of JPS6238685B2 publication Critical patent/JPS6238685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 この発明は、LED、白熱電球、放電管などの
発光面積が大きな発散光源の光を、効率よく光フ
アイバ、光導波路などの光伝送路へ結合させるた
めの光結合デバイスに関するものである。
[Detailed Description of the Invention] This invention is an optical coupling device for efficiently coupling light from a diverging light source with a large light emitting area, such as an LED, an incandescent lamp, or a discharge tube, to an optical transmission path such as an optical fiber or optical waveguide. It is related to.

従来、この種の光結合デバイスとして第1図に
示すものがあつた。この図において、1はLED
などの発光素子、2は光フアイバ、3は屈折率分
布型ロツドレンズ(以下、単にロツドレンズとい
う)である。
Conventionally, there has been a device shown in FIG. 1 as this type of optical coupling device. In this diagram, 1 is LED
2 is an optical fiber, and 3 is a gradient index rod lens (hereinafter simply referred to as a rod lens).

次に作用について説明する。 Next, the effect will be explained.

発光素子1より出射した光は、ロツドレンズ3
へ入射する。ロツドレンズ3内での屈折率分布は
下記第(1)式で表される。
The light emitted from the light emitting element 1 passes through the rod lens 3.
incident on the The refractive index distribution within the rod lens 3 is expressed by the following equation (1).

n(r)=n0(1−A/2r2) ………(1) ここで、rは光軸からの半径方向の距離、Aは
正の定数、n0は光軸上での屈折率である。
n(r)=n 0 (1-A/2r 2 ) ......(1) Here, r is the radial distance from the optical axis, A is a positive constant, and n 0 is the refraction on the optical axis. rate.

屈折率分布があるため、発光素子1のa点から
出射される光は、図の曲線(実線)のように進行
し、光フアイバ2の端のa′点に集光することがで
きる。しかし、この光結合デバイスは1点を1点
に集光するため、LEDや白熱電球などの発光部
の大きな光源では、集光が悪く、十分な光量を光
フアイバ2に結合することはできない。例えば、
第1図のb点の光はb′点に集光し、この光は、光
フアイバ2に入射しない。
Because of the refractive index distribution, the light emitted from point a of the light emitting element 1 travels like the curve (solid line) in the figure and can be focused at point a' at the end of the optical fiber 2. However, since this optical coupling device focuses light from one point to one point, a light source with a large light emitting part such as an LED or an incandescent light bulb has poor light focusing and cannot couple a sufficient amount of light to the optical fiber 2. for example,
The light at point b in FIG. 1 is condensed at point b', and this light does not enter the optical fiber 2.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、発光面積の大き
な光源からの光を一度平行光に変換し、さらに集
光することにより、微小な1点に集光させること
ができる光結合デバイスを提供することを目的と
している。以下、この発明を図面について説明す
る。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by converting the light from a light source with a large light emitting area into parallel light and then concentrating it, it can be focused on a single minute point. The object is to provide an optical coupling device that can focus light. Hereinafter, this invention will be explained with reference to the drawings.

第2図はこの発明の一実施例を示すもので、4
は第1の光導体、5は第2の光導体であり、その
他第1図と同一符号は同一構成部分を示す。
FIG. 2 shows an embodiment of the present invention.
1 is a first light guide, 5 is a second light guide, and the same reference numerals as in FIG. 1 indicate the same components.

次に作用について説明する。 Next, the effect will be explained.

発光素子1より出射した光は、第1の光導体4
に入射する。第1の光導体4は、例えば下記の第
(2)式のように表わされる屈折率分布を持つ、 n1(Z)=n0(1+BZ) ………(2) ここで、Zは第1の光導体4の端の0点から光
軸に沿つての長さであり、Bは正の定数、n0は0
点での屈折率である。
The light emitted from the light emitting element 1 is transmitted to the first light guide 4
incident on . The first light guide 4 is, for example,
It has a refractive index distribution expressed as in equation (2), n 1 (Z) = n 0 (1 + BZ) ...... (2) where Z is the amount of light from the zero point at the end of the first light guide 4. is the length along the axis, B is a positive constant, n 0 is 0
It is the refractive index at a point.

このように屈折率分布を持つているため、第1
の光導体4のZ=0の平面に入射した光は、例え
それが光軸に対して傾いていても、Z=l1の出射
端では、平行光に近い光として出射させることが
できる。
Because it has a refractive index distribution like this, the first
Even if the light incident on the Z=0 plane of the light guide 4 is tilted with respect to the optical axis, it can be emitted as nearly parallel light at the output end of Z= l1 .

この原理を、第3図を用いて説明する。 This principle will be explained using FIG.

第1の光導体4を四つの部分に分け、それぞれ
を4a,4b,4c,4dとし、それらの屈折率
はそれぞれの内部では均一で、それぞれn1、n2
n3、n4(n1<n2<n3<n4)で表わされるとする
と、例えば、S1点から出射した光線P1は第I面に
垂直に入射した後、第,,面を通り、第V
面に垂直に出射する光線P2は、第,,,
面で屈折し、しだいに光軸との交角を小さく変
え、第V面では、光軸と平行もしくは小さな角度
で出射する。光線P1,P2以外のP3や、P2点から出
射した光線P4〜P6も同様に、第I面で光軸に対し
て角度を持つていても、第V面ではこの角度は0
になるか、もしくは非常に小さいものとなり出射
される。
The first light guide 4 is divided into four parts 4a, 4b, 4c, and 4d, and their refractive indexes are uniform inside each part, n 1 , n 2 , respectively.
Assuming that n 3 , n 4 (n 1 < n 2 < n 3 < n 4 ), for example, a ray P 1 emitted from point S 1 enters the I-th surface perpendicularly, and then enters the I-th surface. through V.
The ray P 2 emitted perpendicularly to the surface is
It is refracted at the surface, gradually changing its angle of intersection with the optical axis to a smaller value, and at the V-th surface, it is emitted parallel to the optical axis or at a small angle. Similarly, even if the rays P 3 other than P 1 and P 2 and the rays P 4 to P 6 emitted from the point P 2 have an angle with respect to the optical axis on the I-th surface, this angle on the V-th surface is 0
Or, it becomes very small and is emitted.

このようにして、屈折率がZの単調増加関数と
なつている場合、非平行光を平行光に変換するこ
とができる。屈折面の数を増していけば、最終点
における屈折率分布は、第(2)式で表わされたよう
な形に近づいていく。
In this way, when the refractive index is a monotonically increasing function of Z, non-parallel light can be converted into parallel light. As the number of refractive surfaces increases, the refractive index distribution at the final point approaches the shape expressed by equation (2).

さて、再び第2図において、発光素子1の発光
光は、Z=l1の出射端でほぼ平行光となり、これ
が第2の光導体5に入射する。第2の光導体5
は、単に平行光を1点に集光すればよく、これは
第(1)式で表わされた屈折率分布を持つロツドレン
ズ3を使用すればよい。第2図で発光素子1のa
点およびb点の光は、それぞれ実線、破線をたど
り、光フアイバ2の端にそれぞれa′点、b′点とし
て集光し、光フアイバ2に入射する。
Now, referring again to FIG. 2, the emitted light of the light emitting element 1 becomes substantially parallel light at the output end of Z=l 1 , and this is incident on the second light guide 5. second light guide 5
In this case, it is sufficient to simply condense parallel light to one point, and this can be done by using a rod lens 3 having a refractive index distribution expressed by equation (1). In Fig. 2, a of light emitting element 1 is
The lights at points and points b follow the solid line and the broken line, respectively, and are focused on the ends of the optical fiber 2 as points a' and b', respectively, and enter the optical fiber 2.

なお、上記実施例では、第2の光導体5として
ロツドレンズ3を用いたが、これは球面レンズや
非球面レンズなどを用いてもよい。
In the above embodiment, the rod lens 3 is used as the second light guide 5, but a spherical lens, an aspherical lens, or the like may also be used.

以上説明したように、この発明によれば、有限
大の発光部を持つ光源からの光を一度平行光に変
換し、再度集光する構成をとつたため、LED、
白熱電球、放電管などの光を効率よく光フアイバ
などの光伝送路へ結合することができる利点があ
る。
As explained above, according to the present invention, the light from the light source having a finite-sized light emitting part is first converted into parallel light and then condensed again, so that the LED,
It has the advantage that light from incandescent bulbs, discharge tubes, etc. can be efficiently coupled to optical transmission paths such as optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光結合デバイスの原理図、第2
図はこの発明の一実施例を示す原理図、第3図は
この発明の原理の説明図である。 図中、1は発光素子、2は光フアイバ、3は屈
折率分布型ロツドレンズ、4は第1の光導体、5
は第2の光導体である。なお、図中の同一符号は
同一または相当部分を示す。
Figure 1 shows the principle of a conventional optical coupling device, Figure 2 shows the principle of a conventional optical coupling device.
The figure is a principle diagram showing an embodiment of this invention, and FIG. 3 is an explanatory diagram of the principle of this invention. In the figure, 1 is a light emitting element, 2 is an optical fiber, 3 is a gradient index rod lens, 4 is a first light guide, and 5
is the second light guide. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 発光素子からの光を光伝送路に入射させるた
めの光結合デバイスにおいて、前記光結合デバイ
スは、第1の光導体と第2の光導体とからなり、
第1の光導体は、その屈折率分布がその光軸に沿
う長さに関し単調増加関数として表わされる光導
体からなり、第2の光導体は、光軸に対して平行
な光を一点に集束する機能を持つレンズで構成さ
れる光導体からなり、大きさを持つ発光素子から
の光を前記第1、第2の光導体により光伝送路へ
入射する構成としたことを特徴とする光結合デバ
イス。
1. In an optical coupling device for inputting light from a light emitting element into an optical transmission path, the optical coupling device includes a first light guide and a second light guide,
The first light guide consists of a light guide whose refractive index distribution is expressed as a monotonically increasing function with respect to its length along its optical axis, and the second light guide focuses light parallel to the optical axis to a point. An optical coupling characterized in that the optical coupling comprises a light guide made up of a lens having the function of device.
JP12704582A 1982-07-21 1982-07-21 Optical coupling device Granted JPS5917518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12704582A JPS5917518A (en) 1982-07-21 1982-07-21 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12704582A JPS5917518A (en) 1982-07-21 1982-07-21 Optical coupling device

Publications (2)

Publication Number Publication Date
JPS5917518A JPS5917518A (en) 1984-01-28
JPS6238685B2 true JPS6238685B2 (en) 1987-08-19

Family

ID=14950247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12704582A Granted JPS5917518A (en) 1982-07-21 1982-07-21 Optical coupling device

Country Status (1)

Country Link
JP (1) JPS5917518A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3782505T2 (en) * 1986-01-14 1993-03-25 Kobe Steel Ltd METHOD AND DEVICE FOR MEASURING THE OVEN TEMPERATURE IN AN ISOSTATIC HOT PRESSING UNIT.
JP2608560B2 (en) * 1987-07-10 1997-05-07 株式会社 金陽社 Method for producing porous rubber roll
US6570084B2 (en) * 2001-07-10 2003-05-27 Powerlight Corporation Pressure equalizing photovoltaic assembly and method

Also Published As

Publication number Publication date
JPS5917518A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
US5436806A (en) Illumination device
US4253727A (en) Optical coupler for optical fibres
US3278738A (en) Light deflector
US4815807A (en) Collimator lens for optical fiber
US4776666A (en) Projector for projecting fixed star
US20020122621A1 (en) Coupling of light from a non-circular light source
RU97117463A (en) LENS LENS AND OPTICAL SENSOR DEVICE WITH LENS LENS
JPS6065705U (en) Coupling device for dielectric optical waveguide
JPS58208715A (en) Optical multiplexer
US20190101734A1 (en) Luminous flux collector for directing light into a light-diffusing fiber
JPS6238685B2 (en)
JPH0638128B2 (en) Optical coupling lens
JPS58208717A (en) Apparatus for connecting light radient generator and light waveguide path
JPS59200211A (en) Optical multibranching device
JPS5988672A (en) Optical fiber sensor
GB2027546A (en) Fibre optic tap
KR930011823B1 (en) Optical wave length convertical apparatus
JPH10133020A (en) Appliance for condensing and converging light
US6519386B1 (en) Light coupling apparatus and method
JP6596744B2 (en) Optical element
JPS56144411A (en) Collimating optical system
JPS5727214A (en) Graded lens and optical transmission line using said lens
US6318885B1 (en) Method and apparatus for coupling light and producing magnified images using an asymmetrical ellipsoid reflective surface
CA2411779A1 (en) Optical fiber collimator using gradient index rod lens
JPS5917523A (en) Optical device