JPS58207664A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58207664A
JPS58207664A JP9061282A JP9061282A JPS58207664A JP S58207664 A JPS58207664 A JP S58207664A JP 9061282 A JP9061282 A JP 9061282A JP 9061282 A JP9061282 A JP 9061282A JP S58207664 A JPS58207664 A JP S58207664A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
oxide film
resistor
semiconductor device
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9061282A
Other languages
Japanese (ja)
Inventor
Kazuo Ogasawara
和夫 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9061282A priority Critical patent/JPS58207664A/en
Priority to US06/498,030 priority patent/US4620212A/en
Publication of JPS58207664A publication Critical patent/JPS58207664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having a high integration density and less manufacturing error by employing meandering form of the first and second polycrystalline silicon resistance materials. CONSTITUTION:The first polycrystalline silicon resistance material 6 and the second polycrystalline silicon resistance material 7 formed on the oxide film 8 on silicon substrate 9 are patterned using the photo etching technology, and an oxide film is formed through thermal oxidation. Thereafter, a contacts 3 and 4 are opened, and a combined resistance material is formed by the leadout conductors 1 and 2 and mutual connecting conductor 5. The resistance materials 6, 7 are respectively provided adjacently at the linear part and these are overlapped through an insulating film at the meandering part. Therefore, the interval required for preventing short-circuitting due to whisker of polycrystalline silicon is no longer necessary and it is also unnecessary to prepare a semiconductor device in wider area. Since an oxide film 10 is provided, electrical continuity is not generated between the first and second polycrystalline silicons and thereby, about doubled resistance can be formed in the same area.

Description

【発明の詳細な説明】 本発明は抵抗回路網を備えてなる半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device including a resistor network.

近年、半導体装置の応用分野の拡大はめざましいものが
あり、従来個別部品、または調整技術を用いて十分な精
度が必要とされる分野へと急速に浸透している。
In recent years, the field of application of semiconductor devices has been expanding at a remarkable rate, and they are rapidly penetrating into fields that require sufficient precision using conventional individual components or adjustment techniques.

このような−例として、アナログ信号をデジタル信号に
変換するアナログ・デジタル変換信号処理の分野につい
て考えてみると、アナログの如き時間連続信号をサンプ
リングすることに時間離散信号(パルス振幅変調)とな
しだ彼、振幅を劃−予信することKよりデジタル信号に
変換することになる。このため、アナログ・デジタル変
換回路には当然サンプル・ホールド回路が必要となる。
As an example, consider the field of analog-to-digital conversion signal processing, which converts analog signals to digital signals. However, by predicting the amplitude, it is converted into a digital signal. Therefore, the analog-to-digital conversion circuit naturally requires a sample-and-hold circuit.

アナログ信号をある周期でサンプル・ホールドしデジタ
ル信号に変換する際には、その変換系の精度を確保する
ために折り返し歪防止用フィルタを用いて入力されるア
ナログ信号の帯域制限が必要となる。
When sampling and holding an analog signal at a certain period and converting it into a digital signal, it is necessary to limit the band of the input analog signal using an aliasing distortion prevention filter in order to ensure the accuracy of the conversion system.

例えば4 K、 Hzのアナログ信号をデジタル信号に
変換するときには、サンプリング定理により、サンプリ
ング周期は125μsec (サンプリング周波数8 
K Hzに相当)が最小周期となる。すなわち、折り返
し歪をさけるためには、入力されるアナログ信号に対し
て帯域制限することが必要である。
For example, when converting a 4 K, Hz analog signal to a digital signal, the sampling period is 125 μsec (sampling frequency 8
kHz) is the minimum period. That is, in order to avoid aliasing distortion, it is necessary to band limit the input analog signal.

この目的のため、半導体装置として用いられてきた技術
は、多結晶シリコンまたは拡散抵抗を抵抗体として用い
、絶縁体をit体として用いた容量により、半導体基板
上に(、Rフィルタを構成するのが通常であった。
For this purpose, the technology used for semiconductor devices is to use polycrystalline silicon or a diffused resistor as a resistor and an insulator as an IT body. was the norm.

CR時定数を太きクシ、フィルタの動作周波数を低周波
領域まで拡けるためには、抵抗体の抵抗値几を大きくす
るか、容量Cを大きくするしかないことは明らかである
It is clear that the only way to increase the CR time constant and extend the operating frequency of the filter to a low frequency range is to increase the resistance value of the resistor or increase the capacitance C.

従来、この目的のためには抵抗体の面8Iを太くとり抵
抗値を太きぐするか、容′M、面積を大きくする等が考
えられ、半導体面積を大きくとることが多裂であった。
Conventionally, for this purpose, it has been considered to increase the resistance value by increasing the resistance value by increasing the surface 8I of the resistor, or to increase the capacity and area, and increasing the semiconductor area has been considered.

これをさけるためには、多結晶シリコンに拡散する不純
物量を少なくした抵抗体が考えられるが、このような抵
抗体のノート抵抗は非常に大きな値となり、この変動を
制御するのは容易ではない。単位容重”値を大きくする
ことけ容通誘電体の膜厚を薄くすれは可能であるが製造
時の誤差を考えればおのずから太きぐすることに限界が
あった。
To avoid this, a resistor with a reduced amount of impurities diffused into polycrystalline silicon can be considered, but the node resistance of such a resistor becomes a very large value, and it is not easy to control this fluctuation. . Although it is possible to increase the unit volume and reduce the thickness of the conductive dielectric, there is a limit to how thick it can be made considering manufacturing errors.

また、0MO8等で使用されるPウェル、Nウェル等の
仙域を用した抵抗体も考えられるが、これらの抵抗体は
電圧対抵抗イ1への係数が大きいこと、捷た接合容針が
大きいため、周波数特性が劣化する欠点を有していた。
In addition, resistors using sacrum regions such as P-well and N-well used in 0MO8 etc. are also considered, but these resistors have a large coefficient of voltage vs. resistance (1), and a broken junction capacitance needle. Because of its large size, it had the disadvantage of deteriorating frequency characteristics.

本発明はかかる欠点のない、半導体面積を最小となし、
比粘度の優れた朴抗体を複数の多結晶シリコンを用いて
構成することが可能となり、半導体装置の応用分野の拡
大に非常に有効である。
The present invention is free from such drawbacks, minimizes semiconductor area,
It is now possible to construct a block antibody with excellent specific viscosity using multiple polycrystalline silicones, which is extremely effective in expanding the field of application of semiconductor devices.

本発明による半導体装置はシリコン基板上に形成された
絶縁膜上の第1多結晶ンリコンにより構成された第1だ
行抵抗体と、前記第1の多結晶シリコンと絶縁膜を介し
て形成された第2の多結晶シリコンにより構成された第
2のだ行抵抗体が、それぞれ直線部分で相互に隣接して
おり、だ行部分で絶縁膜を介して隼なることを特徴とす
る。
A semiconductor device according to the present invention includes a first resistor made of a first polycrystalline silicon on an insulating film formed on a silicon substrate, and a first resistor formed by interposing the first polycrystalline silicon and the insulating film. The second stray resistors made of second polycrystalline silicon are adjacent to each other in their linear portions, and are separated at their stray portions with an insulating film interposed therebetween.

以下実施例を昂いて本発明の詳細な説明する。The present invention will be described in detail below with reference to Examples.

本発明は第1抵抗体層とするべき第1多結晶シリコンと
、第2抵抗体層とするべき第2多結晶シリコンを組合せ
ることにより半導体装置の面積を大幅に減小すると伴に
合成抵抗体の製造に対する変動に対し感度を最小限にで
きることを特徴とするものであり、その第1の実施例の
説明図を第1図(a)および(b)に示す。第1図(a
)は本発明の第1の実施例の平面図、第1図(b)は第
1図(a)におけるXX′断面図をそれぞれ示す。
The present invention significantly reduces the area of a semiconductor device by combining a first polycrystalline silicon to be used as a first resistor layer and a second polycrystalline silicon to be used as a second resistor layer, and the combined resistance The first embodiment is characterized by being able to minimize sensitivity to variations in body manufacturing, and FIGS. 1(a) and 1(b) are explanatory diagrams of a first embodiment thereof. Figure 1 (a
) shows a plan view of the first embodiment of the present invention, and FIG. 1(b) shows a sectional view taken along line XX' in FIG. 1(a).

第1図において、シリコン基板9の上に熱酸化等により
形成された酸化膜8の上に形成された第1多結晶シリコ
ン抵抗体6および第1多結晶シリコン折抗体を写真蝕刻
技術等を用いてパターン化し熱酸化等で酸化膜を形成す
る。更に第2多結晶シリコン抵抗体を前記第1多結晶シ
リコン担抗体と同様に形成する。しかる後に、コンタク
ト3および4を開け、引き出し導体1および2と相互接
続導体5により構成された抵抗の一実施例である。
In FIG. 1, a first polycrystalline silicon resistor 6 and a first polycrystalline silicon folded body are formed on an oxide film 8 formed on a silicon substrate 9 by thermal oxidation or the like using photolithography or the like. pattern and form an oxide film by thermal oxidation or the like. Furthermore, a second polycrystalline silicon resistor is formed in the same manner as the first polycrystalline silicon carrier. Thereafter, contacts 3 and 4 are opened and an example of a resistor constituted by lead-out conductors 1 and 2 and interconnect conductor 5.

なお、第1図の説明において第1および第2多結晶シリ
コンに不純物拡散を行うとの説明が省略しであるが、こ
れは行なっても良いし行なわなくても良い。ただし、C
R時定数を制御するためには不純物拡散を行うのが通常
である。
In the explanation of FIG. 1, the explanation that impurity diffusion is performed in the first and second polycrystalline silicon is omitted, but this may or may not be performed. However, C
In order to control the R time constant, impurity diffusion is usually performed.

第1図の如き構成とすることにより、従来、多結晶7リ
コンを写真蝕刻技術等を用いて形成する際に多結晶シリ
コンのひげ等による短絡を防ぐために必要とされる間隔
が必要なくなり、半導体装置の面積を大きくとる必要が
ないことは明らかである0 すなわち、第1多結晶シリコンを写真蝕刻技術等で形成
した稜、酸化膜を形成し第2多結晶シリコンを形成する
ため、第1多結晶シリコンと第2多結晶シリコン間に電
気的導通は生じず、このため、同一面積に約2倍の抵抗
を作ることができる。
By adopting the configuration shown in Fig. 1, the spacing required to prevent short circuits due to whiskers of polycrystalline silicon when forming polycrystalline 7 silicon using photoetching technology is no longer necessary, and the It is clear that there is no need to increase the area of the device. No electrical conduction occurs between the crystalline silicon and the second polycrystalline silicon, and therefore approximately twice the resistance can be created in the same area.

この説明として第1図(b)があり、第1多結晶シリコ
ンと第2多結晶シリコンの間には酸化膜10が介在する
ため、電気的導通は生じない。
As an explanation of this, FIG. 1(b) shows that since the oxide film 10 is interposed between the first polycrystalline silicon and the second polycrystalline silicon, no electrical conduction occurs.

なお本発明の第一の実施例の説明図においては、第1多
結晶/リコン抵抗体と第2の多結晶シリコン抵抗体の酸
化膜10を介して5+iなりあう部分が引出し導体1お
よび2の付近に位置しているが、このため本発明の第1
の実施例は比較的低周波数領域の使用に適している。と
いうのは、第1多結d^シリコン抵抗体と第2多結晶ン
リコン抵抗体は酸化膜10を介した容量を持つためであ
る。
In the explanatory diagram of the first embodiment of the present invention, the 5+i portions of the first polycrystalline/recon resistor and the second polycrystalline silicon resistor through the oxide film 10 correspond to the lead-out conductors 1 and 2. Although it is located nearby, this is why the first aspect of the present invention
The embodiment is suitable for use in the relatively low frequency range. This is because the first polycrystalline silicon resistor and the second polycrystalline silicon resistor have a capacitance via the oxide film 10.

第2図は本発明の第2の実施例の平面図による説明図で
ある。第2図において第1図(a)と同じ個所は同じ番
号を用いている。
FIG. 2 is an explanatory plan view of a second embodiment of the present invention. In FIG. 2, the same parts as in FIG. 1(a) are designated by the same numbers.

第2図は第1図(a)における相互接続導体5および引
き出し導体2を変更したものである。
FIG. 2 shows a modification of the interconnection conductor 5 and lead-out conductor 2 in FIG. 1(a).

第2図の如き接続を用いることにより、第1多結晶シリ
コンと第2多結晶シリコンの酸化膜10を介した容量は
それぞれ引き出し導体1および2に対し等間隔で入るだ
め、第1の実施例と比較して、より高周波領域までの応
用に適している。
By using the connection as shown in FIG. 2, the capacitances of the first polycrystalline silicon and the second polycrystalline silicon through the oxide film 10 can be applied to the lead-out conductors 1 and 2 at equal intervals. Compared to , it is suitable for applications up to higher frequency ranges.

ただし、第1および第2の実施例とも、多結晶シリコン
抵抗体はシリコン基板9と酸化膜8を介して分布容it
が付加されるため、例えば1ML1z以上の応用に対し
ては、シリコン基板との各州も考慮することが必要とな
るのは明らかであろう。
However, in both the first and second embodiments, the polycrystalline silicon resistor has a distribution capacity it through the silicon substrate 9 and the oxide film 8.
It is obvious that, for example, for applications of 1ML1z or more, it is necessary to consider each state with the silicon substrate.

なお本発明の第1および第2の実施例において、第1多
結晶ンリコン抵抗体と第2多結晶シリコン抵抗体のだ行
数は7回で説明しであるが、本発明の実施に当っては形
状、だ行数によらず、第1多結晶シリコン抵拐体と第2
多結晶抵抗体を隣拌して形成することにあり、特に供用
波数領域の応用に熱しては、第1多結晶シリコン担抗体
と第2多結晶シリコン抵抗体が互に沖なり合うように形
成することも可能である。
In the first and second embodiments of the present invention, the number of lines of the first polycrystalline silicon resistor and the second polycrystalline silicon resistor is described as seven times, but in implementing the present invention, The first polycrystalline silicon resistor and the second polycrystalline resistor are
The purpose of this method is to form polycrystalline resistors by mixing them next to each other, and especially for applications in the commercial wavenumber region, the first polycrystalline silicon carrier and the second polycrystalline silicon resistor are formed so as to be offset from each other. It is also possible to do so.

以上図面を用い−C詳細に説明し7た如く、本発明を用
いれば、第1および第2多結晶シリコン抵抗体をだ行(
7て用いることにより、集積度の高い、製造眼差の少な
い十梼体装(紅が実現でき、半導体装置の応用分野の拡
大に有効である。
As described above in detail with reference to the drawings, if the present invention is used, the first and second polycrystalline silicon resistors can be
By using this method, it is possible to achieve a high degree of integration and a small manufacturing tolerance, which is effective in expanding the field of application of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明の第1の実施例の平
面説明図および断面説明図、第2図は本発明の第2の実
施例の平面説明図をそれぞれ示す。 1.2.12・・・・引出し導体、3,4,13゜14
・・・・・・コンタクト、6・・・・・・第1多結晶シ
リコン抵抗体、7・・・・・・第2多結晶シリコン抵抗
体、5゜15°°°・・・相互接続導体、8・・・・・
・酸化膜、9・・・・・・シリコン基板、10・・・・
・酸化膜。 ′・−二、ン、1 代理人 弁理士  内 原   ヨ   1(イ)1 
図 (a−) 第 1 図 (b)
FIGS. 1A and 1B are a plan view and a cross-sectional view of a first embodiment of the present invention, and FIG. 2 is a plan view of a second embodiment of the present invention. 1.2.12...Output conductor, 3, 4, 13゜14
... Contact, 6 ... First polycrystalline silicon resistor, 7 ... Second polycrystalline silicon resistor, 5゜15°°゜ ... Interconnection conductor , 8...
・Oxide film, 9...Silicon substrate, 10...
·Oxide film. '・-2, n, 1 Agent Patent attorney Uchihara Yo 1 (a) 1
Figure (a-) Figure 1 (b)

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上に形成された絶縁膜上の第1多結晶シリ
コンにより構成された第1だ行抵抗体と、前記第1の多
結晶シリコンと絶縁膜を介して形式された第2の多結晶
シリコンにより構成された第2のだ行抵抗体が、それぞ
、れ直線部分で相互に隣接1.ており、だ行部分で絶縁
膜を介してlなることを特徴とする半導体装置。
A first row resistor made of first polycrystalline silicon on an insulating film formed on a silicon substrate, and a second polycrystalline silicon formed through the first polycrystalline silicon and the insulating film. The second extending resistors configured by 1. 1. A semiconductor device characterized in that the diagonal portions are connected to each other with an insulating film interposed therebetween.
JP9061282A 1982-05-28 1982-05-28 Semiconductor device Pending JPS58207664A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9061282A JPS58207664A (en) 1982-05-28 1982-05-28 Semiconductor device
US06/498,030 US4620212A (en) 1982-05-28 1983-05-25 Semiconductor device with a resistor of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9061282A JPS58207664A (en) 1982-05-28 1982-05-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58207664A true JPS58207664A (en) 1983-12-03

Family

ID=14003299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9061282A Pending JPS58207664A (en) 1982-05-28 1982-05-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58207664A (en)

Similar Documents

Publication Publication Date Title
US3801949A (en) Thermal detector and method of making the same
EP0013173B1 (en) Monolithic distributed resistor-capacitor device utilizing polycrystalline semiconductor material
JPH036112A (en) Integrated-circuit high-frequency input attenuator circuit
US3408542A (en) Semiconductor chopper amplifier with twin emitters
JPS58207664A (en) Semiconductor device
US5257005A (en) Small value precision integrated circuit resistors
JPS6329962A (en) Semiconductor device
JPS59191368A (en) Semiconductor device
JPS58207663A (en) Semiconductor device
JP3028420B2 (en) Semiconductor integrated device
JPS6412103B2 (en)
JPH0225259B2 (en)
JPS61251162A (en) Structure of semiconductor resistor device
JPH0590502A (en) Semiconductor device
JPS5916360A (en) Semiconductor device
JPH0467666A (en) Semiconductor device
JPH036858A (en) Master-slice type semiconductor integrated circuit device
JPS62234363A (en) Semiconductor integrated circuit
JP2606380B2 (en) Semiconductor integrated circuit
JPS63141362A (en) Semiconductor device
JPS626702Y2 (en)
JPH01187965A (en) Protective circuit against surge voltage
JPH03138962A (en) Semiconductor integrated circuit
JP2917428B2 (en) Semiconductor integrated circuit device
JPH0331017B2 (en)