JPS5820709A - Silicon carbide furnace - Google Patents

Silicon carbide furnace

Info

Publication number
JPS5820709A
JPS5820709A JP57122808A JP12280882A JPS5820709A JP S5820709 A JPS5820709 A JP S5820709A JP 57122808 A JP57122808 A JP 57122808A JP 12280882 A JP12280882 A JP 12280882A JP S5820709 A JPS5820709 A JP S5820709A
Authority
JP
Japan
Prior art keywords
furnace
silicon carbide
charge
core
working space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57122808A
Other languages
Japanese (ja)
Other versions
JPH0253370B2 (en
Inventor
ジエ−ムス・デ−ビス・フイリツプス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Industries Inc
Original Assignee
Dresser Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Industries Inc filed Critical Dresser Industries Inc
Publication of JPS5820709A publication Critical patent/JPS5820709A/en
Publication of JPH0253370B2 publication Critical patent/JPH0253370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/60Heating arrangements wherein the heating current flows through granular powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)
  • Ceramic Products (AREA)
  • Furnace Details (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)
  • Resistance Heating (AREA)
  • Non-Adjustable Resistors (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A furnace for manufacturing silicon carbide comprises a broken ring (8) of raw materials in which is embedded a graphite electrical heating element (12). The ring (8) is free-standing and defines a central working space (32) in which is located a support (36). The furnace is enclosed by an annular wall (44) spaced from the ring (8) to define an annular working space. A track (38) is mounted on top of the wall (44) and a rotatable materials handling device (6) is mounted on the central support (36) and the track (38). Materials are discharged from an outlet (48) to form the ring (8) as the device (6) rotates. A geodesic dome roof prevents escape of pollutants to atmosphere.

Description

【発明の詳細な説明】 本発明はシリコンカーバイド製造装置に関する。[Detailed description of the invention] The present invention relates to a silicon carbide manufacturing apparatus.

シリコンカーバイドは炭素とシリカ又はシリコンとの混
合物から各種の時間温度条件で製造される。最低温度で
は525℃で、シリコンとカーボンから、カーボンの多
いシリコン、アルミニウム。
Silicon carbide is produced from a mixture of carbon and silica or silicon under various time and temperature conditions. The lowest temperature is 525℃, from silicon and carbon, silicon with a lot of carbon, and aluminum.

亜鉛の合金から特定条件で製造される。シリコンカーバ
イド結晶は少なくとも5種の蒸着装置でガス状クラッキ
ング法によって製造されている。主製造法は最大長さ1
5 Q ft (約18m)巾1[] ft(約3m)
′で、砂とコークスの混合物を最大的2000001d
  (約9otyL)保持スルハツチ型ノ炉で製造する
。この炉壁は通常は、鋳鉄のフレームに低品質耐火煉瓦
を内張すした、取外し及び分解可能。部材力、6成鼠。
Manufactured under specific conditions from an alloy of zinc. Silicon carbide crystals have been produced by gaseous cracking methods in at least five types of deposition equipment. The main manufacturing method is maximum length 1
5 Q ft (approx. 18m) Width 1[] ft (approx. 3m)
', the mixture of sand and coke is made up to 2000001d
(approximately 9 otyL) is produced in a holding sulkhatchi type furnace. The furnace walls are usually cast iron framed and lined with low-quality refractory bricks and can be removed and disassembled. Member power, 6 adult rats.

通称アアヶッ7炉といわれるこの炉は、本質的には過去
70年間変化がない。
This reactor, commonly known as the Aaga-7 Reactor, has essentially remained unchanged for the past 70 years.

混合材料はホッパと頭上走行うレーン又はコンベアによ
って炉に装入される。炉内に約半量充填した時に装入を
一時停止してばらのグラハイドのコアを炉の両端の電極
間に置く。コアは均等な断面積であり9例えば厚さ約l
0in、(約25’Omm)巾約16in、(約400
mm)とし、炉の寸法に応じて、変える。混合物の残部
をコア上に置いて装入をムル 完了する。通常の炉は40〜45  %の速度で混合物
を装入するには約4人を必要とする。即ち。
The mixed materials are charged to the furnace by a hopper and overhead lanes or conveyors. When the furnace is about half full, charging is temporarily stopped and a core of bulk graphide is placed between the electrodes at both ends of the furnace. The core has a uniform cross-sectional area9, e.g. a thickness of about 1
0in, (approximately 25'Omm) width approximately 16in, (approximately 400
mm) and vary depending on the dimensions of the furnace. Place the remainder of the mixture on the core to complete the charge. A typical furnace requires about 4 people to charge the mixture at a rate of 40-45%. That is.

生産性は10〜11蝋/人時となる。The productivity is 10-11 wax/man-hour.

電力゛は最大的5000kW’供給し、電圧Fi500
〜200Vの範囲とし、約1.5日の加熱期間に装入物
の抵抗は変化する。加熱した装入物は数日間放冷して取
扱可能温度とする。側壁を除去すれば、過剰装入物は崩
れ落ちてインゴットを露出する。崩落した装入物は当初
の混合物と同じ組成であり。
Maximum power supply is 5000kW, voltage Fi500
~200V, and the resistance of the charge changes over a heating period of about 1.5 days. The heated charge is allowed to cool for several days until it reaches a temperature at which it can be handled. When the sidewalls are removed, the excess charge collapses and exposes the ingot. The collapsed charge has the same composition as the original mixture.

占用可能である。インゴットは断面楕円形であり。Can be occupied exclusively. The ingot has an oval cross section.

約1〜2in、(約25〜50關)の厚さのクラストに
覆はれる。この位置での温度勾配が酸化物の不純物の集
中に好適であるため、比較的薄いクラストが形成される
。この集中のため、望ましくない不純物を有効に廃棄し
得る。
Cover with a crust about 1-2 inches (about 25-50 inches) thick. The temperature gradient at this location favors the concentration of oxide impurities, resulting in the formation of a relatively thin crust. Due to this concentration, unwanted impurities can be effectively discarded.

インゴット自体は市場性のあるシリコンカーバイド結晶
を含み、大きな部材に折って炉から取出す。グラハイド
のコアは回収してコア材料として古川する。結晶インゴ
ットは粉砕し、篩を通して所要寸法に分ける。用途に応
じて9粒子を酸又はアルカリで洗滌し、水で洗って乾燥
する。上述の手順はアチソン法として周知である。
The ingot itself contains marketable silicon carbide crystals and is broken into large pieces and removed from the furnace. The graphide core will be collected and sent to Furukawa as core material. The crystal ingot is crushed and passed through a sieve into the required size. Depending on the use, the nine particles are washed with acid or alkali, washed with water, and dried. The above procedure is known as the Acheson method.

上述の炉は各変圧器について通常4〜6個の炉を必要と
し、変圧器を最大効率で稼動させる。即ち第1の炉は加
熱、第2の炉は取出、第3は装入。
The above-mentioned furnaces typically require 4 to 6 furnaces for each transformer to operate the transformers at maximum efficiency. That is, the first furnace is for heating, the second is for taking out, and the third is for charging.

残りは冷却中である。このため、建物と炉の設備費は著
しく太きい。この炉の取出は極めて困難で時間がか\る
。附近に高温の炉があり、シリコンカーバイドを炉から
取出す場合に隣接の炉との間隔が小さく機械的取出装置
の使用が困難であるため5手作業の量が著しく大きい。
The rest is cooling down. For this reason, the equipment costs for buildings and furnaces are extremely high. Removing this furnace is extremely difficult and time consuming. There is a high-temperature furnace nearby, and when removing silicon carbide from the furnace, the distance between the adjacent furnaces is small and it is difficult to use a mechanical extraction device, so the amount of manual work required is extremely large.

このため、取出前の炉の放冷時間は9手作業可能温度ま
で冷却するため著しく長くなる。更に、炉の装入に際し
て問題が生ずる。隣接した炉があるため、混合装置から
長いコンベアベルトを炉まで延長するか、天井クレーン
が次々にパケットを炉に搬送する。この全工程は始動か
ら完了1で6〜7日必要とする。
For this reason, the cooling time of the furnace before taking it out is extremely long because it cools down to a temperature that allows 9 manual operations. Furthermore, problems arise when charging the furnace. Because of the adjacent furnaces, either a long conveyor belt is extended from the mixing device to the furnace, or an overhead crane transports the packets one after another to the furnace. This entire process requires 6 to 7 days from startup to completion.

通常の設備は1個の変圧器に6個の炉とし、6個の変圧
器に対して連続シフトとして40〜50人を必要とする
A typical installation would be six furnaces per transformer, requiring 40 to 50 people in consecutive shifts for six transformers.

本発明の炉は著しく運転費を節減でき、電力使用を適切
にし、装入速度は人時当り100〜110元となる。1
0倍の生産性は炉の新しい設計から得られ、炉内に混合
物を装入するには自動化材料取扱装置を使用する。更に
9本発明の装置は炉からの取出に際してパケットローダ
−等の大型機械の使用が可能である。
The furnace of the present invention can significantly reduce operating costs, moderate power usage, and charge rate of 100-110 yuan per person hour. 1
The 0x productivity is obtained from the new design of the furnace, which uses automated material handling equipment to charge the mixture into the furnace. Furthermore, the apparatus of the present invention allows the use of a large machine such as a packet loader when unloading from the furnace.

それ酸1本発明の目的はアチソン法の原理を使用した新
らしい炉の設計を提供するにろる。
It is an object of the present invention to provide a new furnace design using the principles of the Acheson process.

本発明の他の目的は新らしいシリコンカーバイド製造設
備を提供することにある。
Another object of the present invention is to provide a new silicon carbide manufacturing equipment.

本発明の別の目的は生産性を高くし電力使用を適切にし
てシリコンカーバイド炉の運転経費を減少するにある。
Another object of the invention is to reduce operating costs of silicon carbide furnaces by increasing productivity and optimizing power usage.

本発明の他の目的はシリコンカーバイド設備の有効な汚
染物制御を行なうことにある。
Another object of the invention is to provide effective contaminant control for silicon carbide facilities.

本発明の別の目的は電気損失を減少することにある0 他の目的は炉の運転に伴う危険を少なくすることにある
Another object of the invention is to reduce electrical losses.Another object of the invention is to reduce the risks associated with furnace operation.

別の目的は材料取扱を改良することにある。Another purpose is to improve material handling.

本発明による電気抵抗炉では石実質及び炭素質材料の装
入物から直接電気加熱してシリコンカーバイドを製造す
る。電流は母線、電極を経て装入物内に水平に挿入され
たカーボンの抵抗コアに供給する。コアと装入物とは不
完全リング状とする。
In the electric resistance furnace according to the invention, silicon carbide is produced by direct electrical heating from a charge of stone substance and carbonaceous material. Current is supplied via the busbar and electrodes to a carbon resistive core inserted horizontally into the charge. The core and charge are in the form of an incomplete ring.

電気抵抗炉を収容する加熱室は運転を行ない得る寸法と
する。炉へ装入取出装置を設ける。室の上部は封鎖して
ダクトが塵埃収集室に連結される。
The heating chamber housing the electric resistance furnace shall be dimensioned to allow operation. A charging and unloading device is installed in the furnace. The upper part of the chamber is closed and a duct is connected to the dust collection chamber.

本発明を例示とした実実施例並びに図面について説明す
る。
Practical examples and drawings illustrating the present invention will be described.

第1,2図は本発明に□よるシリコンカーバイド製造装
置を示し、建物2の加熱室内に加熱炉装置を設ける。図
示の通り、建物はドーム型であり。
1 and 2 show a silicon carbide manufacturing apparatus according to the present invention, in which a heating furnace apparatus is installed in a heating chamber of a building 2. As shown in the diagram, the building is dome-shaped.

好適な例でジオデンックドーム(geodesic d
ome)とする。図示しないコンベアが原料即ち所要の
割合で混合した石実質及び炭素質材料を主建物から加熱
室に搬送する。このコンベアは1図示しない横方向コン
ベアから材料取扱装置6に材料を供給する。取扱装置6
は9本発明の不完全リング炉の上方とする。取扱装置6
は、炉8に対して原料100所要の装入を行なう。更に
材料に対して所要位置にグラハイド炉心12を置く。炉
は休止角炉であり、装荷材料を収容するだめの側壁又は
ゲートは使用しない。所要に応じて側壁を設けることも
できる。
A suitable example is a geodesic dome (geodesic dome).
ome). A conveyor (not shown) transports the raw materials, that is, the stone substance and carbonaceous material mixed in a required ratio, from the main building to the heating chamber. This conveyor supplies material to the material handling device 6 from a transverse conveyor (not shown). Handling device 6
9 is above the incomplete ring furnace of the present invention. Handling device 6
In this case, 100 raw materials are charged into the furnace 8. Furthermore, the grahyde core 12 is placed at a required position relative to the material. The furnace is a dormant square furnace and does not use side walls or gates to accommodate the loading material. Side walls can also be provided as required.

更に、炉8の形状は不完全リングの形状とし。Furthermore, the shape of the furnace 8 is an incomplete ring shape.

中央作業スペース32を形成する。材料取扱装置6には
回転積込部材64を含む。部材64の一端は作業スペー
ス62の中央の支柱66上に回転可能に支持される。部
材34の他端には車42等を取付ける。建物2の側壁4
4の内面に取付けた円周軌道28上に車42を支持する
。積込部材64には炉心12に一致した排出シュート4
8を有する。積込部材34が中央支柱ろ6を中心として
回転する時に、原料はシュート48を経てはソリング状
パターンに落ちる。しかし、リングの扇形部は開いてい
て不完全リングを形成し2作業スペース32に入るのは
容易である。
A central working space 32 is formed. Material handling device 6 includes a rotating loading member 64 . One end of the member 64 is rotatably supported on a post 66 in the center of the workspace 62. A car 42 or the like is attached to the other end of the member 34. Side wall 4 of building 2
A car 42 is supported on a circumferential track 28 attached to the inner surface of the car 4. The loading member 64 has a discharge chute 4 that corresponds to the core 12.
It has 8. As the loading member 34 rotates about the central post filter 6, the material falls through the chute 48 in a soring-like pattern. However, the sector of the ring is open, forming an incomplete ring and easily entering the two working spaces 32.

炉の装入に際して、底部部分を第1に形成して停止する
。次に炉心12を混合物の上に置く。次に装入を続けて
三角形状とする。
When charging the furnace, the bottom section is formed first and then stopped. The reactor core 12 is then placed on top of the mixture. Next, continue charging to form a triangular shape.

装入を完了すれば電源例えば変圧器14を炉の両端の電
極16に母線16を介して接続する。炉はほとんど完全
なリングであり、変圧器は炉の端壁20の附近であるだ
め、母線の長さは著しく短い。変圧器は図示の炉に電力
を供給し、他の加熱室24内の炉22にも電力を供給し
て第1の炉が冷却した時に始動する。母線、電極、炉心
を通る電力は交流でも直流でもよい。所要電力によって
石英質、炭素質材料を反応させてシリコンカーバイドを
形成する温度を生ずる。
When charging is completed, a power source, such as a transformer 14, is connected to electrodes 16 at both ends of the furnace via a bus bar 16. Since the furnace is almost a complete ring and the transformer is located near the end wall 20 of the furnace, the length of the bus bar is significantly short. The transformer powers the furnace shown and also powers the furnaces 22 in the other heating chambers 24 to start up when the first furnace has cooled. The power passing through the busbars, electrodes, and core may be alternating current or direct current. The required electrical power generates temperatures that cause the quartzaceous, carbonaceous materials to react and form silicon carbide.

加熱サイクルが完了すれば変圧器14を遮断し。Once the heating cycle is complete, transformer 14 is shut off.

冷却取出工程を開始する。炉の冷却取出手順は次の通り
である。第1に炉の堆積物を数日間放冷する。こ\で、
動力ショベル例えば前端ローダ−26等の装置を炉内に
入れる。この装置は堆積物を順次取崩して炉の取出しを
行なう。炉は不完全リングの形状であるため、動力ショ
ベルは端壁20間の開口を通って作業スペース62に入
る。ショベル26は機械的に堆積物を取崩すために使用
される。通常のシリコンカーバイド炉の設計では、取出
及び大部分の装入手順は高価な時間のか\る方面 法を使用する。取崩し作業によって、堆積物価の下の高
温材料は連続的に空気に曝される。炉の過剰堆積物が取
去られ、シリコンカーバイドのインゴットが露出すれば
、数日間放冷する。冷却を促進するためには、水スプレ
ーを使用できる。冷却過程の後に同じ装置を使用してイ
ンゴットを取出し、中央清掃選別装置に送る。インゴッ
トを炉から取出せば、装入サイクルを繰返す。
Start the cooling removal process. The procedure for cooling and removing the furnace is as follows. First, the furnace deposit is allowed to cool for several days. Here,
A device such as a power shovel, such as a front end loader 26, is placed into the furnace. This device sequentially breaks down the deposits and removes them from the furnace. Because the furnace is in the shape of an incomplete ring, the power shovel enters the work space 62 through the opening between the end walls 20. A shovel 26 is used to mechanically break up the deposits. In conventional silicon carbide furnace designs, the unloading and most charging procedures use expensive and time consuming procedures. The demolition operation continuously exposes the hot material under the deposit to air. Once the excess deposits in the furnace have been removed and the silicon carbide ingot is exposed, it is allowed to cool for several days. Water spray can be used to aid cooling. After the cooling process, the same equipment is used to remove the ingots and send them to the central cleaning and sorting equipment. Once the ingot is removed from the furnace, the charging cycle is repeated.

装入、加熱、取出過程間に形成される汚染物はダクト2
8を通って汚染物処理ステーションを形成する補助装置
30内で収集処理される。装置3゜からの排出物は国の
環境基準に適合する。歴史的にはシリコンカーバイド焼
成設備から排出される汚染物はこの工業の主要問題点で
あった。焼成作業の全過程を通して、汚染物問題を有効
に処理し得る設備は他にはない。ドーム2のすべての壁
は通気性がなく、工程間に形成されるすべての汚染物は
建物内に抑留され、大気中に放散されることはない。
Contaminants formed during the charging, heating and unloading processes are removed from duct 2.
8 to be collected and processed in an auxiliary device 30 forming a contaminant treatment station. Emissions from the device 3° meet national environmental standards. Historically, pollutants emitted from silicon carbide firing equipment have been a major problem in the industry. No other equipment can effectively handle contaminant problems throughout the firing process. All walls of the dome 2 are impermeable and all contaminants formed during the process are contained within the building and are not released into the atmosphere.

建物2の壁ははぼ円形であり、炉8も円形であるため、
中間に第2の作−スペース46が形成される。第一図に
示す通り、!ジベル26は第2の作業スペースを通って
過剰堆積物を1過装置50に送り、材料供給装置に送っ
て馬用する。
The walls of the building 2 are circular, and the furnace 8 is also circular, so
A second working space 46 is formed in the middle. As shown in Figure 1,! The dowel 26 passes through the second workspace and directs the excess deposits to a passing device 50 and to a material feeder for use by the horses.

上述の装置はシリコンカーバイド製造の運転費を減少す
る。人件費が少ない。母線が短いため材料費、電気損失
を少なくする。汚染物制御は容易にできる。炉の装入取
出は容易である。炉の運転間は作業者は加熱室内に入る
必要がないので作業上の危険は著しく少ない。
The above-described equipment reduces the operating costs of silicon carbide production. Labor costs are low. Short bus bars reduce material costs and electrical loss. Contaminant control is easy. It is easy to load and unload the furnace. Since the operator does not need to enter the heating chamber while the furnace is operating, there is significantly less danger during the operation.

第3図に示す断面図は比・較的新らしいシリコンカーバ
イド炉を示し9通常のアチソン炉に伴う問題点の一部を
解決する。この既知の炉52は米国特許4158744
号に記され、はぼU型の抵抗コア54を完全に反応材料
56で囲む。本発明の炉はほぼリング状であるため1図
示の積込装置34等の自動材料取扱装置によって装入し
得る。第1゜2図に示す炉の形状は比較的簡単な一点回
転装置を炉の装入に使用可能とする。この簡単な一点回
転装置は既知のU型炉には使用できない。U型は半円と
2個の平行脚との組合せとなる。更に既知の炉は電気絶
縁材料を電極間に置いて平行直線脚間の電流漏洩を防ぐ
必要がある。この絶縁材料は、反応堆積物の材料に対す
る夾雑物となる。両脚間の反応材料が電気の流通路を形
成するため、絶縁物を必要とする。本発明の構成は、グ
ラハイドのコアとこれを覆う反応材料が電極から大きな
角度で離れるため、電極16間の絶縁材料を必要としな
い。作業スペース32内の空気が自然の絶縁物を形成し
て不時の電流漏洩を防ぐ。
The cross-sectional view shown in FIG. 3 shows a relatively new silicon carbide furnace that overcomes some of the problems associated with conventional Acheson furnaces. This known furnace 52 is disclosed in US Pat. No. 4,158,744.
The U-shaped resistive core 54 is completely surrounded by a reactive material 56. Because the furnace of the present invention is generally ring-shaped, it can be loaded by automatic material handling equipment, such as the loading device 34 shown in the figures. The furnace configuration shown in FIGS. 1-2 allows relatively simple single point rotation equipment to be used to charge the furnace. This simple single point rotation device cannot be used in known U-type furnaces. The U-shape is a combination of a semicircle and two parallel legs. Furthermore, known furnaces require electrically insulating material to be placed between the electrodes to prevent current leakage between the parallel straight legs. This insulating material becomes a contaminant to the material of the reaction deposit. Insulators are required because the reactive material between the legs forms a path for electrical flow. The configuration of the present invention does not require insulating material between the electrodes 16 because the graphide core and the overlying reactive material are separated from the electrodes at a large angle. The air within the workspace 32 forms a natural insulator to prevent accidental current leakage.

第1,2図に明らかな通り1本発明の炉は両電極を比較
的近接して置くことができ、母線の長さを減少し、電気
損失を防ぐ。炉の形状は比較的簡単な装入取出用の材料
取扱装置を使用可能とし。
As can be seen in Figures 1 and 2, the furnace of the present invention allows both electrodes to be placed relatively close together, reducing the length of the bus bar and preventing electrical losses. The shape of the furnace allows the use of relatively simple material handling equipment for loading and unloading.

単位人員当り生産高は既知の装置に比較して1000%
の増となる。
Production output per unit of personnel is 1000% compared to known equipment
will increase.

簡単な例示として、直径約50in、(約75crrL
)の小さな炉を耐火煉瓦の平ら、なベッド上に建造した
。30in、の円上に約6in(約15cr/l)巾、
約2(約50ii)深さの砂、コークス、原料混合物の
層を形成した。ベッドの軸線上K I X 11in、
 C約25x31m)のグラハイドのコアを置き、両端
に2 in、 (約50mm)のグラバイトロッドを連
結し。
As a simple example, approximately 50 inches in diameter (approximately 75 crrL)
) A small furnace was built on a flat bed of refractory bricks. Approximately 6 inches (approximately 15 cr/l) wide on a 30 inch circle,
A layer of sand, coke, and raw material mixture approximately 2 (approximately 50ii) deep was formed. K I x 11 inches on the axis of the bed;
Place a graphite core measuring approximately 25 x 31 m) and connect 2 inch (approximately 50 mm) gravite rods to both ends.

ロッドに50厖変圧器を接続した。コア上に6 in。A 50 cubic meter transformer was connected to the rod. 6 in. on core.

(約150111)厚さの混合物を追加して30 in
(approximately 150111) thick mixture by adding 30 in.
.

(約750mm)直径のリングの三角形断面の混合物と
した。加熱、冷却後に均等な断面の不完全リング形状の
シリコンカーバイドのインゴットが得られた。
(approximately 750 mm) diameter ring with a triangular cross section. After heating and cooling, a silicon carbide ingot in the shape of an incomplete ring with a uniform cross section was obtained.

上述の実施例並びに図面は例示であって発明を限定する
ものではない。
The embodiments and drawings described above are illustrative and do not limit the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるシリコンカーバイド製造設備の平
面図、第2図は第1図の設備の一部の断面図、第6図は
既知の炉の断面図である。 2:建物      6:材料取扱装置8.22,52
 :炉   10:原料12.54:グラノ・イト炉心
(コア)14:変圧器  20:端壁 24:加熱室   28:ダク ト 32、ろ4:作業スペース ろ4:回転積込部材36=
支柱 特許出願人  ドレッサー・インダストリーズ・インコ
ーホレーテッド 7ブ 11 FIG、/
FIG. 1 is a plan view of a silicon carbide production facility according to the present invention, FIG. 2 is a sectional view of a part of the facility of FIG. 1, and FIG. 6 is a sectional view of a known furnace. 2: Building 6: Material handling equipment 8.22, 52
: Furnace 10: Raw material 12.54: Granite reactor core (core) 14: Transformer 20: End wall 24: Heating chamber 28: Duct 32, Filter 4: Working space Filter 4: Rotating loading member 36 =
Strut Patent Applicant: Dresser Industries, Inc. 7B 11 FIG, /

Claims (1)

【特許請求の範囲】 1、 シリコンカーバイド製造装置に、電源と。 炉室と、炉室内に設けて電熱で作動し石実質及び炭素質
材料装入物からシリコンカーバイドを製造する電気抵抗
炉と、装入物内に水平に挿入し電極を経て電流を供給さ
れる炭素の抵抗炉心とを設けたものにおいて、上記炉心
と装入物とは不完全リング状として中央の円形の作業ス
ペースを形成させ、不完全リング状に炉内に装入する装
置を備え。 上記装入装置には作業スペースの中央を中心として回転
可能に支持され炉心を囲んで装入物を装入する材料取扱
装置を含み、炉からの取出装置を備えることを特徴とす
るシリコンカーバイド製造装置0 2、前記炉室の壁部をリング状として炉から離間させ炉
との間に中央作業スペーと同一軸線で半径方向外方に離
間した第2の環状作業スペースを形成する特許請求の範
囲第1項記載の装置。 6、石実質及び炭素質材料の、自由に置かれた装入物か
らシリコンカーバイドを製造するだめの電熱作動電気抵
抗炉であって、装入物内に水平に挿入した炭素の抵抗コ
アに電極を経て電流を供給するものにおいて、上記コア
と装入物とを不完全リング状として中央の作業スペース
を形成させ。 上記装入物は自由に置かれて形状規制されないことを特
徴とするシリコンカーバイド製造装置。 4、前記炉に不完全リング状に装入する装置を含み、上
記装入装置には、作業スペースの中心を中心として回転
可能に支持し装入物をコアを囲んで装入する材料取扱装
置を含む特許請求の範囲第3項記載の装置。 5、 シリコンカーバイド製造装置に、電源と。 室内に不完全リング状として堆積して中央に円形作業ス
ペースを形成する石実質及び炭素質の自由に置かれた装
入物と、2個の離間した電極を含む電源と、材料堆積物
内に水平に挿入し離間した両端を有し不完全リング状と
した抵抗コアと9両電極を夫々コアの両端の一方に接続
して電源から供給された電流を電極を経て抵抗コアに流
して材料を加熱する手段とを設け、不燃性基全形成し側
壁内面に円周方向の軌道を連結したドームと、材料の堆
積として装入物を不完全リング状に装入する材料取扱装
置とを備え、上記取扱装置には作業スペースの中心の支
持装置と、支持装置に回転可能に一端を支持し回転量材
料を排出して不完全リング状堆積物を形成する積込装置
とを含み、積込装置の他端は軌道に支持されてドームと
の相対運動を可能にすることを特徴とするシリコンカー
バイド製造装置。 6 前記ドームは材料の装入加熱取出間に形成するすべ
ての汚染物が大気に逃げるのを防ぐようにし、ドーム内
に取付けて汚染物を収集してドームから離れた処理ステ
ーションに搬送する装置を設ける特許請求の範囲第5項
記載の装置。 Z 前記ドームをジオデシックドームとする特許請求の
範囲第5項又は第6項記載の装置。 8 前記ドームの側壁が前記の自由に置がれた堆積物か
ら離れて中央の作業スペースに同一軸線として半径方向
外方に離れた第2の環状作業スペ −−スを形成する特
許請求の範囲第5項記載の装置。
[Claims] 1. A silicon carbide production device with a power source. a furnace chamber; an electric resistance furnace installed in the furnace chamber and operated by electric heat to produce silicon carbide from a charge of stone substance and carbonaceous material; inserted horizontally into the charge and supplied with electric current through electrodes; A carbon resistance reactor core is provided, in which the core and the charge are formed into an incomplete ring shape to form a central circular working space, and a device is provided for charging the reactor core into the reactor in the incomplete ring shape. Silicon carbide manufacturing characterized in that the charging device includes a material handling device that is rotatably supported around the center of the work space and charges materials surrounding the reactor core, and is equipped with an unloading device from the furnace. Apparatus 02, wherein the wall of the furnace chamber is ring-shaped and spaced apart from the furnace to form a second annular working space coaxial with the central working space and spaced radially outwardly between the furnace and the furnace. The device according to paragraph 1. 6. An electrothermally operated electric resistance furnace for producing silicon carbide from a freely placed charge of stone-like and carbonaceous materials, the electrode being connected to a resistive core of carbon inserted horizontally into the charge. The core and the charge are formed into an incomplete ring to form a central working space. A silicon carbide production apparatus characterized in that the charge is placed freely and its shape is not restricted. 4. The charging device includes a device for charging the furnace in an incomplete ring shape, and the charging device includes a material handling device that supports the material rotatably around the center of the work space and charges the material surrounding the core. 4. The apparatus of claim 3 comprising: 5. Power supply for silicon carbide production equipment. A freely disposed charge of stone parenchyma and carbonaceous material deposited in an incomplete ring in the chamber to form a central circular working space, a power source containing two spaced electrodes, and a material deposit within the material deposit. A resistor core is inserted horizontally and has an incomplete ring shape with both ends spaced apart, and nine electrodes are connected to one of the ends of the core respectively, and a current supplied from a power source is passed through the electrodes to the resistor core to remove the material. a dome with a non-combustible base fully formed and a circumferential track connected to the inner surface of the side wall; and a material handling device for charging the charge in the form of an incomplete ring as a material deposit; The handling device includes a support device in the center of the working space, a loading device rotatably supported at one end on the support device and discharging the rotational amount of material to form an incomplete ring-shaped pile; A silicon carbide production device characterized in that the other end is supported by a track to enable relative movement with the dome. 6. Said dome is such as to prevent any contaminants that form during the charging, heating and unloading of the material from escaping into the atmosphere, and a device is installed within the dome to collect the contaminants and transport them to a processing station remote from the dome. An apparatus according to claim 5 provided. Z. The device according to claim 5 or 6, wherein the dome is a geodesic dome. 8. Claims in which the side walls of said dome form a second annular working space coaxially spaced radially outwardly from said free-standing pile to a central working space. The device according to paragraph 5.
JP57122808A 1981-07-15 1982-07-14 Silicon carbide furnace Granted JPS5820709A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/283,696 US4399546A (en) 1979-09-28 1981-07-15 Silicon carbide furnace
US283696 1988-12-13

Publications (2)

Publication Number Publication Date
JPS5820709A true JPS5820709A (en) 1983-02-07
JPH0253370B2 JPH0253370B2 (en) 1990-11-16

Family

ID=23087164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122808A Granted JPS5820709A (en) 1981-07-15 1982-07-14 Silicon carbide furnace

Country Status (19)

Country Link
US (1) US4399546A (en)
EP (1) EP0070121B1 (en)
JP (1) JPS5820709A (en)
KR (1) KR890000701B1 (en)
AT (1) ATE24368T1 (en)
AU (1) AU550338B2 (en)
BR (1) BR8204084A (en)
CA (1) CA1188352A (en)
DE (1) DE3274782D1 (en)
DK (1) DK161086C (en)
ES (2) ES513940A0 (en)
GB (1) GB2101576B (en)
IN (1) IN158348B (en)
IS (1) IS1312B6 (en)
MX (1) MX158364A (en)
NO (1) NO163280C (en)
NZ (1) NZ200835A (en)
YU (1) YU44839B (en)
ZA (1) ZA823955B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569057A (en) * 1984-06-25 1986-02-04 Pennsylvania Engineering Corporation Material feed system for smelting furnaces
US5571483A (en) * 1990-01-26 1996-11-05 Exolon-Esk Company System of converting environmentally pollutant waste gases to a useful product
US6129808A (en) 1998-03-31 2000-10-10 Lam Research Corporation Low contamination high density plasma etch chambers and methods for making the same
US6464843B1 (en) 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
CN101863474B (en) * 2010-06-30 2012-11-07 平罗县滨河碳化硅制品有限公司 Super-power silicon carbide smelting furnace
RU2626382C1 (en) * 2016-03-10 2017-07-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of heating charge stock in a high-temperature furnace
CN111776939B (en) * 2020-06-23 2022-04-26 中国五冶集团有限公司 Cross-inner hoisting installation method for belt type roasting machine
KR102669327B1 (en) * 2021-11-12 2024-05-29 인하대학교 산학협력단 A method for producing cellulose with improved heat resistance and a method for producing a cellulose composite in which the cellulose is mixed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659615A (en) * 1979-09-28 1981-05-23 Dresser Ind Manufacturing plant for silicon carbide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US560291A (en) * 1896-05-19 Electrical furnace
US492767A (en) * 1893-02-28 Edward g
US965142A (en) * 1909-01-07 1910-07-19 Carborundum Co Method of making silicon carbid.
DE409356C (en) * 1924-06-11 1925-02-04 Martin Sperling Dr Electric resistance furnace
DE1162577B (en) * 1958-11-28 1964-02-06 Demag Elektrometallurgie Gmbh Loading device for electric reduction furnaces
IN144032B (en) * 1973-12-21 1978-03-11 Kempten Elektroschmelz Gmbh
DE2364109C2 (en) * 1973-12-21 1979-10-31 Elektroschmelzwerk Kempten Gmbh, 8000 Muenchen Extraction device for gaseous reaction products in furnace systems
DE2434747A1 (en) * 1974-07-19 1976-01-29 Krupp Gmbh Electric open hearth furnace for steel mfr. - with separate addn. of iron ore and large amt. of scrap
DE2630198C2 (en) * 1976-07-05 1983-02-03 Elektroschmelzwerk Kempten GmbH, 8000 München Furnace with direct electrical resistance heating for the production of silicon carbide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659615A (en) * 1979-09-28 1981-05-23 Dresser Ind Manufacturing plant for silicon carbide

Also Published As

Publication number Publication date
YU150882A (en) 1985-03-20
NZ200835A (en) 1985-12-13
AU8448582A (en) 1983-01-20
EP0070121B1 (en) 1986-12-17
AU550338B2 (en) 1986-03-20
ES8308289A1 (en) 1983-08-16
IS2736A7 (en) 1983-01-16
ZA823955B (en) 1984-01-25
ES520545A0 (en) 1984-03-16
DK161086C (en) 1991-11-11
IS1312B6 (en) 1988-03-22
MX158364A (en) 1989-01-27
NO822077L (en) 1983-01-17
DE3274782D1 (en) 1987-01-29
ATE24368T1 (en) 1987-01-15
DK161086B (en) 1991-05-27
EP0070121A1 (en) 1983-01-19
ES8403422A1 (en) 1984-03-16
KR890000701B1 (en) 1989-03-27
CA1188352A (en) 1985-06-04
NO163280B (en) 1990-01-22
US4399546A (en) 1983-08-16
ES513940A0 (en) 1983-08-16
GB2101576B (en) 1985-04-24
KR840000433A (en) 1984-02-22
IN158348B (en) 1986-10-25
BR8204084A (en) 1983-07-05
GB2101576A (en) 1983-01-19
JPH0253370B2 (en) 1990-11-16
DK281982A (en) 1983-01-16
YU44839B (en) 1991-04-30
NO163280C (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US3836353A (en) Pellet reclamation process
JPS5820709A (en) Silicon carbide furnace
CA1167499A (en) Arcuate silicon carbide manufacturing plant
US3900696A (en) Charging an electric furnace
US4582521A (en) Melting furnace and method of use
RU2723848C1 (en) Rotary melting furnace for processing non-ferrous metal wastes
CN104089476A (en) Method for using induction furnace for smelting iron alloy and dedicated induction furnace
JP2655864B2 (en) Method for producing high reduced chromium ore powder
JPS6056963B2 (en) Melting treatment method and melting furnace for municipal waste incineration ash, sewage sludge, etc.
CN107758667A (en) A kind of system and method for induction furnace, induction furnace production carbide liquid
CN214766091U (en) Polycrystalline silicon crushing device
CN220507644U (en) Electric arc furnace for producing fused zirconia corundum bricks
Ruan et al. Commissioning and Cold Test of HLLW Vitrification Plant of China
KR102595314B1 (en) Separation type vertical graphitization furnace system
RU2729232C1 (en) Reverberatory furnace for aluminum scrap remelting
CN210480872U (en) High-temperature furnace for preparing hexagonal boron nitride
CN208269675U (en) Manganese ore kiln gas recycle device
Oden et al. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report
JP3309512B2 (en) Copper refining furnace
US3580717A (en) Method of obtaining a spongy metal ingot in a shaft furnace
US3929459A (en) Charging an electric furnace
SU117734A1 (en) Ring furnace for pyrometallurgical iron ore processing
JP2002274906A (en) Preparation process of raw material for artificial aggregate
SU929731A1 (en) Method for recovering mercury from dust
CN108866342A (en) A kind of device and method handling spent noble metals bearing catalysts