JPS58205991A - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device

Info

Publication number
JPS58205991A
JPS58205991A JP57089161A JP8916182A JPS58205991A JP S58205991 A JPS58205991 A JP S58205991A JP 57089161 A JP57089161 A JP 57089161A JP 8916182 A JP8916182 A JP 8916182A JP S58205991 A JPS58205991 A JP S58205991A
Authority
JP
Japan
Prior art keywords
floating gate
erasing
gate
writing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089161A
Other languages
Japanese (ja)
Inventor
Masashi Wada
和田 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57089161A priority Critical patent/JPS58205991A/en
Publication of JPS58205991A publication Critical patent/JPS58205991A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

PURPOSE:To realize efficient rewriting without causing unbalance between writing and erasing, by performing the rewriting to a non-volatile memory device, which can be rewritten electrically, by the same pulse voltage and pulse width. CONSTITUTION:Writing to a memory element is performed by grounding a base board 21, drain 23 and source 22, by applying high electric potential 20V to two controlling gates 27 and 31, and injecting an electron to a floating gate 25 from an (n+) area 28. Erasing is performed by applying high electric potential 20V to the drain 23 and source 22, and low electric potential 0V to two controlling gates 27 and 31, and discharging the electron to the (n+) area 28 from the floating gate 25. As the result, an efficient rewriting with no unbalance between the writing and erasing can be realized. However, by defining VTO as the threshold of initial state, VTE as the threshold of erasing state and VOR as writing voltage to be applied to the controlling gate, an expression I shall be satisfied.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電気的に書き換え可能な浮遊ゲートを有する不
揮発性半導体メモリ装置に係り、特にその書き込み、消
去特性の最適化にiする。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nonvolatile semiconductor memory device having an electrically rewritable floating gate, and is particularly concerned with optimizing its writing and erasing characteristics.

〔発明の技術的背景どその問題点〕[Technical background of the invention and other issues]

従来知られている電気的に消去可能な浮遊ゲートを有す
る不揮発性半導体メモリを第1図に示す。P型81基板
χ上に酸化膜2.を介して浮遊ゲート3を設け、その上
部に同じく酸化膜2□を介して制御ゲート4を設け、史
にn のドレイン領域6とソース領域6を設けて構成さ
れている。h・、遊ゲート3とドレイン領域すの間の酸
化膜の一部7がトンネル電流が流れ得る程度(〜200
λ)の厚さに形成されて書き換え領域となっている。本
メモリ素子の書き込みは、ドレイン領域5の電位VDを
低電位、制御ゲート4の電位を高゛屹位となし、書き換
え鎮城7において電子がドレイン領域5から浮遊ゲート
3ヘトンネリングにより゛注入される拳によっ−(行な
われ、消去は逆の操作によって行なわれる。
A conventionally known nonvolatile semiconductor memory having an electrically erasable floating gate is shown in FIG. Oxide film 2 on P-type 81 substrate χ. A floating gate 3 is provided via a floating gate 3, a control gate 4 is provided above the floating gate 3 via an oxide film 2, and an n drain region 6 and a source region 6 are provided. h., the part 7 of the oxide film between the free gate 3 and the drain region is to the extent that a tunnel current can flow (~200
It is formed to have a thickness of λ) and serves as a rewriting area. In writing to this memory element, the potential VD of the drain region 5 is set to a low potential and the potential of the control gate 4 is set to a high level, and in the rewrite block 7, electrons are injected from the drain region 5 into the floating gate 3 by tunneling. (is performed by a fist), and erasure is performed by the reverse operation.

本メモリ素子により大容量メモリ装置を構成する際には
、本メモリ素子をマトリックス状に配置し、睨み出しの
際には選択された素子のみ制御ゲート3に読み出し電圧
VORが印加され、かつドレイン領域5にも電圧が印加
される。従って、書き込み状態では、そのしきい値(V
TW)はVGRより大きく、消去状態のしきい値(V’
ri+)はVoi+より小さい必要がある。この様子を
第2図に示した。また、読み出し電圧VGRに対し”〔
豊き込み後のしきい値VTW、消去後のしきい値VTI
Bは対称、即ち(Vrw−VOR);(Vow−VTg
 )である事がデバイス信頼性上好ましい。なせならば
何らかの原因で、これらのレベルが変動した時、対称の
場合が一番信頼性があるからである。一方、書き換えと
いう観1点からは書き込み、消去に対してそれぞれ制御
ゲート4あるいはドレイン領域6に印加するパルス電圧
および幅は同じである事が望ましい。ところで、第1図
の様な構成をもつ記憶素子の町き込み、消去特性は、第
3図に示す様に浮遊ゲート3に電荷の注入されていない
初期状態のしきい値(VTO)  を対称軸とするl 
u (t) −V r特性上で直線関係になる。従来、
浮遊ゲー)Jl:電荷の注入されていない時のしきい値
VTOは〜IV程tWに構成されるのが通常であるので
、第3図の様に招き込みに要する時間(tw)  が艇
<、消去に要する時間(Lm)が短かいというアンバラ
ンスが生じた。
When configuring a large capacity memory device using the memory elements of the present invention, the memory elements of the present invention are arranged in a matrix, and when the memory elements are exposed, the read voltage VOR is applied to the control gate 3 of only the selected elements, and the drain region A voltage is also applied to 5. Therefore, in the write state, the threshold value (V
TW) is greater than VGR, and the erased state threshold (V'
ri+) must be smaller than Voi+. This situation is shown in Figure 2. Also, for the read voltage VGR "[
Threshold value VTW after enrichment, threshold value VTI after erasure
B is symmetric, i.e. (Vrw-VOR); (Vow-VTg
) is preferable in terms of device reliability. This is because when these levels fluctuate for some reason, the symmetrical case is the most reliable. On the other hand, from the viewpoint of rewriting, it is desirable that the pulse voltage and width applied to the control gate 4 or the drain region 6 be the same for writing and erasing, respectively. By the way, the write-in and erase characteristics of a memory element having the configuration as shown in FIG. l as axis
u (t) −V There is a linear relationship on the r characteristic. Conventionally,
Floating game) Jl: The threshold value VTO when no charge is injected is usually set to ~IV about tW, so as shown in Figure 3, the time required for induction (tw) is , an imbalance occurred in that the time required for erasing (Lm) was short.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に亀みなされたもので、書き込みと消
去のアンバランスをなくし同じパルス印加電圧および時
間で効率の良い書き換えが可能な不揮発性半導体メモリ
装置を提供する↓μを目的としている。
The present invention has been made based on the above points, and aims to provide a non-volatile semiconductor memory device that eliminates the unbalance between writing and erasing and is capable of efficient rewriting with the same pulse applied voltage and time. .

〔発明の概要〕[Summary of the invention]

本発明は、浮遊ゲートとこれに容量結合する制御ゲート
を有する電気的書き換え可能なメモリ素子を半導体基板
にマトリクス状に集積形成してなる不揮発性メモリ装置
において、メモリ素子の初期状態のしきい値なVTO1
消去状態のしきい値をVTI 、制御ゲートに印加する
続出し電圧なVGRとしたとき、 l VTO−VGRl < l Van−VTI I 
 X O,5・・=−(11を満たすようにしたことを
特徴とする。(1)式の範囲でVToをVGRに近く選
べば、第4図に示すように、書き込み、消去のために印
加されるパルス電圧のパルス幅’WelBをほぼ等しく
して、書き込み後のしきい値VTW、消去後のしきい値
VTIIがVGRに対して対、称な特性を示すようにな
る。なお、書き換え特性のみを考えれば、VTOは完全
にVanに一致させたときに最も効率がよいが、他の目
的のため、例えばメモリ装置を試験する際に書き込み、
消去を行なわない時の、セル動作のチェックを行うため
には、v’ro<Vanである方が好ましいので、 (Vi+ +Voi+ ) / 2 < VTO< V
an ・−−−−−−−・−・12)なる範囲に設定す
る事により本発明の主旨を損わない範囲で特性の改善が
可能である。VTOの制御は、イオン注入等によるチャ
ネル部の不純物濃度制御その他公知の方法で可能である
The present invention provides a nonvolatile memory device in which electrically rewritable memory elements having a floating gate and a control gate capacitively coupled to the floating gate are integrated in a matrix on a semiconductor substrate. VTO1
When the erased state threshold is VTI and the continuous voltage applied to the control gate is VGR, then l VTO-VGRl < l Van-VTI I
It is characterized by satisfying By making the pulse width 'WeIB of the applied pulse voltage almost equal, the threshold value VTW after writing and the threshold value VTII after erasing exhibit symmetrical characteristics with respect to VGR. Considering only the characteristics, VTO is most efficient when it is perfectly matched to Van, but for other purposes, such as writing when testing memory devices,
In order to check the cell operation when not erasing, it is preferable that v'ro<Van, so (Vi+ +Voi+)/2<VTO<V
By setting the value within the range of 12), it is possible to improve the characteristics without detracting from the spirit of the present invention. The VTO can be controlled by controlling the impurity concentration of the channel portion by ion implantation or other known methods.

、〔発明の効果〕 本発明により、″磁気的に書き換え可能な不揮発性メモ
リ装置の書き換えを同じパルス電圧、かつ同じパルス幅
で行え、続み出しに対して最適化された特性が得られる
[Effects of the Invention] According to the present invention, rewriting of a magnetically rewritable nonvolatile memory device can be performed with the same pulse voltage and pulse width, and characteristics optimized for continuous rewriting can be obtained.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例のメモリ素子の要部構造を示
すも゛ので、(alが平面図、tbi t (c)およ
 “び(d)はそれぞれ(a)のA−A’、B−B’ 
 およびC−C′ 断面である。P型SI基−1j、2
1にn+型のソース22、ドレイン23を設け、これら
両領域間のチャネル領域上にゲート絶縁膜24を介して
浮遊ゲート25を設け、更にその上にゲート絶縁pIA
zeを介して第1の制御ゲート27を設ける基本構造は
従来と変らない。この実施例では上記基本構造の他に、
情報の書き込みおよび消去を行う領域を別に設けている
。即ち、ソース22と連続的に形成されたn十型@2B
をチャネル領域に隣接して設け、このn十型軸28上に
トンネル現象゛が生じる程度に薄いゲート絶縁膜29を
介して前記浮遊ゲート25を廷在させる。そして、第1
の制御ゲート27とは別に、ゲート絶縁膜26および3
0により絶縁されて浮遊ゲート25に対して客員結合す
る第2の制御ゲート31を設けている。また重装なこと
は、(alおよび(blから明らかなように、浮遊ゲー
ト25がソース22、ドレイン23に対してオフセット
ゲート構造、即ちチャネル領域全域をおおわないように
なっており、残りの部分を第1の制御ゲート21でおお
っていることである。つまり′@1の制御ゲート27の
一部と浮遊ゲート26が続出し動作に対してゲート電極
として働くことになる。
FIG. 5 shows the main structure of a memory element according to an embodiment of the present invention, (al is a plan view, and tbit (c) and (d) are A-A in (a), respectively. ', B-B'
and C-C' cross section. P-type SI group-1j, 2
1, an n+ type source 22 and drain 23 are provided, a floating gate 25 is provided on the channel region between these two regions via a gate insulating film 24, and a gate insulating pIA is provided on the floating gate 25.
The basic structure in which the first control gate 27 is provided via ze remains unchanged from the conventional one. In this example, in addition to the above basic structure,
A separate area is provided for writing and erasing information. That is, the n-type @2B formed continuously with the source 22
is provided adjacent to the channel region, and the floating gate 25 is placed on this n-type axis 28 with a gate insulating film 29 thin enough to cause a tunneling phenomenon. And the first
Apart from the control gate 27, gate insulating films 26 and 3
A second control gate 31 is provided which is insulated by 0 and is coupled to the floating gate 25. Moreover, as is clear from (al and (bl), the floating gate 25 has an offset gate structure with respect to the source 22 and drain 23, that is, it does not cover the entire channel region, and the remaining portion is covered with the first control gate 21. That is, a part of the control gate 27 of '@1 and the floating gate 26 function as gate electrodes for the successive operation.

なお、ゲート絶縁Ill z 4. z 6および30
は例えば約8001 の熱酸化膜であり、また書き込み
および消去動作を行う領域のゲート絶縁膜29はトンネ
ル効果を生じる程度の膜厚例えば200A 程度の熱酸
化膜とする。また、この素子をマトリクス状に配列して
アレイを構成する場合、ソース22および第1の制御ゲ
ート27は行方向に共通に、1i42の制岬ゲー)31
および図では省略したドレイン電極配線は列方向に共通
接続されている。
Note that gate insulation Ill z 4. z 6 and 30
For example, the gate insulating film 29 in the area where writing and erasing operations are performed is a thermal oxide film having a thickness of about 200 Å, for example, to produce a tunnel effect. Further, when arranging these elements in a matrix to form an array, the source 22 and the first control gate 27 are commonly connected in the row direction.
Drain electrode wirings, which are omitted in the figure, are commonly connected in the column direction.

このメモリ素子の浮遊ゲート25がオフセットゲートと
なっているのは、消去によって浮遊ゲート25下のしき
い値が0■以下になったとしても非選択状態のセル、つ
まり第1の制御ゲート22に印加さ゛れる電圧がOVの
セルでチャネル電流が流れないようにして、ピッ)J択
を可能とするためである。そしてオフセットゲートの@
1の制御ゲート27で制御されるチャネル飴域−ヒのし
きい値を例えば1■に設定しておくことにより、このメ
モリセルの消去状態でのしきい値VTI が1■となる
。また浮遊ゲート25下の初期状態のしきい値VTOは
、第2の制御ゲート31がある固定電位(例えばOV)
で第1の制御ゲート27に選択的読み出し時に印加され
る電圧VOR= 5 Vが印加された時チャネルが形成
される様、5vより僅かに低く設定されている。
The reason why the floating gate 25 of this memory element is an offset gate is that even if the threshold value under the floating gate 25 becomes 0■ or less due to erasing, it will still remain in the unselected cell, that is, the first control gate 22. This is to prevent a channel current from flowing in a cell where the applied voltage is OV, thereby making it possible to select P/J. And the offset gate @
For example, by setting the threshold value of the channel A-H controlled by the control gate 27 of 1 to 1, the threshold VTI of this memory cell in the erased state becomes 1. Further, the threshold value VTO in the initial state under the floating gate 25 is a fixed potential (for example, OV) at which the second control gate 31 is located.
The voltage VOR is set slightly lower than 5 V so that a channel is formed when the voltage VOR=5 V applied during selective reading is applied to the first control gate 27.

このメモリ素子の゛書込みは、基板21、ドレイン23
、ソース22を接地し、2つの制御ゲー) 21.31
に高電位(20V)を与えてn 岬域28から電子を浮
遊ゲート25に注入する事によって行なわれる。消去は
ドレイン23、ソース22に高電位(20V)、2つの
制御ゲート27.31に低電位(0■)を与え、浮遊ゲ
ート25から電子をn+領域28に放出する事によって
行なわれる。この時、書き込み、消去特性は第6図に示
す如くなり、10m5のパルスで書き込み後のしきい値
VTWが約9v、消去後のしきい値VTIIが約1vと
なり、選択読み出し電圧Van = 5 Vに対して対
称な特性となっている。
``Writing of this memory element is carried out using the substrate 21, drain 23,
, ground source 22, and two control games) 21.31
This is done by applying a high potential (20 V) to the n cape region 28 and injecting electrons into the floating gate 25. Erasing is performed by applying a high potential (20V) to the drain 23 and the source 22, a low potential (0■) to the two control gates 27 and 31, and releasing electrons from the floating gate 25 to the n+ region 28. At this time, the writing and erasing characteristics are as shown in Figure 6, with a pulse of 10m5, the threshold value VTW after writing is about 9V, the threshold value VTII after erasing is about 1V, and the selected read voltage Van = 5V. The characteristics are symmetrical to .

従ってこの実施例によれば、書き込みと消去のアンバラ
ンスがなく、効率のよい書き換えが可能な不揮発性メモ
リ装置が得られる。
Therefore, according to this embodiment, there is obtained a nonvolatile memory device that has no imbalance between writing and erasing and is capable of efficient rewriting.

なお、本実施例では、Nチャ/ネルの場合について述べ
たがPチャ/ネルの場合でも同様である。また、本発明
は電気的に消去if能な不揮発性メモリであれば、その
構成何如に拘らず適用可能である。例えば、制御ゲート
を1つとしてピット選択性を持たせるために選択用トラ
ンジスタをメモリ素子に直列接続してメモリセルを構成
する場合にも本発明を適用できる。
In this embodiment, the case of N channels/channels has been described, but the same applies to the case of P channels/channels. Furthermore, the present invention is applicable to any nonvolatile memory that can be electrically erased, regardless of its configuration. For example, the present invention can be applied to a case where a memory cell is configured by connecting a selection transistor in series with a memory element to provide pit selectivity with one control gate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気的に書き換え6エ能な不揮発性メモリの構
造の一例を示す図、第2図は、L記メモリセルδ書き込
み、消去の転移特性を示す図。 第3図は上記メモリセルの書き込み、消去特性の例を示
す図、9s4図は本発明を説明するための書き込み、消
去特性の例を示す図、第5図(al〜(d)は本発明の
一実施例のメモリ素子の構造を示す図、第6図は同メモ
リ素子の書き込み、消’赤、特性を示す図である。 21・・・P型シリコン基板 22・・・ソース領域 23・・・ドレイン領域 25・・・浮遊ゲート 27・・・第1の制御ゲート 28・・・n+領領域 3ノ・・・第2の゛制卸ゲート 出軸人代理人  弁理士 鈴 江 武 彦π1図 第2 図  VG 小3図 −Jn (をン 右4 図 一−Jn(t) 第5図
FIG. 1 is a diagram showing an example of the structure of an electrically rewritable nonvolatile memory, and FIG. 2 is a diagram showing transition characteristics of L memory cell δ writing and erasing. FIG. 3 is a diagram showing an example of write and erase characteristics of the memory cell, FIG. 9S4 is a diagram showing an example of write and erase characteristics for explaining the present invention, and FIGS. FIG. 6 is a diagram showing the structure of a memory element according to an embodiment of the present invention, and FIG. 6 is a diagram showing writing, erasing, and erasing characteristics of the same memory element. ... Drain region 25 ... Floating gate 27 ... First control gate 28 ... n+ territory region 3 ... Second control gate Exiting agent agent Patent attorney Takehiko Suzue π1 Figure 2 Figure VG Elementary 3 Figure - Jn (Right 4 Figure 1 - Jn(t) Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)浮゛遊ゲートとこれに合鍵結合する少くとも1つ
の制御ゲートを有する電気的41Fき候えuf能なメモ
リ素子−を半導体基板上にマトリクス状に集積形成して
なる不揮発性半導体メモリ装置において、@記メモリ素
子は、初期状態のしきい値をVTO1消去状態のしきい
値なVTii、1jiJ記制御ゲートに印加する続出し
電圧なVORとしたとき、 l Vto−VoRl< I Yell−VTg l 
Xo、5を滴だすことを特徴とする不揮発性半導体メモ
リ装置。
(1) A nonvolatile semiconductor memory device in which electrically 41F weatherproof memory elements having a floating gate and at least one control gate coupled to the floating gate are integrated in a matrix on a semiconductor substrate. In the above memory element, when the threshold value in the initial state is VTii, which is the threshold value in the erased state of VTO1, and VOR is the continuous voltage applied to the control gate 1jiJ, l Vto-VoRl< I Yell-VTg l
A nonvolatile semiconductor memory device characterized by emitting Xo,5.
(2)  前記メ゛モリ素子は、半導体基板に互いに離
開して形成されたソースおよびドレイン領域と、これら
ソースまたはドレインと連続的に形成された同じ4I電
型の不純I#碩域と、この不純物領域上および前記ソー
ス、ドレイン間のチャネル領域上に絶縁膜を介して連続
的に形成された浮遊ゲートと、この浮遊ゲートに容短結
合するように設けられた第1および第2の制御ゲートと
を備え、前記不純物領域上でトンネリングによる浮遊ゲ
ートと基板間の電荷授受により記憶内容の変更を行うも
のである特許請求の範囲第1項記載の不揮発性半導体メ
モリ装置。
(2) The memory element includes a source and a drain region formed separately from each other on a semiconductor substrate, an impurity I# region of the same 4I electric type formed continuously with the source or drain, and this region. A floating gate continuously formed on the impurity region and the channel region between the source and drain via an insulating film, and first and second control gates provided to be capacitively coupled to the floating gate. 2. The nonvolatile semiconductor memory device according to claim 1, wherein the storage content is changed by transfer of charge between the floating gate and the substrate by tunneling on the impurity region.
JP57089161A 1982-05-26 1982-05-26 Non-volatile semiconductor memory device Pending JPS58205991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089161A JPS58205991A (en) 1982-05-26 1982-05-26 Non-volatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089161A JPS58205991A (en) 1982-05-26 1982-05-26 Non-volatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS58205991A true JPS58205991A (en) 1983-12-01

Family

ID=13963102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089161A Pending JPS58205991A (en) 1982-05-26 1982-05-26 Non-volatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS58205991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381697A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Semiconductor integrated circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550426A (en) * 1978-10-11 1980-04-12 Sumitomo Metal Ind Ltd Steel pipe inside treating method to provide oxidation resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550426A (en) * 1978-10-11 1980-04-12 Sumitomo Metal Ind Ltd Steel pipe inside treating method to provide oxidation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381697A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
KR100292361B1 (en) How to Write Data in Semiconductor Nonvolatile Memory
JP2862584B2 (en) Nonvolatile semiconductor memory device
US4513397A (en) Electrically alterable, nonvolatile floating gate memory device
US5187683A (en) Method for programming EEPROM memory arrays
KR100413652B1 (en) Semiconductor memory device and driving method thereof
EP0991080A2 (en) Non-volatile semiconductor memory device
KR20030034327A (en) Methods of operating a non-volatile memory device having a silicon-oxide-nitride-oxide-silicon (SONOS) gate structure
JPH09190696A (en) Nand type flash memory element and driving method therefor
US5784325A (en) Semiconductor nonvolatile memory device
JPH08279566A (en) Parallel-connected type nonvolatile semiconductor storage device and use of said device
US5815441A (en) Non-volatile semiconductor memory device
US20040190338A1 (en) Structure for testing NAND flash memory and method of testing NAND flash memory
US4442447A (en) Electrically alterable nonvolatile floating gate memory device
US20050286303A1 (en) Floating-gate MOS transistor with double control gate
JP2804066B2 (en) Nonvolatile semiconductor memory device
JPH01130570A (en) Nonvolatile semiconductor memory device
JPS58205991A (en) Non-volatile semiconductor memory device
JPH0577189B2 (en)
JPH0512889A (en) Nonvolatile semiconductor storage
JPS63306598A (en) Erasing system for non-volatile memory cell
JP2885412B2 (en) Nonvolatile semiconductor memory device
US6654285B1 (en) Method of matching core cell and reference cell source resistances
JPH065873A (en) Nonvolatile semiconductor memory
JPH06325582A (en) Non-volatile storage device
JP2723247B2 (en) Nonvolatile semiconductor memory device