JPS58205838A - Measurement of void for metal material - Google Patents

Measurement of void for metal material

Info

Publication number
JPS58205838A
JPS58205838A JP9008982A JP9008982A JPS58205838A JP S58205838 A JPS58205838 A JP S58205838A JP 9008982 A JP9008982 A JP 9008982A JP 9008982 A JP9008982 A JP 9008982A JP S58205838 A JPS58205838 A JP S58205838A
Authority
JP
Japan
Prior art keywords
sample
spectral lines
metal material
metal
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008982A
Other languages
Japanese (ja)
Inventor
Katsuhiko Akasaki
赤崎 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9008982A priority Critical patent/JPS58205838A/en
Publication of JPS58205838A publication Critical patent/JPS58205838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Abstract

PURPOSE:To measure the vacancy rate of metal material by photoelectric inspection of the intensity of spectral lines only peculiar to metal utilizing emission spectroscope. CONSTITUTION:For example, discharge light emission of a low voltage spark is caused between a sample and pair electrodes by electric excitation with a light emitter. Then, the light emitted is analyzed into spectral lines for metal elements with a diffraction grating of a spectrometer and only the spectral lines of internal standard elements underlying the sample is introduced to a photomultiplier tube in a photoelectric photometer from those obtained to charge an integrater of the photometry section with an output current of the photomultiplier tube proportional to the intensity of the spectral lines as electric charge and the value thereof is indicated on a recorder or the like with an A/D converter or the like for instance. In this manner, metal sample to be inspected undergoes discharge emission, spectroscope and photoelectric photometry on the same condition as the standard sample and the dose detected is compared to measure the vacancy rate.

Description

【発明の詳細な説明】 本発明は発光分光を利用して金属特有のスペクトル線の
みをとり出し、その強度を光電的に測定することにより
、金属材料の空孔率を測定する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the porosity of a metal material by extracting only the spectral lines peculiar to metals using emission spectroscopy and photoelectrically measuring the intensity thereof. be.

従来から金属利料の空孔率はJ工S GO555の規定
による「鋼のり[金属介在物のM微鏡試験方法」に準じ
て、空孔率を測定する金属材料から採取した試料の被検
面を研摩し、400倍を標準とする顕微鏡の接眼鏡に縦
、横各々20本の格子線をもつガラヌ板を挿入して被検
面を無作為に数十回繰返し検鏡し、空孔によって占めら
れた格子点中心の数を数え、その視野内の総格子点数に
対する割合を算出して空孔率とする測定方法によってい
た。
Conventionally, the porosity of metal materials has been measured by testing samples taken from the metal material whose porosity is to be measured, in accordance with the "M microscopic test method for steel glue [metallic inclusions]" stipulated in J.E.S. GO555. After polishing the surface and inserting a Galanu plate with 20 vertical and horizontal grid lines into the eyepiece of a microscope with a standard magnification of 400 times, the surface to be inspected was randomly inspected several dozen times. The measurement method used was to count the number of lattice point centers occupied by , and calculate the ratio to the total number of lattice points within the field of view to determine the porosity.

しかしながらO1l記測定方法でに測定に長時間を要し
、また測定者の経験および習熟度によって測定結果にバ
ラツキを生じ、測定精度および作業能率が非常に悪いと
いう欠点があった。
However, the measurement method described above requires a long time for measurement, and the measurement results vary depending on the experience and proficiency of the measurer, resulting in very poor measurement accuracy and work efficiency.

本発明は従来の−に記欠点を解消することを目的とした
もので、空孔率を測定する金属材料の試料と対電極との
間に、電気的励起法により放電発光させ、その光を分光
器によって分光し、その分光スペクトル線中から前記n
武判のベークとなっている金属元素すなわち内部標準元
素のスペクトμ線のみを光電子増倍管に導いてそのヌベ
ク)A/線強度を光電的に測定し、その値を空孔率が既
知の標準試料によってあらかじめ作成した検量線と対比
することにより、金属材料の空孔率を測定することを特
徴とするものである。
The purpose of the present invention is to eliminate the drawbacks of the conventional method.The present invention aims to eliminate the drawbacks of the conventional method. Spectrometer spectrometer spectrometer, from the spectrum line of the n
Only the spectral µ rays of the internal standard element, which is the metallic element used as the bake for Buban, are introduced into a photomultiplier tube, and the nubeku) A/ray intensity is photoelectrically measured, and the value is calculated using a method with a known porosity. This method is characterized by measuring the porosity of a metal material by comparing it with a calibration curve prepared in advance using standard samples.

以下本発明による金属材料の空孔率測定方法を実施例に
基づいて説明する。
The method for measuring the porosity of metal materials according to the present invention will be explained below based on Examples.

まずはじめに本発明は鉄、鋼、銅、チタン、アルミニウ
ム等の金属材料に適用できるが、そのうちの一実施例と
して炭素鋼の場合について説明する。
First of all, although the present invention can be applied to metal materials such as iron, steel, copper, titanium, and aluminum, the case of carbon steel will be described as one example.

本発明を突施するための装置としては、大別して発光装
置、□分光装置および光電測光装置とからなり、前記発
光装置は電気的励起法により、試料と対電極との間にた
とえばLow Voltage 5park(低圧火花
)の放電発光をさせるのである。
The apparatus for carrying out the present invention can be roughly divided into a light emitting device, a spectroscopic device, and a photoelectric photometer. (low-voltage spark) discharge and emit light.

次に前記発光した光を分光装置の回折格子によって各金
属元素たとえばFe、 lfi、Or、 Mn、 Cu
、 MO1■、At、 T’i等のスペクトル線に分光
し、その分光したヌベクトル線中から前記試料のベース
となっている金属元素すなわち内部標準元素のスペクト
ル線のみを光重測光装置内の光電子増倍管に導き、その
ヌベクトル線の強度に比例した光電子増倍管の出力電流
に測光部の積分器(積分ユニット)に電荷量(電圧)と
して充電され、その値はたとえばアナログ/デジタル変
換器などにより記録計、指示計等に記録あるいは指示さ
れるようにしてろる。
Next, the emitted light is divided into various metal elements such as Fe, lfi, Or, Mn, and Cu using a diffraction grating of a spectrometer.
, MO1■, At, T'i, etc., and only the spectral lines of the metal element that is the base of the sample, that is, the internal standard element, are analyzed by photoelectrons in a photogravimetric photometer. The output current of the photomultiplier tube, which is proportional to the intensity of the Nuvector line, is charged as a charge (voltage) to the integrator (integration unit) of the photometry section, and the value is transferred to an analog/digital converter, for example. It is recorded or instructed by a recorder, indicator, etc.

ところで、前記電荷量は金属材料の空孔率によって異な
り、空孔率が大きくなると電荷量が小さくなるのでめり
、空孔率が既知である数個の標準試料から同じ条件のも
とて前記のようにして電荷量を求め、空孔率と電荷量と
の関係曲線すなわち検量線をあらかじめ作成しておくと
、前記金属材料試料で測定された電荷量からその試料の
空孔率を検知することができるのである。
By the way, the amount of charge varies depending on the porosity of the metal material, and as the porosity increases, the amount of charge decreases. If the amount of charge is determined as follows and a relationship curve between the porosity and the amount of charge is created in advance, that is, a calibration curve, the porosity of the sample can be detected from the amount of charge measured on the metal material sample. It is possible.

第1図Tl14600系合金鋼粉の焼結体のそれぞれ空
孔率の異なる6種類の標準試料から得た検量線の一例を
示したものでめ、0、内部標準元素のスペクト/L’線
波長rjFe/:2714人、Fea:2874J、を
とり出し、LVS放電で5秒間予備放電した後の5秒間
放電分について積分したもので、繰返し数3回の平均強
度を示している。
Figure 1 shows an example of a calibration curve obtained from six types of standard samples of sintered bodies of Tl14600 series alloy steel powder, each with different porosity. rjFe/: 2714 people, Fea: 2874J were taken out, and the discharge was integrated for 5 seconds after preliminary discharge for 5 seconds with LVS discharge, and shows the average intensity of 3 repetitions.

このときの対電極は直径6fiのタングステン製で先端
′jk60°の円すい形としたものを用い、標準試料と
の間の放電間隙r15.5ffとし、発光スタンドの前
方から51;/mi、nのアルゴンガヌを噴出して空気
を置換し、酸素の吸収を避けて試料の酸化を防ぐと共に
励起の効率を高めている。
The counter electrode at this time was made of tungsten with a diameter of 6fi and had a conical shape with a tip of 60°.The discharge gap between it and the standard sample was r15.5ff, and the distance was 51;/mi,n from the front of the light emitting stand. Argon gas is ejected to replace the air, avoiding the absorption of oxygen and preventing oxidation of the sample, as well as increasing the efficiency of excitation.

そこで未知の空孔率を測定しようとする金属材料の試料
を前記標準試料の場合と同じ条件で放電発光、分光およ
び光電測光し、その値を前記検量線と比較することによ
り、簡易に空孔率を検出することができる。
Therefore, by performing discharge luminescence, spectroscopy, and photoelectric photometry on a sample of a metal material whose unknown porosity is to be measured under the same conditions as the standard sample, and comparing the values with the calibration curve, the porosity can be easily determined. rate can be detected.

なお前記発光装置、分光装置および光電測光装置等は、
金属材料の光電測光法による発光分光分析において使用
する公知の装置を利用することができる。
Note that the light emitting device, spectroscopic device, photoelectric photometer, etc.
It is possible to utilize a known device used in emission spectroscopic analysis of metal materials using photoelectric photometry.

本発明は以上のように構成されるから、あらかじめ作成
した検量線と対比することにより、金属材料の空孔率を
迅速容易にしかも正確に測定することができる。
Since the present invention is configured as described above, the porosity of a metal material can be measured quickly, easily, and accurately by comparing it with a calibration curve prepared in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用する空孔率と電荷量との関
係すなわち検量線の一例を示す線図である。
FIG. 1 is a diagram showing an example of the relationship between porosity and charge amount used in the present invention, that is, a calibration curve.

Claims (1)

【特許請求の範囲】[Claims] (1)空孔率を測定する金属材料の試料と対電極との間
に、電気的励起法により放電発光させ、その光を分光器
によってスペクトル線に分光し、そのうち前記金属材料
の内部標準元素のヌベクI−/し線のみを光電子増倍管
に導いてそのスペクトル線強度に比例する出力電流を積
分器に充電し、その充電された電荷量(電圧)を、空孔
率が既知の標準試料から上記と同じ条件で測定した電荷
量(電圧)に基づいてあらかじめ作成した検量線と対比
することにより、前記金属材料の空孔率を検出すること
を特徴とする金属材料の空孔率測定方法。
(1) Discharge light is generated between the sample of the metal material whose porosity is to be measured and the counter electrode using an electrical excitation method, and the light is separated into spectral lines by a spectrometer. Only the Nubek I-/shi line is guided to a photomultiplier tube, and an output current proportional to the spectral line intensity is charged to an integrator. Porosity measurement of a metal material, characterized in that the porosity of the metal material is detected by comparing it with a calibration curve prepared in advance based on the amount of charge (voltage) measured from a sample under the same conditions as above. Method.
JP9008982A 1982-05-26 1982-05-26 Measurement of void for metal material Pending JPS58205838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008982A JPS58205838A (en) 1982-05-26 1982-05-26 Measurement of void for metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008982A JPS58205838A (en) 1982-05-26 1982-05-26 Measurement of void for metal material

Publications (1)

Publication Number Publication Date
JPS58205838A true JPS58205838A (en) 1983-11-30

Family

ID=13988791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008982A Pending JPS58205838A (en) 1982-05-26 1982-05-26 Measurement of void for metal material

Country Status (1)

Country Link
JP (1) JPS58205838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445160A (en) * 2015-11-16 2016-03-30 南京林业大学 Void characteristic of asphalt mixture and extraction method of void characteristic
KR20160123992A (en) * 2015-04-16 2016-10-26 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Spectrometer calibration method and reference material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123992A (en) * 2015-04-16 2016-10-26 헤라우스 일렉트로-나이트 인터내셔날 엔. 브이. Spectrometer calibration method and reference material
JP2016206189A (en) * 2015-04-16 2016-12-08 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイHeraeus Electro−Nite International N.V. Spectrometer calibration method and reference material
CN105445160A (en) * 2015-11-16 2016-03-30 南京林业大学 Void characteristic of asphalt mixture and extraction method of void characteristic

Similar Documents

Publication Publication Date Title
JPH05240808A (en) Method for determining fluorescent x rays
JPS58205838A (en) Measurement of void for metal material
US5428656A (en) Apparatus and method for fluorescent x-ray analysis of light and heavy elements
JPH04294258A (en) Emission spectrochemical analysis method
JP4237891B2 (en) Background correction method for fluorescent X-ray analyzer and fluorescent X-ray analyzer using the method
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP4537253B2 (en) Determination of nonmetallic inclusion composition by emission spectroscopy
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
US3729259A (en) Method and apparatus for making spectrometric measurements of a constituent of a test sample
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JPS5961759A (en) Emission spectral analytical apparatus
CN110441340A (en) Measuring method based on Ta element in X-ray fluorescence spectra analysis steel alloy
Smith Spectrographic analysis of rare and high purity materials
JPH08184564A (en) Emission spectrochemical analytical method
JP2005265544A (en) Method for measuring particle size distribution of alumina enclosure in steel material
JP3923459B2 (en) Stress measuring method and stress measuring device for metal micro region
US3583811A (en) Electrode
JP2000009645A (en) Emission spectroscopic analyzer
SU934330A1 (en) Method of registering absorption characteristics at x-ray fluorescent analysis
RU2035718C1 (en) Method for determination of mass content of elements in materials and alloys
JPH0348752A (en) Method for quantitative evaluation of segregation by glow discharge spectrochemical analysis
JP2012154776A (en) Emission spectrophotometric analysis method
KR20180126141A (en) Rapid Evaluation Method for Non_metalic Oxide in Steel
JPH0961356A (en) Emission spectrometric analyzing method
JPH0943151A (en) Particle size distribution measuring method for metal inclusion