JPS58205759A - Vibration inhibiting material - Google Patents
Vibration inhibiting materialInfo
- Publication number
- JPS58205759A JPS58205759A JP8802982A JP8802982A JPS58205759A JP S58205759 A JPS58205759 A JP S58205759A JP 8802982 A JP8802982 A JP 8802982A JP 8802982 A JP8802982 A JP 8802982A JP S58205759 A JPS58205759 A JP S58205759A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- polyurethane
- damping material
- viscoelastic layer
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vibration Prevention Devices (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、制振材、特に自動車等の車両に使用される車
室内の振動防止を目的とする制振材に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration damping material, and particularly to a vibration damping material for preventing vibrations in a vehicle interior used in a vehicle such as an automobile.
従来、自動車等の車両に使用される割振材としては、例
えば第1図に示すよう々ものがある。すなわち、厚さ5
0μm〜1’mm程度のアルミニウム箔、鉄箔等の金属
箔よりなる拘束層1の片面に、アクリル酸エステル系粘
着剤、ブチルゴム系粘着剤等の粘弾性層2を、塗布、貼
着することにより形成させてなる二層構造のシート状制
振材3が知られており、その粘弾性層2の粘着性を利用
して自動車等の室内のルーフ、ドア等の被割振材4に貼
着して使用されている。このような制振材3は、被制振
材4に加えられた振動による力学的エネルギーを、被制
振材4と拘束層1とにはさまれた粘弾性層2に生じる剪
断歪により熱エネルギーに変換し、制振するという原理
に基づいている。BACKGROUND OF THE INVENTION Conventionally, as an allocation material used in vehicles such as automobiles, there are, for example, those shown in FIG. That is, thickness 5
Applying and pasting a viscoelastic layer 2 such as an acrylic ester adhesive or a butyl rubber adhesive on one side of a restraining layer 1 made of metal foil such as aluminum foil or iron foil with a thickness of approximately 0 μm to 1' mm. A sheet-like damping material 3 with a two-layer structure formed by the above method is known, and it can be attached to a vibration-damping material 4 such as a roof or a door inside a car or the like using the adhesiveness of its viscoelastic layer 2. It is used as. Such a damping material 3 converts the mechanical energy due to vibrations applied to the damping material 4 into heat through shear strain generated in the viscoelastic layer 2 sandwiched between the damping material 4 and the constraining layer 1. It is based on the principle of converting it into energy and damping it.
このため、粘弾性層材料としては、その材料自身の損失
係数が高く、シかも使用温度で最適の貯蔵剪断弾性率を
持つものがよい。最適貯蔵剪断弾性率は、割振材を構成
する各層の厚さ、ヤング率等によって変化するものの、
0.003〜01kg/−の範囲内にあるものがよい。Therefore, the material for the viscoelastic layer should preferably have a high loss coefficient itself and an optimum storage shear modulus at the operating temperature. Although the optimal storage shear modulus varies depending on the thickness of each layer composing the allocation material, Young's modulus, etc.
It is preferably within the range of 0.003 to 0.01 kg/-.
このような貯蔵剪断弾性率値を持つ粘弾性材料は、非常
に軟らかく変形しやすい材料であり、また被制振材と制
振材との接着を容易にするため、粘着性を有することも
必要条件に挙げられる。Viscoelastic materials with such storage shear modulus values are extremely soft and easily deformable, and must also have adhesive properties to facilitate adhesion between the damping material and the damping material. listed as a condition.
しかしながら、このような従来の制振材にあっては、軟
質で粘着力を有する成分として、例えばブチルゴム系組
成物を使用しているために高価であり、ブチルゴムの使
用届を増やせば割振性は増加するものの、価格および重
計が上昇することとなり、現状では1〜3 mm程度の
簿いシートとして使用されている。したがって車室内の
制振性が不足するという問題点があった。However, such conventional vibration damping materials are expensive because they use, for example, butyl rubber-based compositions as soft and adhesive components, and if the use of butyl rubber is increased, the damping properties will be improved. Although this will increase, the price and weight will also rise, and at present it is used as a bookkeeping sheet with a thickness of about 1 to 3 mm. Therefore, there was a problem in that the vibration damping properties in the vehicle interior were insufficient.
本発明は、このよう々従来の問題点に着目してなされた
もので、軟質でかつ粘着力を有する粘弾性層と金属箔の
拘束層とからなる制振材において、該粘弾性層に曲げ弾
性係数lo o o kg/c++!以上、シヨアD硬
度45以上の平均粒径3 mm以下の粒子状ポリウレタ
ンを、t)fl記粘弾性層を構成する軟質粘着成分10
0重哨部当り12″0重量部以下、好ましくは20〜1
20重計部配合することを特徴とする割振材である。The present invention has been made by focusing on these conventional problems, and includes a vibration damping material consisting of a soft and adhesive viscoelastic layer and a metal foil restraining layer. Elastic modulus lo o o kg/c++! As described above, particulate polyurethane having a shore D hardness of 45 or more and an average particle diameter of 3 mm or less is used as a soft adhesive component 10 constituting the viscoelastic layer described in t)fl.
12″0 parts by weight or less per 0 sentinel, preferably 20 to 1
It is a distribution material characterized by blending 20 weight parts.
以下、本発明を図面に基づいて説明する。第2図は本発
明の一実施例を示す図である。すなわちアルミニウム箔
、鉄箔、銅箔等の金属箔よりなる拘束層5の片面に、軟
質粘着成分に粒子状ポリウレタンを配合してなる粘弾性
層6を形成させてなる制振材7であり、この制振材7は
、自動車等の車両の車室のドア、ルーフ、フロア等の車
体鋼板である被制振材8に貼着して使用される。Hereinafter, the present invention will be explained based on the drawings. FIG. 2 is a diagram showing an embodiment of the present invention. That is, it is a damping material 7 in which a viscoelastic layer 6 made of a soft adhesive component mixed with particulate polyurethane is formed on one side of a restraining layer 5 made of metal foil such as aluminum foil, iron foil, copper foil, etc. This damping material 7 is used by being attached to a damping material 8, which is a vehicle body steel plate such as a door, roof, or floor of a vehicle such as an automobile.
本発明による制振材の粘弾性層を構成する軟質粘着成分
としては、ブチルゴム、アクリルゴム、ニトリルゴム、
エチレン−プロピレンゴム、クロロプレンゴム、シリコ
ーンゴム、ふっ素ゴム、エチレン−アクリルゴム、ホリ
エステルエラストマー、エピクロルヒドリンゴム、液状
ゴム、塩素化ポリエチレン、イソプレンゴム、ウレタン
ゴム、スチレン−ブタジェンゴム等の合成ゴム系、天然
ゴム、加硫戻しした再生ゴムの一部や混合物に石油樹脂
等の粘着硅″1付与剤、無機充填剤等を配合した未加硫
ゴム組成物等があるが、好ましくはブチルゴムである。Examples of the soft adhesive component constituting the viscoelastic layer of the damping material according to the present invention include butyl rubber, acrylic rubber, nitrile rubber,
Synthetic rubbers such as ethylene-propylene rubber, chloroprene rubber, silicone rubber, fluoro rubber, ethylene-acrylic rubber, polyester elastomer, epichlorohydrin rubber, liquid rubber, chlorinated polyethylene, isoprene rubber, urethane rubber, styrene-butadiene rubber, and natural rubber. There are also unvulcanized rubber compositions in which a part or mixture of re-vulcanized recycled rubber is blended with an adhesion silicone-imparting agent such as petroleum resin, an inorganic filler, etc., but butyl rubber is preferred.
ブチルゴムはインブチレンと少量のイソプレンとを超低
温で共重合させた極めて不飽和度の小さいゴムである。Butyl rubber is a rubber with extremely low unsaturation that is made by copolymerizing imbutylene and a small amount of isoprene at extremely low temperatures.
本発明において使用されるポリウレタンとしては曲げ弾
性係数1o o 、o kg/aa以上、硬度45以上
(シヨアD硬度)、ポリウレタンを破砕機にかけて平均
粒径3朋以下に破砕した粒状物である。これは、軟質粘
着成分は、第3図に示すように3 ml+を越えると、
厚さの増加に伴なう制振効果の増加が少なく、シかも割
高となるからである。したがって、粘弾性層は3mm以
下とすることが好ましく、また粒子状ポリウレタンの平
均粒径も3龍以下であることが望−!l〜い。シヨアD
硬度が45未満であるとブチルゴムとの硬度の差が少な
くなり、効果が減ぜられる。しかして、軟質粘着成分1
00重量部に対する粒子状ポリウレタンの配合量は、1
20重量部以下、好まl〜くけ20〜120重量部であ
る。The polyurethane used in the present invention is a granular material having a bending elastic modulus of 1 o o, 0 kg/aa or more, a hardness of 45 or more (Shore D hardness), and crushed by a crusher to an average particle size of 3 mm or less. This means that if the soft adhesive component exceeds 3 ml+ as shown in Figure 3,
This is because the vibration damping effect increases little as the thickness increases, and the cost becomes relatively high. Therefore, it is preferable that the viscoelastic layer has a thickness of 3 mm or less, and the average particle size of the particulate polyurethane is also desirably 3 mm or less! l~i. Shore D
If the hardness is less than 45, the difference in hardness from butyl rubber will be small and the effect will be reduced. However, soft adhesive component 1
The blending amount of particulate polyurethane per 00 parts by weight is 1
It is 20 parts by weight or less, preferably 1 to 20 to 120 parts by weight.
なお、第3図は曲げ弾性係数1000 kg/cd以上
でシヨアD硬度45す、−にのポリウレタンを破砕機で
平均粒径3龍以下に破砕して得られる粒子状ポリウレタ
ンを、ブチルゴム(AID+10、エッソ社製)100
重量部、ポリブテン(日石ポリブデンI(TJ300、
日本石油株式会社製)130重量部、石油樹脂(ysレ
ジン、安原油脂株式会社製)50重量部およびカーボン
ブラック10重量部に所定量配合し、ゴムローラで混練
し、プレスしてシート状に成形したのち、厚さ100μ
mのアルミニウム箔に貼着して制振材を製造し、これを
後述する試験片の製造法および試験法に基づいて行なっ
た試験結果である(共振周波数二二次、実験温度23℃
)。In addition, Fig. 3 shows particulate polyurethane obtained by crushing polyurethane with a flexural modulus of elasticity of 1000 kg/cd or more and a shore D hardness of 45 mm or less in a crusher to an average particle size of 3 mm or less, and a butyl rubber (AID + 10, Manufactured by Esso) 100
Parts by weight, polybutene (Nisseki Polybutene I (TJ300,
A predetermined amount was blended with 130 parts by weight (manufactured by Nippon Oil Co., Ltd.), 50 parts by weight of petroleum resin (ys resin, manufactured by Yasushi Oil Co., Ltd.), and 10 parts by weight of carbon black, kneaded with a rubber roller, and pressed to form a sheet. Later, 100μ thick
These are the test results obtained by manufacturing a vibration damping material by pasting it on aluminum foil of 1.5 m, and conducting it based on the test piece manufacturing method and test method described below (resonance frequency quadratic, experimental temperature 23°C).
).
粘弾性層には、さらにポリブテン、石油樹脂、カーボン
ブラック等を配合することができる。The viscoelastic layer may further contain polybutene, petroleum resin, carbon black, and the like.
粘弾性層を形成させるには、軟質粘着成分に所定計の粒
子状ポリウレタンおよびポリブテン、石油樹脂、カーボ
ンブラック等の添加剤を加えたのち、ゴムローラ、バン
バリーミキザー等で混練し、ついで拘束層である金属箔
に前記厚さとなるようにローラ、プレス、エクストルー
ダ等で圧着するか、あるいはシーI・状物に成形したの
ちに金属箔に貼着することにより行なわれる。To form a viscoelastic layer, a predetermined amount of particulate polyurethane and additives such as polybutene, petroleum resin, carbon black, etc. are added to the soft adhesive component, and the mixture is kneaded using a rubber roller, a Banbury mixer, etc., and then a restraining layer is formed. This can be done by pressing onto a certain metal foil to the above thickness using a roller, press, extruder, etc., or by forming it into a sheet I-shaped object and then sticking it to the metal foil.
このようにして形成される制振材は、自動車等の車両の
室内のドア、ルーフ、フロア等の車体鋼板に貼着して使
用される。The damping material formed in this manner is used by being attached to vehicle body steel plates such as interior doors, roofs, and floors of vehicles such as automobiles.
つぎに、実施例を挙げて本発明をさらに詳細に説明する
。なお、下記実施例および比較例において部数は、特に
ことわらない限り重量部である。Next, the present invention will be explained in more detail by giving Examples. In addition, in the following Examples and Comparative Examples, parts are parts by weight unless otherwise specified.
また、制振性については、次の方法で行なった。In addition, vibration damping properties were tested using the following method.
試験片の調製
1.0111X 100m+xX 260mmの軟鋼板
を脱脂処理し、水洗後、アニオン電着塗料を塗装し、1
75℃で30分間焼付けたこの塗装面に3.1mmX1
00X 220 mmの本発明による割振材を貼着した
。Preparation of test piece 1. A mild steel plate of 0111 x 100 m + x x 260 mm was degreased, washed with water, and then coated with anionic electrodeposition paint.
3.1mm x 1 on this painted surface baked at 75℃ for 30 minutes
A dielectric material according to the invention measuring 00×220 mm was applied.
試験方法
共振曲線の幅から損失係数を求める方法で、ダンピング
量の測定方法として最もポピユラーな片持梁共振法で試
験j−だ全ての試料について測定条件23℃で測定を実
施した。Test Method All samples were measured at 23° C. using the cantilever resonance method, which is the most popular method for measuring the amount of damping and which determines the loss coefficient from the width of the resonance curve.
実施例 l
ポリオール(サンニックスFA−909、三洋化成株式
会社製)85部、エチレングリコール15部、フレオン
5部、トリエチレンジアミン1部、ジプチル錫ジラウレ
ー) 0.01部、ジイソシアネート(スミジュールP
C1住友バイエルウレタン株式会社製)90部よりなる
配合原料を、型射出圧50 kg/ d 、型温度75
℃で射出成形した曲げ弾性係数1000kg/d、シヨ
アD硬度45のポリウレタンを破砕して最大平均粒径3
11mの粒子状ポリウレタンを製造した。Example 1 85 parts of polyol (Sannix FA-909, manufactured by Sanyo Chemical Co., Ltd.), 15 parts of ethylene glycol, 5 parts of Freon, 1 part of triethylenediamine, 0.01 part of diptyltin dilauret, diisocyanate (Sumidur P)
C1 (manufactured by Sumitomo Bayer Urethane Co., Ltd.) 90 parts of the raw material was mixed at a mold injection pressure of 50 kg/d and a mold temperature of 75.
A polyurethane injection molded at ℃ with a bending elastic modulus of 1000 kg/d and a shore D hardness of 45 is crushed to obtain a maximum average particle size of 3.
11 m of particulate polyurethane was produced.
このようにして得られた粒子状ポリウレタンの量を種々
変えて(0部、20部、50部および120部)、ブチ
ルゴム(AID+101エッソ社製)100部、ポリブ
デン(日石ポリブデンHU300゜日本石油株式会社製
)130部、石油樹脂(ysレジン、安原油脂株式会社
製)50部およびカーボンブラック10部に配合し、ゴ
ムローラで混練し、プレスでシート状に成形したのち、
厚さ100μmのアルミニウム箔に貼着して制振材を製
造した。The amounts of the particulate polyurethane thus obtained were varied (0 parts, 20 parts, 50 parts, and 120 parts), and 100 parts of butyl rubber (AID+101 manufactured by Esso Corporation) and polybdenum (Nisseki Polybdenum HU300° Nippon Oil Co., Ltd.) were used. The mixture was mixed with 130 parts of petroleum resin (YS Resin, manufactured by Yasushi Oil Co., Ltd.) and 10 parts of carbon black, kneaded with a rubber roller, and formed into a sheet with a press.
A damping material was produced by adhering it to an aluminum foil with a thickness of 100 μm.
試験結果は、第1表および第4図に示すとおりで 7− あった。The test results are as shown in Table 1 and Figure 4.7- there were.
本実施例によれば、粒子状ポリウレタンの添加量が増加
するほど、損失係数(制振性)が増す。According to this example, the loss coefficient (damping property) increases as the amount of particulate polyurethane added increases.
周波数二次、三次および四次の違いは振動周波数の違い
であり、総合して損失係数が大きいほどで制振性は良好
である。ポリウレタンを添加しないものにおいては、共
振周波数三次、四次の損失係数が小さく、このことが全
性能に影響し、制振性が悪るかった。しかし、本発明の
ものは二次、三次、四次いずれの共振周波数について損
失係数が03を超えており、広い周波数について充分の
割振性が得られる。The difference between second-order, third-order, and fourth-order frequencies is a difference in vibration frequency, and overall, the larger the loss coefficient, the better the damping performance. In the case where polyurethane was not added, the third-order and fourth-order loss coefficients at the resonant frequency were small, and this affected the overall performance, resulting in poor vibration damping properties. However, in the case of the present invention, the loss coefficient exceeds 0.03 at all secondary, tertiary, and quartic resonance frequencies, and sufficient allocability can be obtained over a wide range of frequencies.
実施例2
実施例1と同様な方法において、ポリオールとしてザン
ニツクスTi’A、−728を85部使用した以外は同
様な条件で、曲げ弾性係数4000 kg / 7 s
ショアD硬度60のポリウレタンを製造し、これを破砕
して最大平均粒径3龍の粒子状ポリウレタンを製造1〜
だ。Example 2 In the same method as in Example 1, the bending elastic modulus was 4000 kg/7 s under the same conditions except that 85 parts of Zannix Ti'A, -728 was used as the polyol.
Produce polyurethane with Shore D hardness of 60 and crush it to produce particulate polyurethane with a maximum average particle size of 3.
is.
この粒子状ポリウレタンの量を種々変えて実施 8−
例1と同様々方法で制振材の試験片を製造し、かつ試験
を行なったところ、結果は第1表および第5図に示すと
おりであった。Experiments were carried out by varying the amount of particulate polyurethane. 8- Test pieces of damping material were manufactured in the same manner as in Example 1 and tested. The results were as shown in Table 1 and Figure 5. there were.
本実施例によれば、粒子状ポリウレタンの曲げ弾性率お
よびシヨアD硬度を増大させることにより制振性が増大
している。According to this example, the vibration damping properties are increased by increasing the flexural modulus and shore D hardness of the particulate polyurethane.
実施例3
実施例2の方法で得られたポリウレタンを破砕して最大
平均粒径0.5 tnw、の粒子状ポリウレタンを得だ
。この粒子状ポリウレタンの量を種々変えて実施例1と
同様な方法で制振材の試験片を製造しかつ試験を行なっ
たところ、結果は第1表および第6図に示すとおりであ
った。Example 3 The polyurethane obtained by the method of Example 2 was crushed to obtain particulate polyurethane having a maximum average particle size of 0.5 tnw. Test specimens of vibration damping materials were manufactured and tested in the same manner as in Example 1 with various amounts of this particulate polyurethane, and the results were as shown in Table 1 and FIG. 6.
本実施例によれば、粒子の平均粒径を0.5 mm以下
にしても制振性向上効果が得られ、しだがって粒径が3
M+I+以下であれば同様な効果を示す。According to this example, even if the average particle size of the particles is 0.5 mm or less, the effect of improving vibration damping properties can be obtained.
A similar effect will be exhibited if it is less than or equal to M+I+.
実施例4
ポリウレタン配合原料としてハイプロックス(Hipr
ox) RP−965Hl5P−295(犬日本インキ
化学株式会社製)を用いて型射出圧50に9/(yl。Example 4 Hyprox was used as a raw material for polyurethane compounding.
ox) 9/(yl.
型温度75℃で射出成形し、曲げ弾性係数10,000
kg/ crl sショアD硬度80のポリウレタンを
製造し、これを破砕して最大平均粒径311+11の粒
子状ポリウレタンを製造した。この粒子状ポリウレタン
の量を種々変えて実施例1と同様な方法で制振材の試験
片を製造し、かつ試験を行なったところ、結果は第1表
お」:び第7図に示すとおりであった。Injection molded at mold temperature 75℃, bending elastic modulus 10,000
kg/crl s Polyurethane having a Shore D hardness of 80 was produced and crushed to produce particulate polyurethane having a maximum average particle size of 311+11. Test pieces of vibration damping material were manufactured in the same manner as in Example 1 with various amounts of this particulate polyurethane, and tests were conducted.The results are as shown in Table 1 and Figure 7. Met.
本実施例によれば、通常合成される最も硬いポリウレタ
ンを使用してもなお、粒子状ポリウレタンの添加効果は
継続することが明らかである。According to this example, it is clear that even if the hardest polyurethane commonly synthesized is used, the effect of adding particulate polyurethane continues.
比較例1
ポリウレタン配合原料としてエラストランE190FN
AT (日本エラストラン株式会社製)を用いて曲げ弾
性係数900kg/era、ショアD硬度39のポリウ
レタンを製造し、これを破砕して最大平均粒径3酊の粒
子状ポリウレタンを製造した。この粒子状ポリウレタン
の量を種々変えて実施例1と同様な方法で制振材の試験
片を製造し、かつ試験を行なったところ、結果は第1表
および第8図に示すとおりであった。Comparative Example 1 Elastolan E190FN as polyurethane compounding raw material
Polyurethane with a bending elastic modulus of 900 kg/era and a Shore D hardness of 39 was produced using AT (manufactured by Nippon Elastolan Co., Ltd.), and this was crushed to produce particulate polyurethane with a maximum average particle size of 3. Test pieces of damping material were manufactured in the same manner as in Example 1 with various amounts of this particulate polyurethane, and tested. The results were as shown in Table 1 and Figure 8. .
本比較例によれば、曲げ弾性係数900kl?/i。According to this comparative example, the bending elastic modulus is 900 kl? /i.
シヨアD硬度39のポリウレタンを使用しても制振効果
は増大せず、むしろ低下する傾向にある。Even if polyurethane having a shore D hardness of 39 is used, the damping effect does not increase, but rather tends to decrease.
これは、本発明の効果が剛体充填剤(ポリウレタン)と
高分子(例えばブチルゴム)との間の摩擦による減衰効
果と考えられるため、ある程度の硬さが必要になるとい
うことである。This is because the effect of the present invention is considered to be a damping effect due to friction between the rigid filler (polyurethane) and the polymer (for example, butyl rubber), so a certain degree of hardness is required.
比較例2
実施例2の方法において粒子状ポリウレタンの粒径を5
11IKにした以外は同様の方法を行なったとのいずれ
のと−4も厚さ3罷のシート状ができずに凹凸を生じた
。Comparative Example 2 In the method of Example 2, the particle size of particulate polyurethane was
The same method was carried out except that 11IK was used, but in both cases, a sheet with a thickness of 3 stripes could not be formed, and unevenness occurred.
第1図から明らかなように、粘弾性層は3罷以上の厚さ
にすると制振性向上率が低下し、原価の上昇に比較して
の効果が得られにくくなるので、該厚さは3龍以下が望
ましいにもかかわらず、5闘の粒径のものを添加して厚
さ3酩にプレスすると表面が凹凸を生じ、接着性が非常
に低下し、貼着が困難になる。しだがって、粒子状ポリ
ウレタ11−
ンの平均粒径は3 g++a以下であることが望ましい
。As is clear from Figure 1, if the thickness of the viscoelastic layer is three or more lines, the damping property improvement rate will decrease and it will be difficult to obtain an effect compared to the increase in cost. Although it is desirable to have a particle size of 3 mm or less, if a particle size of 5 mm is added and pressed to a thickness of 3 mm, the surface becomes uneven, the adhesive property is extremely reduced, and it becomes difficult to stick. Therefore, it is desirable that the average particle diameter of the particulate polyurethane is 3 g++a or less.
比較例3
実施例2の方法において粒子状ポリウレタンの量を16
0部にした以外は同様の方法を行なったところ、成形性
が悪く、シート状にならなかった。Comparative Example 3 In the method of Example 2, the amount of particulate polyurethane was 16
When the same method was carried out except that the amount was 0 parts, the moldability was poor and it was not possible to form a sheet.
本比較例ではポリウレタン粒子間の結合効果を果してい
る粘着ブチルゴムの結合力が著しく低下して切断しやす
くなり、成形不良を起した。したがって、粒子状ポリウ
レタンの添加量は120部以下が望ましい。In this comparative example, the bonding force of the adhesive butyl rubber, which acts as a bond between polyurethane particles, was significantly reduced, making it easier to cut, resulting in poor molding. Therefore, the amount of particulate polyurethane added is preferably 120 parts or less.
(以下余白) 12− 弛 = 繁 舒 = −巳 0 6 0 6 匣弛ωωΦト 鄭 II+ = 0= 6 鍼 弛 翼 二 真 ; l! ci 6 6 0 % Z : : : 日 Q OO。(Margin below) 12- Relaxation=Huge Shu= - Snake 0 6 匣 slackωωΦto Zheng II + = 0 = 6 Acupuncture relaxation wing two true; l! ci 6 6 0 % Z : : : Sun Q OO.
鉱 麓 二 : 富
ゞ II+ 6 6 6 6弛 ゝ
(OF−19
II 6 ci (50
弛 真 ; 冥 1
硯 団 66 。Mine foot 2: Tofu II+ 6 6 6 6 slack ゝ
(OF-19 II 6 ci (50 relaxation; Mei 1 inkstone group 66.
鉱 麓 二 萼 1 ” II+ 6 = 。Mine base 2 calyx 1 ” II + 6 = .
−晋 雰 茹 1
ぺL
以上説明したように、本発明によれば、その構成を軟質
でかつ粘着力を有する粘弾性層と金属箔の拘束層とから
なる制振拐において、該粘弾性層に曲げ弾性係数100
0kg/7以−し、シヨアD硬度45以上の平均粒径3
1m1l下の粒子状ポリウレタンを、前記粘弾性層を構
成する軟質粘着成分100重量部当り120重量部以下
配合してなる制振材としたため、粒子状ポリウレタン無
添加の制振材と比較すると、ダンピング試験(温度:2
3℃、基板: 1 *m X 10 ll1m X 2
60 mtn鋼板、片持梁共振法、自由長: 220
urn )で軟質粘着成分10’0重量部に対して粒子
状ポリウレタンを120重量部添加したものでは、二次
振動時に1.3倍、三次振動時に18倍、四次振動時に
2.4倍の損失係数を示す。第2表に、軟質粘着成分1
00重量部に対して粒子状ポリウレタンを各々20重量
部、50重量部および120重量部添加したときの損失
係数を、無添加のものと比較したデータを示す。- As explained above, according to the present invention, in a vibration damping layer whose structure is composed of a viscoelastic layer having a soft and adhesive force and a constraining layer of metal foil, the viscoelastic layer bending modulus of elasticity 100
0kg/7 or more, Shore D hardness 45 or more, average particle size 3
Since the damping material contains 1 ml or less of particulate polyurethane in an amount of 120 parts by weight or less per 100 parts by weight of the soft adhesive component constituting the viscoelastic layer, the damping material is lower than that of a damping material without the addition of particulate polyurethane. Test (temperature: 2
3℃, substrate: 1 * m x 10 ll1 m x 2
60 mtn steel plate, cantilever resonance method, free length: 220
urn) with 120 parts by weight of particulate polyurethane added to 10'0 parts by weight of the soft adhesive component. Indicates the loss factor. Table 2 shows the soft adhesive component 1.
Data is shown in which the loss coefficients when 20 parts by weight, 50 parts by weight, and 120 parts by weight of particulate polyurethane were added to 00 parts by weight, respectively, were compared with those without addition.
第 2 表
注) 配合量(PHR)
fo:共振周波数(Hz)
η:損失係数
本発明による制振材が前記のごとき効果を発揮するのは
、軟質粘着成分に配合されたポリ91フ2フ粒子のため
に振動時に軟質粘着成分とポリウレタン粒子との間また
はポリウレタン粒子同志でズレの運動が起り、その運動
が振動エネルギーを吸収する効果を有し、かつその振動
吸収効果が硬質成分を添加したことけよる制振性低下を
上まわる効果を有するのである。まだ、粒子状ポリウレ
タンを軟質粘着成分に練り込むため、軟質粘着成分が粒
子状ポリウレタンを覆い、その粘着性も損なわれない。Table 2 Note) Amount (PHR) fo: Resonance frequency (Hz) η: Loss coefficient The reason why the vibration damping material according to the present invention exhibits the above effects is because of the poly91 foam blended into the soft adhesive component. Due to the particles, during vibration, a movement of shear occurs between the soft adhesive component and the polyurethane particles or between the polyurethane particles, and this movement has the effect of absorbing vibration energy, and the vibration absorption effect is due to the addition of the hard component. This has an effect that outweighs the reduction in damping properties caused by cracking. However, since the particulate polyurethane is kneaded into the soft adhesive component, the soft adhesive component covers the particulate polyurethane and its adhesiveness is not impaired.
各実施例は、ヤれぞれ上記共通の効果に加えて、さらに
以下のような効果がある。すなわち、本発明で使用され
るポリウレタンは、自動車バンパー用に現在使用されて
いる樹脂でもあり、将来もその使用Mが増加するものと
予想されているが、熱硬化性であるためにその廃棄物や
成形不良品は処理困難であるが、これらを破砕して使用
できるので省資源ならびに廃棄物処理上極めて有用であ
る。In addition to the above-mentioned common effects, each embodiment has the following effects. That is, the polyurethane used in the present invention is a resin currently used for automobile bumpers, and its use is expected to increase in the future. Although it is difficult to dispose of molded and defective products, it is extremely useful for resource saving and waste disposal because they can be crushed and used.
第1図は従来の割振材の断面図、第2図は本発明による
制振材の一例を示す断面図、第3図は割振材における粘
弾性層厚さと損失係数との関係を示すグラフであり、ま
た第4〜8図は割振材における粒子状ポリウレタンの添
加部数と損失係数との関係を示すグラフである。
5・・・拘束層、6・・・粘弾性層、7・・・制振材、
8・・・、被制振材。
緊べ戴置(叶ン
贅<覧@(炉]
享楓肴@C−2FIG. 1 is a cross-sectional view of a conventional damping material, FIG. 2 is a cross-sectional view of an example of a damping material according to the present invention, and FIG. 3 is a graph showing the relationship between the viscoelastic layer thickness and loss coefficient in the damping material. 4 to 8 are graphs showing the relationship between the number of parts of particulate polyurethane added to the distribution material and the loss coefficient. 5... Restriction layer, 6... Viscoelastic layer, 7... Damping material,
8..., damped material. Placement of rice cakes (seeing @ (furnace) Kyou Kaede appetizer @C-2
Claims (3)
束層とからなる割振材において、該粘弾性層に曲げ弾性
係数1000kg/crIll上、シヨアD硬度45以
上の平均粒径3 m111以下の粒子状ポリウレタンを
前記粘弾性層を構成する軟質粘着成分100重量部当り
120重量部以下配合することを特徴とする制振材。(1) In a distribution material consisting of a viscoelastic layer that is soft and has adhesive strength and a constraining layer of metal foil, the viscoelastic layer has a bending elastic modulus of 1000 kg/crIll and an average particle size of 3 m111 or more with a Shore D hardness of 45 or more. A vibration damping material characterized in that 120 parts by weight or less of the following particulate polyurethane is blended per 100 parts by weight of the soft adhesive component constituting the viscoelastic layer.
第1項に記載の制振材。(2) The damping material according to claim 1, wherein the soft adhesive component is butyl rubber.
第1項または第2項に記載の制振材。(3) The damping material according to claim 1 or 2, wherein the viscoelastic layer has a thickness of 3 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8802982A JPS58205759A (en) | 1982-05-26 | 1982-05-26 | Vibration inhibiting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8802982A JPS58205759A (en) | 1982-05-26 | 1982-05-26 | Vibration inhibiting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58205759A true JPS58205759A (en) | 1983-11-30 |
Family
ID=13931392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8802982A Pending JPS58205759A (en) | 1982-05-26 | 1982-05-26 | Vibration inhibiting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58205759A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6273952A (en) * | 1985-09-27 | 1987-04-04 | Seiko Epson Corp | Ink-jet printer head |
JPH01206396A (en) * | 1988-02-12 | 1989-08-18 | Mitsui Petrochem Ind Ltd | Damping material |
JPH0544749A (en) * | 1991-08-09 | 1993-02-23 | Aisin Chem Co Ltd | Pad for disk brake |
JP2011027221A (en) * | 2009-07-28 | 2011-02-10 | Panasonic Electric Works Co Ltd | Structure of piping |
-
1982
- 1982-05-26 JP JP8802982A patent/JPS58205759A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6273952A (en) * | 1985-09-27 | 1987-04-04 | Seiko Epson Corp | Ink-jet printer head |
JPH01206396A (en) * | 1988-02-12 | 1989-08-18 | Mitsui Petrochem Ind Ltd | Damping material |
JPH0544749A (en) * | 1991-08-09 | 1993-02-23 | Aisin Chem Co Ltd | Pad for disk brake |
JP2011027221A (en) * | 2009-07-28 | 2011-02-10 | Panasonic Electric Works Co Ltd | Structure of piping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100352685C (en) | Sound-damping profiled member | |
US3160549A (en) | Vibration damping structures | |
JPH11505282A (en) | Thermosetting rubber foam showing high structural strength | |
CN102950974A (en) | Pneumatic tire and method for manufacturing the same | |
JP2007500260A (en) | Material with acoustic damping and coupling characteristics | |
EP2727955A1 (en) | Foam Rubber Material for Weather Strip | |
JPS58205759A (en) | Vibration inhibiting material | |
US6180711B1 (en) | Rubber composition for seismic isolation laminates | |
JP3274249B2 (en) | Steel sheet vibration suppression reinforcement sheet | |
US20120115382A1 (en) | Magnetic reinforcing composition, reinforcing sheet and methods for producing the same | |
EP0481810A2 (en) | Rubber composition for laminated vibrationproofing structure | |
EP4367182A1 (en) | An acoustic damping material with improved adhesion at low temperatures | |
JP3256916B2 (en) | Steel sheet reinforcement sheet | |
JP3394659B2 (en) | Waterproof seal material | |
JPH0511756B2 (en) | ||
JP2577679B2 (en) | Automotive interior material made of polypropylene resin foam sheet | |
KR0181005B1 (en) | Method of manufacturing a vibration-isolating and sound-absorption rubber plate | |
JP3440189B2 (en) | Soundproofing material for dash panel | |
JPH05220883A (en) | Damping sheet | |
CN105189657A (en) | Sound damping composition | |
JP7443133B2 (en) | Rubber composition for seismic damper, method for producing the same, and seismic damper | |
JP3000417B2 (en) | Damping resin composition | |
JP3845499B2 (en) | Rubber composition for seismic isolation laminate | |
JPH0562652B2 (en) | ||
JPS63158247A (en) | Vibration-damping sound-insulating sheet for car |