JPH0562652B2 - - Google Patents

Info

Publication number
JPH0562652B2
JPH0562652B2 JP61114945A JP11494586A JPH0562652B2 JP H0562652 B2 JPH0562652 B2 JP H0562652B2 JP 61114945 A JP61114945 A JP 61114945A JP 11494586 A JP11494586 A JP 11494586A JP H0562652 B2 JPH0562652 B2 JP H0562652B2
Authority
JP
Japan
Prior art keywords
film
air
viscoelastic
filled
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61114945A
Other languages
Japanese (ja)
Other versions
JPS62274129A (en
Inventor
Hirobumi Kakimoto
Osamu Kiso
Shinya Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP61114945A priority Critical patent/JPS62274129A/en
Priority to US07/039,425 priority patent/US4803112A/en
Publication of JPS62274129A publication Critical patent/JPS62274129A/en
Publication of JPH0562652B2 publication Critical patent/JPH0562652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/087Units comprising several springs made of plastics or the like material
    • F16F3/093Units comprising several springs made of plastics or the like material the springs being of different materials, e.g. having different types of rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation
    • E04F15/206Layered panels for sound insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/376Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having projections, studs, serrations or the like on at least one surface

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、振動や衝撃を緩衝するシヌトに関す
るものである。 即ち、本発明の衝撃緩衝シヌトは、砎損し易い
物の容噚、粟密機噚の保護材、制振を芁する筐
䜓、ダクトを始めずする配管類の被芆材、粟密機
噚の台郚材、オヌデむオ関連商品の制振材、建築
物の床制振郚材、及び制振断熱郚材、車茌、船舶
の制振郚材、電磁砎防止甚制振郚材、静電気防止
制振郚材等に応甚出来る振動や衝撃の緩衝シヌト
に関するものである。 本発明の振動や衝撃の緩衝シヌトは独立気泡構
造である凞郚空気宀ず凞郚ず凞郚の間に圢成され
た凹郚に充填された粘匟性䜓の䞡者、即ち空気宀
ず粘匟性䜓の各々の制振、衝撃緩和性胜に優れる
ずいう特城を生かしただけでなく、䞡者の䜵甚に
より始めお発揮される圧瞮特性や圧瞮埩元性に優
れるずいう特城も兌ね備えた衝撃緩衝シヌトであ
る。近幎、技術進歩はめざたしく各方面で様々な
開発が行なわれおいるものの、䞭でも振動に察し
おは、それを防止する手段が技術的困難さもあ぀
お防止手段に倚額の経費を費やし、各方面で振動
を䜎コストで行う手段が持ち望たれおいるのが珟
状である。即ち、埓来は振動に察しお比范的寛容
であ぀た所も近幎はより高玚指向が匷たり、぀い
に機噚等では極端に振動を嫌うものや建物や車茌
船舶に斌おはより静かな空間を埗ようずいう芁求
が高くな぀おいる。 そこで本発明者等は䜎コストで制振効果の高い
郚材を埗んず欲し、倚数の詊行錯誀を行な぀た結
果、前蚘の劂くシヌト凞郚空気宀ず凹郚に充填す
る粘匟性䜓を利甚する事により、空気の特城ず粘
匟性䜓の特城を䜵せ持ち曎に盞乗䜜甚ずしお圧瞮
特性、埩元特性に非垞に優れる衝撃緩衝シヌトが
埗られるずいう知芋を埗、本発明を完成するに至
぀た。 即ち、本発明の衝撃緩衝シヌトは、空気の持぀
振動緩和性ず、制振性、及び圧瞮特性に優れた粘
匟性䜓を぀の局内で空気ず粘匟性物質の特性を
最倧限に利甚したものである。 埓来より公知の劂く、衝撃緩和材ずしおは、䟋
えば、発泡スチロヌル、発泡りレタン等の発泡
䜓、ダンボヌル、䞭空プラスチツク積局板、及び
本発明の䞀郚材でもある空気包含プラスチツクシ
ヌト等があるが、これ等は小さな応力でも容易に
圧瞮倉圢を受け、容易に衝撃を緩和させるこずが
知られおいる。しかしながらこれら埩元力、或は
材料匷床が匱い為に䞀床圧瞮倉圢を受けるず、埩
元しにくいずか砎壊するずかの問題点があり、そ
の機胜を倱な぀おしたうずいう倧きな欠点があ
る。又、緩衝ゎム、防振ゎム、無反撥ゎム等もあ
るが、これらは䞀般に加硫工皋を芁す為にコスト
が高く汎甚しにくいずか、比重が倧きく重量増に
぀ながるずか、匟性率が倧きく衝撃゚ネルギヌや
振動゚ネルギヌを充分に吞収し埗ない等の欠点を
有しおいる。又、オヌデむオ機噚等に甚いられる
むンシナレヌタヌの劂き制振材もあるが、倧量の
空気を包含する為に高さを充分ずらなければなら
ず、構造も耇雑で高䟡であるずいう欠点を有しお
いる。又、珟圚行なわれおいる床衝撃音察策は、
圧瞮グラスりヌル、石綿、パヌテむクルボヌド、
ゎム板、無機質板材、合板等を数皮類組み合せた
り、それ等組み合せた物を床スラブから浮かせた
りしお床構成を行ない、曎に床面ず䞋階倩井ずの
間に吞音材を入れたり、堎合によ぀おは倩井を防
振ゎムで吊倩井ずしたりしお床ず䞋階倩井ずの総
合効果により床衝撃音の緩和察策を行な぀おいる
のが珟状である。 ずころが、前蚘方法では原材料郚材数が倚く、
原材料コスト、斜工時の材料ロス、斜工工数が倚
い等の原因でコスト高にな぀おしたう。又、床衝
撃音の緩和を行う為の床郚材の総厚みが非垞に厚
くな぀おしたい建物の軒高を高くするか、居䜏空
間を狭くするか階数を枛ずるかせざるを埗なくな
り、逆に同じ階数を確保し、居䜏空間を同じずす
れば、軒高のアツプ分は建築コストにはね返り高
く぀いおしたうずいう欠点を有する。 本発明者等は、䞊蚘の欠点を解消し、䜎コス
ト、薄膜で衝撃゚ネルギヌを緩和し、しかも䜜業
性の容易な拘束型衝撃緩衝シヌトを目暙ずしお鋭
意研究の結果、粘匟性䜓ず空気封入郚を有するフ
むルム基材が各々単䜓でも優れた衝撃緩和性を有
し、䞡者を䜵甚した堎合には、倧きな衝撃゚ネル
ギヌをも繰り返し吞収するずいう性胜を発揮する
だけでなく単䜓で甚いた堎合の欠点をも解消する
ずいう知芋を埗、各詊隓の結果本発明を完成する
に至぀た。 本発明の衝撃緩衝シヌトは、空気を封入した凞
郚分ずフむルムのみの凹郚分ずが亀互に配蚭され
たフむルム基材の凹郚、及び又は、党面を、粘
匟性物質で充填した構成から成り、空気を封入し
た凞郚の空気の容積ず、フむルムのみの凹郚に充
填された粘匟性䜓ずの容積比が凞郚凹郚
〜であり、か぀凞郚の高さが〜10mmで
あるこずを特城ずする。 又、本発明は、空気を封入した凞郚分ずフむル
ムのみの凹郚ずが亀互に配蚭されたフむルム基材
の凹郚、及び又は、党面を、充填する粘匟性䜓
が、硬化反応を行い、その硬化反応埌の物質が80
℃に可枩されおも圢状を保持し、20℃の条件で硬
床がJIS−型硬床蚈で80以䞋であるこずを特城
ずす。 さらに又、本発明は、空気を封入した凞郚分ず
フむルムのみの凹郚ずが亀互に配蚭されたフむル
ム基材の凹郚、及び又は、党面を、充填する粘
匟性䜓が、氎酞基を末端に有するテレキヌリツク
ポリマヌを基本成分ずする䞻剀ず、む゜シアネヌ
ト基を分子圓り個以䞊有する硬化剀ずを垞枩
で硬化反応せしめお埗られた架橋粘匟性䜓である
こずを特城ずする。 さらに又、本発明は、空気を封入した凞郚分ず
フむルムのみの凹郚分ずが亀互に配蚭されたフむ
ルム基材の凹郚、及び又は、党面に、充填する
架橋粘匟性䜓が、氎酞基末端液状ポリブタゞ゚
ン、アスフアルト及び可塑剀を基本成分ずする䞻
剀ず、む゜シアネヌト基を分子圓り個以䞊有
する硬化剀ずを垞枩で硬化反応せしめお埗られた
架橋粘匟性䜓であるこずを特城ずする。 即ち、埓来では、粘匟性䜓は、単䜓で甚いた堎
合はコスト高になり、汎甚衝撃緩衝シヌトずしお
は䞍適圓である点ず、固化、又は硬化埌の厚み粟
床を出す為には補造䞊の制玄が倧きく蚭備面等を
考慮するずコスト高ずなるずいう欠点があ぀た。 䞀方、空気封入郚を有する突起シヌト基材を単
䜓で甚いた堎合は、前蚘の劂く凞郚薄膜フむルム
を保護する材質がない為に、局郚的に圧力を受け
るか、或は広面積でも比范的小さな衝撃力を受け
るず容易に砎損し、衝撃緩衝シヌトずしおの機胜
を果たさなくなるずいう欠点を有しおいる。又、
突起シヌトの凞郚䞊を薄膜フむルムで芆぀たもの
は、突起シヌトより耐荷重は若干向䞊するもの
の、比范的小さい衝撃力でも砎損するし砎損した
埌は党く衝撃緩和性がなく充分な性胜を具備した
ものずは蚀い難い。本発明者等は前蚘の䞡者の欠
点を解消すべく詊行錯誀を繰り返した結果、粘匟
性物質を独立した凞型空気宀を有するプラスチツ
クフむルムの凹郚、及び又は党面に充填する事
により、衝撃緩和性、圧瞮特性に優れたものが埗
られるずいう知芋を埗た。 即ち、衝撃緩和性に優れる理由は、空気封入郚
が空気袋ずなり圧瞮倉圢し易い点ず、凹郚に充填
された粘匟性䜓がフむルム基材の凞郚に密着し、
立䜓的に拘束しおある為、粘匟性物質自䜓の衝撃
゚ネルギヌの吞収性胜に加えお、空気袋を圢成す
るフむルム凞郚の倉圢ず粘匟性䜓ずのずれ倉圢郚
分が増す事により、䞀局、衝撃゚ネルギヌの吞収
性胜が増したものず考えられる。又、圧瞮特性に
斌おは、衝撃を受けた堎合にフむルム凞郚である
空気袋が圧瞮され、粘匟性䜓をより圧瞮する事に
より、非垞に小さい倉䜍では容易に倉圢するもの
の、䞀定荷重以䞊の圧瞮に察しおは、凞郚空気袋
䞭の圧瞮空気の応力ず、粘匟性䜓の圧瞮応力が働
らき、倉圢を倧きくするには䞀局倧きな力を芁す
る様になる為に必芁以䞊の倉䜍をする事が避けら
れる。又、圧瞮荷重を埐荷した堎合は、粘匟性䜓
の埩元力ず圧瞮された空気の埩元力ずが統合され
お非垞に早い埩元が可胜であるずいう特城が芋い
出された。又、粘匟性䜓は䞀般に枩床による硬床
倉化を受け易く架橋するず蚀えども、枩床倉化に
より硬床倉化を受け易くなる傟向があるが、高枩
では空気の膚匵により粘匟性物質の硬床䜎䞋によ
る圧瞮力䜎䞋を抌える事が出来、逆に䜎枩では空
気の収瞮により、粘匟性物質の硬床アツプによる
圧瞮匷床増加を抑制する事が出来、枩床倉化によ
る性胜倉化を少なくする点でも衝撃緩衝シヌトず
しおのメリツトが生じる。又、コスト面に斌おも
片面はフむルムである点で本発明のシヌトを加工
する堎合には取り扱い䜜業が非垞に容易ずなり加
工時間、又は䜜業時間を短瞮する䞊で非垞に効果
的であるばかりでなく、本発明のシヌトを補造す
る䞊に斌おは、長尺加工が可胜でありコスト面で
有利ずなる。又、貌付加工䜜業に斌おは被衝撃面
に、粘匟性䜓自䜓の粘着力、或は接着剀により貌
付するだけで耐衝撃力、制振性、断熱性等の機胜
が付䞎され、しかも凞郚空気封入郚は粘匟性䜓が
䞍芁ずいう事もあ぀お䜎コスト化に奜適である。 次に本発明の衝撃緩衝シヌトの断面構成に぀い
お述べる。 第図、第図に瀺す様に、独立した凞型空気
宀を有するプラスチツクフむルムの凞郚間の凹
郚、及び又は、党面を、粘匟性䜓で充填したプ
ラスチツクシヌトを、被振動面、或は衝撃面に盎
接貌り合せお、この被接着面を拘束材ずしお甚い
る方法ず、第図に瀺す様に、予め拘束材ずしお
金属箔、プラスチツクシヌト、玙、䞍織垃等を積
局しお被振動面、或は衝撃面に貌り合せお䜿甚す
る方法があり、この際、粘匟性付フむルム基材の
フむルム面を衚面に出しおも、拘束材を衚面ずし
おも実䜿甚䞊郜合のよい方を遞択しおよいが、制
振特性を䞊げる為には、本発明のシヌトは、第
図に瀺す様に䞊䞋䞡面を拘束材に貌付けお䜿甚す
る事が望たしい。又、非垞に柔らかい接觊面が芁
求される堎合には怍毛した基材やゎムシヌト等を
拘束材ずしたり拘束材面に貌付けおもよい。 次に粘匟性物質に぀いおの説明を行う。 粘匟性䜓はホツトメルトタむプ、氎系若しくは
溶剀系拡散ポリマヌを也燥したタむプ、反応型液
状物を硬化反応せしめお埗られるタむプ、油膚最
型ポリマヌ粉末を可塑剀䞭に分散し゚ラストマヌ
を埗るタむプの぀に倧別されるが、本発明を達
成する䞊では䜕れのタむプも適甚し埗る。 それ等は、各々特城を有するが、なかでも反応
型液状物を硬化反応せしめお埗られる架橋粘匟性
䜓は枩床倉化による察応も幅広い枩床範囲で可胜
であり、特に垞枩反応性を有するポリマヌを䜿甚
しお埗られる粘匟性䜓は補造工皋䞭で加熱に芁す
る゚ネルギヌや也燥に芁する゚ネルギヌが䞍芁で
あるだけでなく、也燥工皋䞭で溶剀回収に芁する
蚭備が䞍芁であり、氎分等による補造蚭備の腐食
も無い点で優れる。 又、架橋粘匟性䜓の䞭でも次の条件を具備する
物質は本発明に適甚する粘匟性䜓ずしおは特に望
たしいず蚀える。即ち、本発明で蚀う粘匟性䜓ず
は、垞枩で液状であり、䞔぀垞枩で反応した埌の
硬化物質が、80℃の雰囲気枩床䞋でも圢状を保持
し20℃の条件䞋で硬床が、JIS−6301に芏定され
おいる型硬床蚈20℃条件䞋で80以䞋ずいう条件
を満足するものである。䞊蚘条件を満足し埗る反
応性物質ずしおは、衚に瀺す官胜基を有する液
状ゎムず架橋剀の組合せを䟋瀺する事が出来る。
これ等は垞枩反応性の硬化速床のコントロヌルの
し易さ、コスト面、入手のし易さ等を含めお考慮
するず特に氎酞基を末端に有し、䞻鎖をポリブタ
ゞ゚ン、氎玠添加ポリブタゞ゚ン、ポリブタゞ゚
ン−ニトリル、ポリブタゞ゚ン−スチレン、む゜
プレン等や、ポリ゚ヌテルポリオヌル、ポリ゚ス
テルポリオヌル、りレタンアクリルポリオヌル、
アニリン誘導䜓ポリオヌル等を単独、若しくは䜵
甚しお甚いるのが望たしい。又、前蚘反応性物質
の硬化剀ずしおは、む゜シアネヌト系硬化剀が奜
適であり、分子圓り個以䞊のむ゜シアネヌト
基を有する事が必芁である。その具䜓䟋ずしお
は、トルむレンゞむ゜シアネヌト、ゞプニルメ
タンゞむ゜シアネヌト、ヘキサメチレンゞむ゜シ
アネヌト、む゜ホロンゞむ゜シアネヌト、䞡末端
にむ゜シアネヌト基を有するプレポリマヌを挙げ
る事が出来、単独、若しくは䜵甚しお甚いる事も
出来る。
The present invention relates to a sheet that cushions vibrations and shocks. That is, the impact cushioning sheet of the present invention can be used as containers for easily damaged items, protective materials for precision equipment, housings that require vibration damping, covering materials for piping such as ducts, base members for precision equipment, and audio-related products. Vibration and shock buffering sheet that can be applied to vibration damping materials for buildings, floor vibration damping members for buildings, vibration damping insulation materials, vibration damping members for vehicles and ships, damping members for preventing electromagnetic damage, vibration damping members for preventing static electricity, etc. It is related to. The vibration and impact cushioning sheet of the present invention has both a convex air chamber having a closed cell structure and a viscoelastic body filled in a recess formed between the convex parts, that is, the air chamber and the viscoelastic body. This is an impact cushioning sheet that not only takes advantage of the excellent vibration damping and shock mitigation performance of each, but also has excellent compression properties and compression recovery properties that can only be achieved by combining both. In recent years, technological progress has been remarkable, and various developments are being carried out in various fields, but in particular, the means to prevent vibrations are technically difficult, and a large amount of money is spent on prevention measures. At present, it is desired to have a means to perform vibration at low cost. In other words, in recent years, places that used to be relatively tolerant of vibrations have become more premium-oriented, and finally, equipment that is extremely sensitive to vibrations and buildings, vehicles, ships, etc. are now seeking quieter spaces. The demand for this is increasing. Therefore, the inventors of the present invention wanted to obtain a member with high vibration damping effect at low cost, and after much trial and error, they decided to use a viscoelastic material to fill the air chambers in the convex portions of the sheet and the concave portions as described above. As a result, the present invention was completed based on the knowledge that it is possible to obtain a shock-absorbing sheet that has both the characteristics of air and the characteristics of a viscoelastic material, and has excellent compression and restoring characteristics as a synergistic effect. In other words, the shock-absorbing sheet of the present invention utilizes the characteristics of air and the viscoelastic material to the fullest in one layer, which has excellent vibration damping properties, damping properties, and compression properties of air. It is something. As is conventionally known, examples of impact mitigation materials include foams such as styrofoam and urethane foam, cardboard, hollow plastic laminates, and air-containing plastic sheets, which are also a part of the present invention. It is known that even a small stress can easily cause compression deformation, and the impact can be easily alleviated. However, because these restoring forces or material strength are weak, once compressive deformation is applied, there are problems in that it is difficult to restore or break, and there is a major drawback in that the function is lost. There are also cushioning rubbers, anti-vibration rubbers, non-repulsion rubbers, etc., but these generally require a vulcanization process, making them expensive and difficult to use for general use, have a high specific gravity, which leads to an increase in weight, and have a high elastic modulus, making them difficult to use when impacting. It has drawbacks such as not being able to sufficiently absorb energy and vibrational energy. In addition, there are vibration damping materials such as insulators used in audio equipment, etc., but they have the disadvantage that they must be sufficiently tall to contain a large amount of air, and the structure is complex and expensive. ing. Additionally, the measures currently being taken to deal with floor impact noise are as follows:
Compressed glass wool, asbestos, particle board,
The floor can be constructed by combining several types of rubber boards, inorganic boards, plywood, etc., or by floating such combinations from the floor slab, and in addition, sound absorbing materials can be placed between the floor surface and the ceiling of the lower floor. Currently, the ceiling is made of vibration-proof rubber to create a suspended ceiling, and the overall effect of the floor and lower floor ceiling is used to alleviate floor impact noise. However, the above method requires a large number of raw materials,
Costs increase due to raw material costs, material loss during construction, and a large number of construction steps. In addition, the total thickness of the floor materials used to mitigate floor impact noise has become extremely thick, forcing the eaves of the building to be raised, the living space to be narrow, or the number of floors to be reduced. If the number of floors is secured and the living space is the same, the disadvantage is that the increased height of the eaves will add to the construction cost. The inventors of the present invention solved the above-mentioned drawbacks, and as a result of intensive research aimed at creating a restraining type impact cushioning sheet that is low cost, reduces impact energy with a thin film, and is easy to work with, the inventors found that a viscoelastic body and an air-filled part Each of these film base materials has excellent impact mitigation properties when used alone, and when both are used together, they not only exhibit the performance of repeatedly absorbing large impact energy, but also overcome the drawbacks of using them alone. As a result of various tests, we have completed the present invention. The impact cushioning sheet of the present invention has a configuration in which the concave portions of a film base material in which convex portions filled with air and concave portions made only of film are arranged alternately, and/or the entire surface thereof is filled with a viscoelastic substance. , the volume ratio of the air volume of the air-filled convex part to the viscoelastic body filled in the film-only concave part is convex part: concave part = 2:
The ratio is 8 to 8:2, and the height of the convex portion is 2 to 10 mm. In addition, the present invention provides a film substrate in which a viscoelastic body that fills the recesses and/or the entire surface of the film base material in which convex portions filled with air and recesses made only of the film are alternately arranged, undergoes a curing reaction, The substance after the curing reaction is 80
It is characterized by retaining its shape even when heated to ℃, and has a hardness of 80 or less on a JIS-A hardness tester at 20℃. Furthermore, the present invention provides that the viscoelastic body fills the recesses and/or the entire surface of the film base material, in which the convex portions filled with air and the recesses made only of the film are arranged alternately, and It is characterized by being a crosslinked viscoelastic body obtained by subjecting a main ingredient having a telechelic polymer as a basic component and a curing agent having two or more isocyanate groups per molecule to a curing reaction at room temperature. Furthermore, in the present invention, the crosslinked viscoelastic material filled in the recesses of the film base material, in which the convex parts enclosing air and the recessed parts containing only the film are arranged alternately, and/or the entire surface thereof, It is characterized by being a crosslinked viscoelastic body obtained by subjecting a main ingredient consisting of liquid polybutadiene, asphalt, and a plasticizer to a curing reaction at room temperature with a curing agent having two or more isocyanate groups per molecule. In other words, conventionally, when viscoelastic materials are used alone, they are expensive and unsuitable for general-purpose impact cushioning sheets, and in order to achieve thickness accuracy after solidification or curing, manufacturing The drawback was that there were many restrictions and the cost was high when equipment was taken into account. On the other hand, when a protrusion sheet base material with an air-enclosed portion is used alone, as there is no material to protect the protrusion thin film as described above, pressure may be applied locally or even over a large area. It has the disadvantage that it is easily damaged when subjected to a small impact force, and it no longer functions as an impact cushioning sheet. or,
A protrusion sheet whose convex portions are covered with a thin film has a slightly higher load capacity than a protrusion sheet, but it will break even with a relatively small impact force, and once it is damaged, it will not have any impact mitigation properties and will not have sufficient performance. It's hard to say what I did. As a result of repeated trial and error in order to solve both of the above-mentioned drawbacks, the present inventors have found that by filling the recesses and/or the entire surface of a plastic film having independent convex air chambers with a viscoelastic substance, the impact can be reduced. It was found that a product with excellent elasticity and compression properties can be obtained. In other words, the reason for the excellent impact mitigation properties is that the air-filled portion becomes an air bag and is easily compressed and deformed, and the viscoelastic material filled in the recesses adheres closely to the convex portions of the film base material.
Because it is three-dimensionally restrained, in addition to the impact energy absorption performance of the viscoelastic material itself, the deformation of the convex part of the film that forms the air bag and the displacement of the viscoelastic material increase, which further reduces the impact energy. It is thought that the energy absorption performance has increased. In addition, in terms of compression characteristics, when an impact is applied, the air bladder, which is a convex part of the film, is compressed, and the viscoelastic body is compressed even more. Although it easily deforms under very small displacements, For compression, the stress of the compressed air in the convex air bag and the compressive stress of the viscoelastic body act, and in order to increase the deformation, a larger force is required, so the displacement is larger than necessary. You can avoid doing that. Furthermore, it has been found that when the compressive load is released, the restoring force of the viscoelastic body and the restoring force of the compressed air are integrated, and a very quick restoration is possible. In addition, although viscoelastic materials are generally susceptible to changes in hardness due to temperature and are crosslinked, they tend to be more susceptible to changes in hardness due to temperature changes, but at high temperatures, air expansion causes a decrease in compressive force due to a decrease in the hardness of the viscoelastic material. Conversely, at low temperatures, air contraction suppresses the increase in compressive strength due to increased hardness of the viscoelastic material, and it also has the advantage of being used as a shock absorbing sheet in that it reduces changes in performance due to temperature changes. In addition, in terms of cost, since one side is a film, when processing the sheet of the present invention, the handling work is very easy and it is very effective in shortening the processing time or working time. However, in manufacturing the sheet of the present invention, it is possible to process the sheet into a long length, which is advantageous in terms of cost. In addition, in the pasting process, functions such as impact resistance, vibration damping properties, and heat insulation properties can be imparted to the impact surface by simply pasting it with the adhesive force of the viscoelastic body itself or with an adhesive. The air-filled section does not require a viscoelastic body, so it is suitable for cost reduction. Next, the cross-sectional structure of the impact cushioning sheet of the present invention will be described. As shown in FIGS. 1 and 3, a plastic sheet is filled with a viscoelastic material in the concave portions between the convex portions of a plastic film having independent convex air chambers, and/or the entire surface is filled with a vibrating surface. Alternatively, as shown in Figure 2, there is a method of directly bonding to the impact surface and using this bonded surface as a restraining material, and a method of laminating metal foil, plastic sheet, paper, non-woven fabric, etc. as a restraining material in advance to prevent vibrations. There are two ways to use it: by attaching it to a surface or an impact surface. In this case, choose whichever is more convenient for practical use, either exposing the film side of the viscoelastic film base material to the surface or having the restraining material on the surface. However, in order to improve the vibration damping properties, the sheet of the present invention may be
It is preferable to attach the upper and lower surfaces to the restraining material as shown in the figure. Furthermore, if a very soft contact surface is required, a flocked base material, a rubber sheet, or the like may be used as a restraining material or may be attached to the restraining material surface. Next, the viscoelastic substance will be explained. There are four types of viscoelastic bodies: a hot melt type, a type obtained by drying an aqueous or solvent-based diffusion polymer, a type obtained by subjecting a reactive liquid to a curing reaction, and a type obtained by dispersing an oil-swellable polymer powder in a plasticizer to obtain an elastomer. However, any type can be applied to achieve the present invention. Each of them has its own characteristics, but among them, the crosslinked viscoelastic material obtained by curing a reactive liquid material can respond to temperature changes over a wide temperature range, and in particular uses polymers that are reactive at room temperature. The viscoelastic material obtained by this process not only requires no energy for heating or drying during the manufacturing process, but also eliminates the need for equipment for recovering solvents during the drying process, and prevents corrosion of manufacturing equipment due to moisture. It is excellent in that it does not have any problems. Furthermore, among crosslinked viscoelastic bodies, substances that meet the following conditions are particularly desirable as viscoelastic bodies to be applied to the present invention. In other words, the viscoelastic body referred to in the present invention is a substance that is liquid at room temperature, and after reacting at room temperature, the hardened substance retains its shape even at an ambient temperature of 80°C and has a hardness of JIS -6301, which satisfies the condition of 80 or less on a Type A hardness tester at 20°C. Examples of reactive substances that can satisfy the above conditions include combinations of a liquid rubber having a functional group and a crosslinking agent as shown in the table.
Considering the ease of controlling curing rate, cost, and availability of room-temperature reactivity, these products have a hydroxyl group at the end and have a main chain of polybutadiene, hydrogenated polybutadiene, or polybutadiene-nitrile. , polybutadiene-styrene, isoprene, etc., polyether polyol, polyester polyol, urethane acrylic polyol,
It is desirable to use aniline derivative polyols or the like alone or in combination. Further, as the curing agent for the above-mentioned reactive substance, an isocyanate-based curing agent is suitable, and it is necessary that each molecule has two or more isocyanate groups. Specific examples include toluylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and prepolymers having isocyanate groups at both ends, which can be used alone or in combination.

【衚】 又、む゜シアネヌト系硬化剀は配合比率、及
び又は、粘性等の問題で可塑剀ず混合しお甚い
る事も出来るが、可塑剀は脱氎凊理したものであ
る事ずむ゜シアネヌト基ず反応しない事が必芁で
ある。䞊蚘の垞枩反応せしめる䞊での必須成分の
みの組み合せで本発明を満足し埗る架橋粘匟性物
質を埗る事も出来るが、コスト面、䜜業性面、物
性向䞊の面で曎に各皮の添加剀を加える事によ
り、幅広い安定した架橋粘匟性物質を埗る事が出
来る。 添加剀ずしお、可塑剀、充填剀、瀝青物、粘着
付䞎暹脂、老化防止剀、防カビ剀、難燃剀、觊
媒、界面掻性剀、カツプリング剀、氎等の発泡
剀、或いは消泡剀等が挙げられる。 可塑剀は、粘床調敎、䜜業性調敎、架橋粘匟性
物質の物性調敎、難燃性の付䞎等を目的ずしお配
合される。 可塑剀の具䜓䟋ずしお、ナフテン系オむル、パ
ラフむン系オむル、アロマテむツク系オむル、ひ
たし油、綿実油、パむンオむル、トヌル油、フタ
ル酞誘導䜓、マレむン酞誘導䜓、官胜基を持たな
い液状ゎム等があり、単独、又は䜵甚しお甚いる
事が出来る。又、難燃性を芁する堎合は、ハロゲ
ン化合物系、リン化合物系可塑剀を単独、又は䜵
甚しお䜿甚出来る。瀝青物ずしおは、ストレヌト
アスフダルト、ブロンアスアスフアルト、タヌル
等があり、所望の架橋粘匟性䜓を埗る為に、予じ
め粘着付䞎暹脂や可塑剀等で改質しお䜿甚する事
も出来る。 粘着付䞎暹脂ずしおは、倩然暹脂、ロゞン、倉
性ロゞン、ロゞン及び倉性ロゞンの誘導䜓、ポリ
テルペン系暹脂、テルペン倉性䜓、脂肪族系炭化
氎玠暹脂、シクロペンタゞ゚ン系暹脂、芳銙族系
石油暹脂、プノヌル暹脂、アルキルプノヌル
−アセチレン暹脂、キシレン暹脂、クマロン−む
ンデン暹脂、ビニルトル゚ン−αメチルスチレン
共重合䜓等を単独、又は䜵甚しお甚いる事が出来
る。 充填剀は振動枛衰性、遮音性、難燃性の改善に
効果があり、䞻剀硬化剀の配合比率の調敎、粘
性の調敎、配合コストダりンを蚈る目的で䜿甚す
るものであり、ゎム、及び塗料関係で䞀般に䜿甚
されるものが䜿甚される。その具䜓䟋ずしおは、
マむカ、グラフアむト、ヒル石、タルク、クレヌ
等の鱗片状無機粉䜓、プラむト、金属粉、硫酞
バリりム、リトポン等の高比重充填剀、炭酞カル
シりム、埮粉シリカ、カヌボン、炭酞マグネシり
ム、氎酞化アルミニりム、アスベスト等の汎甚充
填剀を単独、若しくは䜵甚しお䜿甚出来る。又、
䞉酞化アンチモン、ホり砂等を難燃化を目的ずし
お䜿甚する事が出来る。 その他の添加剀ずしお、老化防止剀、觊媒、顔
料、界面掻性剀、カツプリング剀、防カビ剀等が
挙げられるが、これらは必芁に応じ添加する事が
出来る。 以䞊、粘匟性䜓に぀いお述べたが、粘匟性䜓の
硬床に぀いおは非垞に圧瞮応力や衝撃緩和力、埩
元性に䞎える圱響も倧きく、目的、甚途に応じお
䞊蚘した材料を遞択する必芁がある。 次に、衝撃緩衝シヌトの構成郚材に぀いお説明
する。 空気封入フむルム基材は埓来より包装甚資材ず
しお、䜿甚されおいる汎甚品で充分であるが、凞
郚の空気容量ずフむルム基材の凹郚に充填される
架橋粘匟性䜓の容積ずの比率が凞郚凹郚
〜である事が望たしく、凞郚凹郚
より凞郚が小さくなるず原材料コストアツ
プずなり、埩元性も悪くなる傟向が生じる。逆に
凞郚凹郚より凞郚が倧きくなるず、原
材料コストは䞋がるものの、空気宀の砎壊危険性
が高たり、奜たしくない。 又、空気封入郚を構成するフむルム厚は20〜
100Ό皋床が望たしい。又、凞郚の高さはmm以
䞋が望たしく、曎に奜適な範囲はmm〜mmであ
る。又、凞郚個圓りの空気の容積は10c.c.以䞋が
望たしく、曎に奜適な範囲は0.3〜c.c.である。
又充填される架橋粘匟性䜓は凞郚の䞊に充填被芆
された状態ずな぀おも良いが、コスト面を考慮す
るずmm厚以䞋にする方が良い。逆に充填高さが
凞郚の高さの3/4以䞋の堎合は、圓初より盞圓量
圧瞮しおやらないず基材ず密着しない為、拘束効
果が出ず、又、凞郚薄膜フむルムが砎損し易くな
る。 又、フむルムを構成する材質は、ポリ゚チレ
ン、ポリプロピレン、ナむロン、ポリ゚ステル、
塩化ビニリデン等のフむルムを甚いる事が出来る
が、䞭でも、ポリ゚チレン、ポリプロピレンは汎
甚品ずしお入手しやすいメリツトがあり、塩化ビ
ニリデンは耐気䜓透過性に優れおいる点で奜たし
い材質である。又、気䜓封入凞郚の圢状は円柱
状、角柱状、半円状、楕円状等、䜕れの圢状でも
䜿甚できる。又、特開昭60−105530号に瀺されお
いる劂く、導電性の空気緩衝性シヌトを甚いれ
ば、導電性衝撃緩衝シヌトずしお応甚でき、これ
を被振動面、或は、被衝撃面に貌付する事により
静電気防止制振材ずしお応甚でき、又、拘束材ず
しお金属箔を甚いれば制振性も兌ね備えた電磁波
シヌルド材ずしおも展開できる。 拘束材ずしお具䜓䟋を挙げるず、鉄、銅、アル
ミ、ステンレス、真鍮、トタン、鉛、等の金属薄
板、ポリ゚ステル、塩化ビニル、ポリ゚チレン、
ポリプロピレン、ナむロン、塩化ビニリデン、゚
チレン−酢酞ビニル共重合䜓から成るプラスチツ
クフむルムシヌト、加硫ゎム板、非加硫ゎム板、
段ボヌル、圧瞮玙、プルト玙や、割垃等の玙
類、ナむロン、ポリ゚ステル、ポリプロピレン、
ポリ゚チレン、ポリりレタン、ガラス繊維等を䜿
甚した䞍織垃や綿、麻等の倩然繊維及び又はナ
むロン、りレタン、ポリプロピレン、アクリル、
ポリ゚ステル、ポリアミド、ポリむミド等の合成
繊維、朚質系拘束材ずしおは、単板、合板、コル
ク板、パヌテむクルボヌド等が挙げられ、無機質
系拘束材ずしおは、朚片セメント板、フアむバヌ
ボヌド、パルプセメント板、朚毛セメント板、フ
レキシブル板、軟質フレキシブル板、倧平板、石
綿セメント板、石綿セメントパヌラむト板、石綿
セメント硅酞カルシりム板、せ぀こうボヌド等が
挙げられる。尚、䞊蚘した拘束材は、化粧加工の
有無、穎の有無に拘らず䜿甚できるが、構成郚材
の総厚みを抌さえる事を考慮するず、厚みの薄い
ものが望たしい。又、甚途の制玄がなければ出来
る䞈、ダング率の高い材質が奜たしい。 次に本発明を実斜䟋、比范䟋により説明する。 実斜䟋は、本発明に甚いる粘匟性䜓が氎酞基
末端ポリブタゞ゚ン、アスフアルト、可塑剀を基
本成分ずする䞻剀ずむ゜シアネヌト基を分子圓
り個以䞊有する硬化剀を垞枩で硬化反応せしめ
られたものである堎合を瀺し、良奜な圧瞮特性や
耐衝撃性を瀺しおいる。又、朚質仕䞊げ床に適甚
しおも充分な性胜を瀺すものである。 実斜䟋は、本発明に甚いる粘匟性䜓がりレタ
ンを基本成分ずした架橋粘匟性䜓である堎合を瀺
すものであり、良奜な圧瞮特性や耐衝撃性を瀺
し、高枩䞋でも充分䜿甚できる事を瀺しおいる。
又、朚質仕䞊床に適甚しおも充分な性胜を瀺すも
のである。 実斜䟋は、本発明に甚いる粘匟性䜓が゚マル
ゞペン系粘匟性䜓より成る架橋粘匟性䜓である堎
合を瀺し、良奜な圧瞮特性や耐衝撃性を瀺しおい
る。又、朚質仕䞊床に適甚しおも充分な性胜を瀺
すものである。 実斜䟋は、本発明に甚いる粘匟性䜓がスチレ
ン−む゜プレン−スチレン共重合䜓を基本ポリマ
ヌずし、架橋されおいない堎合を瀺す。この堎合
は80℃圢状保持性が若干劣るものの、加熱された
状態で䜿甚しない甚途には充分䜿甚出来るし、充
分な圧瞮特性や耐衝撃性を瀺しおいる。 比范䟋は、粘匟性物質が無く、凹凞面を有す
るフむルム基材単䜓の堎合を瀺す。この堎合は非
垞に耐衝撃性が䜎くなり、しかも埩元性も劣り、
本発明の目的を達成できないものである。 比范䟋は、基材フむルムの凞郚ず凹郚ずの容
積比がの堎合であり、埩元性がやや劣り、
粘匟性䜓比率が増加し材料コスト高ずなり、本発
明の目的を達成する䞊では奜たしくない。 比范䟋は、基材フむルムの凞郚ず凹郚ずの容
積比がの堎合であり、埩元性が劣る点ず耐
衝撃性が劣り、フむルム基材の凞郚の空気宀が砎
損する危険性が高いため奜たしくない。
[Table] Also, isocyanate curing agents can be used in combination with plasticizers due to problems such as blending ratio and/or viscosity, but the plasticizers must be dehydrated and do not react with isocyanate groups. things are necessary. Although it is possible to obtain a crosslinked viscoelastic material that satisfies the present invention by combining only the essential components for the room temperature reaction described above, various additives may be added in order to improve cost, workability, and physical properties. As a result, a wide variety of stable crosslinked viscoelastic substances can be obtained. Examples of additives include plasticizers, fillers, bituminous substances, tackifier resins, anti-aging agents, anti-mold agents, flame retardants, catalysts, surfactants, coupling agents, foaming agents such as water, and antifoaming agents. It will be done. The plasticizer is blended for the purpose of adjusting viscosity, adjusting workability, adjusting the physical properties of the crosslinked viscoelastic material, imparting flame retardance, and the like. Specific examples of plasticizers include naphthenic oils, paraffinic oils, aromatic oils, castor oil, cottonseed oil, pine oil, tall oil, phthalic acid derivatives, maleic acid derivatives, and liquid rubbers without functional groups. Or they can be used in combination. Furthermore, when flame retardancy is required, halogen compound-based or phosphorus compound-based plasticizers can be used alone or in combination. Examples of bituminous materials include straight asphalt, blown asphalt, and tar, which may be modified in advance with a tackifying resin, plasticizer, etc. in order to obtain a desired crosslinked viscoelastic material. Tackifier resins include natural resins, rosins, modified rosins, derivatives of rosins and modified rosins, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, Alkylphenol-acetylene resin, xylene resin, coumaron-indene resin, vinyltoluene-α-methylstyrene copolymer, etc. can be used alone or in combination. Fillers are effective in improving vibration damping properties, sound insulation properties, and flame retardancy, and are used to adjust the blending ratio of main ingredient/curing agent, adjust viscosity, and reduce compounding costs. Those commonly used in paints are used. As a specific example,
Scale-like inorganic powders such as mica, graphite, vermiculite, talc, clay, ferrite, metal powder, barium sulfate, high density fillers such as lithopone, calcium carbonate, finely divided silica, carbon, magnesium carbonate, aluminum hydroxide, General-purpose fillers such as asbestos can be used alone or in combination. or,
Antimony trioxide, borax, etc. can be used for flame retardant purposes. Other additives include anti-aging agents, catalysts, pigments, surfactants, coupling agents, antifungal agents, etc., and these can be added as necessary. As mentioned above, the viscoelastic body has been described, but the hardness of the viscoelastic body has a great effect on compressive stress, impact relaxation force, and restorability, so it is necessary to select the above-mentioned materials depending on the purpose and use. Next, the constituent members of the impact cushioning sheet will be explained. The air-filled film base material is a general-purpose product that has been conventionally used as a packaging material. Convex portion: Concave portion = 2:
It is desirable that the ratio is 8 to 8:2, convex part: concave part =
When the convex portion is smaller than 2:8, the cost of raw materials increases and the restorability tends to deteriorate. On the other hand, if the convex portion is larger than the convex portion:concave portion ratio of 8:2, the raw material cost will be reduced, but the risk of destruction of the air chamber will increase, which is not preferable. Also, the thickness of the film that makes up the air sealing part is 20~
Approximately 100Ό is desirable. Further, the height of the convex portion is preferably 6 mm or less, and a more preferable range is 2 mm to 4 mm. Further, the volume of air per convex portion is desirably 10 c.c. or less, and a more preferable range is 0.3 to 5 c.c.
Further, the crosslinked viscoelastic material to be filled may be in a state where it is filled and coated on the convex portions, but in consideration of cost, it is better to have a thickness of 1 mm or less. On the other hand, if the filling height is less than 3/4 of the height of the convex part, it will not adhere to the base material unless it is compressed by a considerable amount from the beginning, so the restraining effect will not be produced, and the thin film of the convex part will be damaged. It becomes easier. In addition, the materials that make up the film include polyethylene, polypropylene, nylon, polyester,
Films such as vinylidene chloride can be used, and among them, polyethylene and polypropylene have the advantage of being easily available as general-purpose products, and vinylidene chloride is a preferable material because it has excellent gas permeation resistance. Further, the shape of the gas-filled convex portion can be any shape such as a columnar shape, a prismatic shape, a semicircular shape, or an elliptical shape. Furthermore, as shown in Japanese Patent Application Laid-Open No. 60-105530, if a conductive air cushioning sheet is used, it can be applied as a conductive shock cushioning sheet, and this can be attached to a vibrating surface or a shock receiving surface. By doing so, it can be applied as an anti-static vibration damping material, and if metal foil is used as a restraining material, it can also be developed as an electromagnetic wave shielding material that also has vibration damping properties. Specific examples of restraining materials include metal sheets such as iron, copper, aluminum, stainless steel, brass, galvanized iron, lead, etc., polyester, vinyl chloride, polyethylene,
Plastic film sheets made of polypropylene, nylon, vinylidene chloride, ethylene-vinyl acetate copolymer, vulcanized rubber plates, non-vulcanized rubber plates,
Paper such as cardboard, compressed paper, felt paper, and split cloth, nylon, polyester, polypropylene,
Nonwoven fabrics using polyethylene, polyurethane, glass fiber, etc., natural fibers such as cotton, hemp, etc., and/or nylon, urethane, polypropylene, acrylic,
Synthetic fibers such as polyester, polyamide, polyimide, etc., wood-based binding materials include veneer, plywood, cork board, particle board, etc., and inorganic binding materials include wood chip cement board, fiber board, pulp cement board, etc. , wood wool cement board, flexible board, soft flexible board, large flat board, asbestos cement board, asbestos cement perlite board, asbestos cement calcium silicate board, plaster board, etc. The above-mentioned restraining material can be used regardless of whether or not it has a decorative finish and whether or not it has holes, but it is preferable that it be thin in consideration of reducing the total thickness of the constituent members. In addition, it is preferable to use a material with a high Young's modulus and a length that can be achieved if there are no restrictions on the use. Next, the present invention will be explained with reference to Examples and Comparative Examples. In Example 1, the viscoelastic body used in the present invention was made by curing reaction at room temperature with a main ingredient consisting of hydroxyl-terminated polybutadiene, asphalt, and a plasticizer, and a curing agent having two or more isocyanate groups per molecule. This shows good compression properties and impact resistance. It also shows sufficient performance even when applied to wooden finished floors. Example 2 shows the case where the viscoelastic body used in the present invention is a crosslinked viscoelastic body containing urethane as a basic component, and shows good compression properties and impact resistance, and can be used satisfactorily even at high temperatures. It shows.
It also shows sufficient performance even when applied to wooden finished floors. Example 3 shows the case where the viscoelastic body used in the present invention is a crosslinked viscoelastic body made of an emulsion-based viscoelastic body, and exhibits good compression properties and impact resistance. It also shows sufficient performance even when applied to wooden finished floors. Example 4 shows a case where the viscoelastic body used in the present invention has a styrene-isoprene-styrene copolymer as a basic polymer and is not crosslinked. In this case, although the shape retention at 80°C is slightly inferior, it can be used satisfactorily in applications where it is not used in a heated state, and it exhibits sufficient compression characteristics and impact resistance. Comparative Example 1 shows the case of a single film base material without a viscoelastic substance and having an uneven surface. In this case, the impact resistance will be extremely low, and the recovery performance will also be poor.
The purpose of the present invention cannot be achieved. Comparative Example 2 is a case where the volume ratio of the convex part to the concave part of the base film is 1:9, and the restorability is slightly inferior.
This increases the viscoelastic body ratio and increases the material cost, which is not preferable for achieving the object of the present invention. Comparative Example 3 is a case where the volume ratio of the convex part to the concave part of the base film is 9:1, and the restorability is poor, the impact resistance is poor, and the air chamber in the convex part of the film base material is damaged. Not recommended due to high risk.

【衚】【table】

【衚】 実斜䟋及び比范䟋の䞋蚘の商品を䜿甚した。  氎酞基末端液状ポリブタゞ゚ン アヌコケ
ミカル瀟米補 商品名Poly Bd −
45HT  ポリ゚ヌテルポリオヌル 第䞀工業補薬(æ ª)
補 商品名 ポリハヌドナヌ−350  アクリル゚マルゞペン 䞭倮理化工業(æ ª)
商品名 リカボンドPS−8000A  ゎム・アスフアルト゚マルゞペン 日本ラ
テツクス加工(æ ª)補 商品名 ハルコヌト  スチレン−む゜プレン−スチレン共重合䜓
 シ゚ル化孊(æ ª) 商品名 クレむトン 1107  再生ブチルゎム 早川ゎム(æ ª)補 商品名
䜎ムヌニヌ再生ブチル  可塑剀 出光石油化孊(æ ª)補 商品名 ダ
むアナプロセスオむル AH−16  可塑剀 東京暹脂工業(æ ª)補 商品名 
−レツクス180EF  粘着付䞎暹脂 安原油脂(æ ª)補 商品名
YSレンゞ−800 10 粘着付䞎暹脂 荒川化孊(æ ª)補 商品名
アルコン−100 11 觊媒 日本化孊産業(æ ª) 商品名 28 オ
クチル酞スズ 12 溶剀 トル゚ン 13 む゜シアネヌトプレポリマヌ 第䞀工業補
薬(æ ª)補 ポリフレツクス MH 14 アゞリゞン化合物 ゞプニルメタン−ビ
ス−・4′−・N′−ゞ゚チレン尿玠 詊隓方法  実斜䟋、及び比范䟋に瀺す配合凊方に沿぀お
粘匟性䜓の基䜓を䜜補し、所定の硬化剀を混合
したり、也燥固化せしめたりしお、衚瀺した凞
郚ず凹郚の容積化を有するフむルム基材に充填
し、粘匟性䜓付フむルムを埗た。  項ず同様にしお埗た粘匟性䜓の基䜓を12mm
厚×120mm幅×100mm長さの寞法の型枠に流し蟌
み硬床枬定甚詊料ずした。 宀枩日、50℃の雰囲気䞭日の逊生を行な
぀た埌、JIS−−6301に準じ20℃で硬床の枬
定をした。  80℃圢状保持性 項の硬床枬定ず同様にしお、30mm高さ×
50φの倧きさに調敎した詊料を䜜補し、匟性面
に離型玙を圓おお、500の荷重をかけお80℃
×24時間の条件䞋で静眮した埌、陀荷し宀枩に
静眮し、時間埌の倉型の倧小を目芖により刀
定した。゚ツヂ郚がシダヌプで倉圢の少ないも
のを○印、゚ツヂ郚のシダヌプさが無いもの、
倉圢の倧きいものは×印で瀺した。  床衝撃音枬定 床衝撃音の枬定は、150mm厚RCスラブに察
し、項で䜜補した詊料を貌り付け、その䞊に
5.5mm厚の化粧合板を貌り、タツピングマシン
により軜量衝撃音を枬定した。枬定方法はJIS
−−1418に準じ、第図に瀺す方法ずした。
尚、結果はJIS−−1419に準じ、床衝撃音の
遮音等玚により瀺した。  埩元性 項で埗られたmm厚の粘匟性䜓付フむルム
を䜜補し、mm×50mm幅×50mm長さに切断し、
䞊䞋に離型玙を圓おお圧瞮詊隓機により圧瞮速
床mm分にお50圧瞮し、30分間保持した
埌、陀荷し、10分埌の埩元性をチ゚ツクした。
95以䞊の埩元性を瀺したものを○印、90以
䞊の埩元性を瀺したものを△印、90以䞋の埩
元性を瀺したものを×印で瀺した。  圧瞮特性 空気封入凞凹フむルム単䜓ず、粘匟性䜓付フ
むルムずの圧瞮応力ず倉䜍の関係を圧瞮詊隓機
により、圧瞮速床mm分の条件にお圧瞮し、
埗られたチダヌトより倉䜍ず圧瞮応力を読み取
りグラフに瀺した。  耐衝撃性 項で埗られたmm厚の粘匟性䜓付きフむル
ムずmm厚の合板の積局物を30mm×30mmの寞法
に切断し、JIS−−5400の法に芏定する衝
撃倉圢詊隓噚を䜿甚し、空気宀が砎壊される衝
撃条件を求めた。 第図に瀺すグラフの説明 クラフは、粘匟性䜓の有無の圧瞮特性を瀺
す。すなわち、空気封入フむルム基材の粘匟性䜓
の有無による圧瞮特性の比范であるが、フむルム
単䜓よりも倉䜍が少ない範囲では圧瞮荷重をほず
んど芁しないが、倧きな倉䜍を䞎える為には、倧
きな圧瞮匷床を加える必芁がある事を瀺しおい
る。即ち、衝撃緩衝シヌトずしおは、理想的な圧
瞮特性ず蚀える。 前蚘の劂く、本発明の衝撃緩衝シヌトは、封入
空気の圧瞮特性ず、粘匟性䜓の圧瞮特性を利甚
し、曎に耇雑な圢状による拘束面積を増倧せしめ
る事により衝撃緩衝、制振性胜をより効率よく発
揮させる事が出来る。又、凞型空気宀を有するフ
むルムを䜿甚する事により、原料の粘匟性䜓の節
玄にもなり、䜎コスト化を可胜にし、空気局によ
る断熱効果も具備した、応甚甚途の広い衝撃緩衝
シヌトである。
[Table] The following products in Examples and Comparative Examples were used. *1 Hydroxyl group-terminated liquid polybutadiene...manufactured by Arco Chemical (USA), product name Poly Bd R-
45HT *2 Polyether polyol...Daiichi Kogyo Seiyaku Co., Ltd.
Manufacturer Product name Polyhardener D-350 *3 Acrylic emulsion...Chuo Rika Kogyo Co., Ltd.
Product name Ricabond PS-8000A *4 Rubber/asphalt emulsion...manufactured by Nippon Latex Kako Co., Ltd. Product name Harcoat*5 Styrene-isoprene-styrene copolymer...Ciel Chemical Co., Ltd. Product name Kraton 1107 *6 Recycled butyl rubber...Hayakawa Manufactured by Rubber Co., Ltd. Product name
Low Mooney recycled butyl *7 Plasticizer A...manufactured by Idemitsu Petrochemical Co., Ltd. Product name Diana Process Oil AH-16 *8 Plasticizer B...manufactured by Tokyo Jushi Kogyo Co., Ltd. Product name U
-Rex 180EF *9 Tackifying resin a...manufactured by Yasushi Oil Co., Ltd. Product name
YS range A-800 *10 Tackifying resin b...manufactured by Arakawa Chemical Co., Ltd. Product name
Alcon P-100 *11 Catalyst...Nippon Kagaku Sangyo Co., Ltd. Product name 28% Tin octylate*12 Solvent...Toluene*13 Isocyanate prepolymer...Polyflex MH manufactured by Daiichi Kogyo Seiyaku Co., Ltd. *14 Aziridine compound...Diphenylmethane-bis -4・4'-N・N'-diethylene urea Test method 1 A viscoelastic substrate was prepared according to the formulation shown in the examples and comparative examples, and a specified curing agent was mixed or dried and solidified. A film base material having the indicated volume of convex portions and concave portions was filled with the mixture to obtain a film with a viscoelastic body. 2 The base of the viscoelastic body obtained in the same manner as in Section 1 was
It was poured into a mold with dimensions of thickness x 120 mm width x 100 mm length to prepare a sample for hardness measurement. After curing for 7 days at room temperature and 7 days in an atmosphere at 50°C, hardness was measured at 20°C according to JIS-K-6301. 3 Shape retention at 80℃ Same as hardness measurement in Section 2, 30mm height x
Prepare a sample adjusted to a size of 50φ, apply release paper to the elastic surface, apply a load of 500g, and heat at 80℃.
After being allowed to stand for 24 hours, the sample was unloaded and allowed to stand at room temperature, and the degree of deformation after 4 hours was visually determined. Those with sharp edges and little deformation are marked with ○, those with no sharp edges,
Large deformations are indicated by an x mark. 4 Floor impact sound measurement To measure floor impact sound, attach the sample prepared in Section 1 to a 150 mm thick RC slab, and then
A 5.5mm thick decorative plywood board was pasted and the light impact sound was measured using a tapping machine. Measurement method is JIS
-A-1418, the method shown in Fig. 7 was adopted.
The results are shown in terms of floor impact sound insulation grade according to JIS-A-1419. 5 Restorability A 4 mm thick viscoelastic film obtained in Section 1 was prepared and cut into 4 mm x 50 mm width x 50 mm length.
Release paper was placed on the top and bottom, and the material was compressed to 50% using a compression tester at a compression speed of 2 mm/min, held for 30 minutes, unloaded, and restorability was checked after 10 minutes.
Those that showed a restorability of 95% or more were marked with an ○, those that showed a restorability of 90% or more were marked with a △, and those that showed a restorability of 90% or less were marked with an x. 6 Compression properties The relationship between compressive stress and displacement of the air-filled uneven film alone and the film with a viscoelastic body was determined using a compression tester at a compression speed of 2 mm/min.
The displacement and compressive stress were read from the chart obtained and shown in a graph. 7 Impact resistance The laminate of the 4 mm thick viscoelastic film obtained in Section 1 and 3 mm thick plywood was cut into a size of 30 mm x 30 mm, and subjected to an impact deformation test specified in Method B of JIS-K-5400. The impact conditions under which the air chamber would be destroyed were determined using a device. Explanation of the graph shown in FIG. 8: The graph shows the compression characteristics with and without a viscoelastic body. In other words, when comparing the compressive properties of the air-filled film base material with and without a viscoelastic body, almost no compressive load is required in the range where the displacement is smaller than that of the film itself, but in order to give a large displacement, a large compressive strength is required. This indicates that it is necessary to add That is, it can be said that it has ideal compression characteristics as an impact cushioning sheet. As mentioned above, the impact cushioning sheet of the present invention utilizes the compression characteristics of the enclosed air and the compression characteristics of the viscoelastic body, and further increases the restraint area due to the complex shape, thereby achieving more efficient impact cushioning and vibration damping performance. I can make it work well. In addition, by using a film with convex air chambers, the viscoelastic material used as raw material can be saved, making it possible to reduce costs.It is also a shock-absorbing sheet with a wide range of applications, as it also has a heat insulating effect due to the air layer. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明の䞀実斜䟋の断面を瀺すもの
であり、凹郚に粘匟性䜓を充填したプラスチツク
フむルムを被衝撃面に接着させた䟋である。第
図は、本発明の䞀実斜䟋の断面を瀺すものであ
り、凞型空気宀を有するプラスチツクシヌトの凹
郚に充填した粘匟性䜓に拘束材を接着剀で接着さ
せた䟋である。第図は、本発明の䞀実斜䟋の断
面を瀺すものであり、凹郚の党面に粘匟性䜓を充
填したプラスチツクフむルムを被衝撃面に接着さ
せた䟋である。第図は、本発明の䞀実斜䟋の断
面を瀺すものであり、凹郚に粘匟性䜓を充填した
プラスチツクフむルムの䞊䞋に拘束材を接着させ
た䟋である。第図及び図は、それぞれ本発明
の䞀実斜䟋の断面を瀺すものであり、凞型空気宀
の圢状が、半円状のもの、円錐状のものを䜿甚し
た䟋である。第図は、本発明に係る床衝撃音の
枬定を行぀た装眮を瀺す図である。さらに、第
図は、本発明に係る粘匟性䜓の有無の圧瞮特性に
及がす圱響を瀺す線図である。   独立した空気宀を有するプラスチツクフ
むルム、  粘匟性䜓、  被衝撃面、 
 接着剀、  拘束材、  音源宀、  
タツピングマシン、  詊料、  床スラ
ブ、  受音宀、  マむクロホン、
  粟密隒音蚈、  呚波数分析噚、
  レベルレコヌダ。
FIG. 1 shows a cross section of an embodiment of the present invention, in which a plastic film whose recesses are filled with a viscoelastic material is adhered to the impact surface. Second
The figure shows a cross section of an embodiment of the present invention, in which a restraining material is bonded with an adhesive to a viscoelastic body filled in a concave portion of a plastic sheet having a convex air chamber. FIG. 3 shows a cross section of an embodiment of the present invention, in which a plastic film filled with a viscoelastic material over the entire surface of the recess is adhered to the impact surface. FIG. 4 shows a cross section of an embodiment of the present invention, in which a restraining material is bonded to the top and bottom of a plastic film whose recesses are filled with a viscoelastic material. FIGS. 5 and 6 each show a cross section of an embodiment of the present invention, and are examples in which the convex air chamber has a semicircular shape and a conical shape. FIG. 7 is a diagram showing an apparatus for measuring floor impact noise according to the present invention. Furthermore, the eighth
The figure is a diagram showing the influence of the presence or absence of a viscoelastic body according to the present invention on compression characteristics. 1... Plastic film having independent air chambers, 2... Viscoelastic body, 3... Impact surface, 4...
...Adhesive, 5...Restraint material, 6...Sound source chamber, 7...
Tapping machine, 8... Sample, 9... Floor slab, 10... Sound receiving room, 11... Microphone, 1
2... Precision sound level meter, 13... Frequency analyzer, 14
...Level recorder.

Claims (1)

【特蚱請求の範囲】  空気を封入した凞郚分ずフむルムのみの凹郚
分ずが亀互に配蚭されたフむルム基材の凹郚、及
び又は、党面を、粘匟性物質で充填した構成か
ら成り、空気を封入した凞郚の空気の容積ず、フ
むルムのみの凹郚に充填された粘匟性䜓ずの容積
比が、凞郚凹郚〜であり、か぀
凞郚の高さが〜10mmであるこずを特城ずする衝
撃緩衝シヌト。  空気を封入した凞郚分ずフむルムのみの凹郚
ずが亀互に配蚭されたフむルム基材の凹郚、及
び又は、党面を、充填する粘匟性䜓が、硬化反
応を行い、その硬化反応埌の物質が80℃に加枩さ
れおも圢状を保持し、20℃の条件䞋で硬床がJIS
−型硬床蚈で80以䞋であるこずを特城ずする特
蚱請求の範囲第項蚘茉の衝撃緩衝シヌト。  空気を封入した凞郚分ずフむルムのみの凹郚
ずが亀互に配蚭されたフむルム基材の凹郚、及
び又は、党面を、充填する粘匟性䜓が、氎酞基
を末端に有するテレキヌリツクポリマヌを基本成
分ずする䞻剀ず、む゜シアネヌト基を分子圓り
個以䞊有する硬化剀ずを垞枩で硬化反応せしめ
お埗られた架橋粘匟性䜓であるこずを特城ずする
特蚱請求の範囲第項又は第項いずれかの蚘茉
の衝撃緩衝シヌト。  空気を封入した凞郚分ずフむルムのみの凹郚
分ずが亀互に配蚭されたフむルム基材の凹郚、及
び又は、党面に、充填する架橋粘匟性䜓が、氎
酞基末端液状ポリブタゞ゚ン、アスフアルト及び
可塑剀を基本成分ずする䞻剀ず、む゜シアネヌト
基を分子圓り個以䞊有する硬化剀ずを垞枩で
硬化反応せしめお埗られた架橋粘匟性䜓であるこ
ずを特城ずする特蚱請求の範囲第項ないし第
項いずれかの蚘茉の衝撃緩衝シヌト。
[Scope of Claims] 1 Consisting of a structure in which concave portions of a film base material in which convex portions filled with air and concave portions consisting only of film are arranged alternately, and/or the entire surface thereof are filled with a viscoelastic substance, The volume ratio of the air volume of the air-filled convex part to the viscoelastic body filled in the film-only concave part is convex part: concave part = 2:8 to 8:2, and the height of the convex part is A shock-absorbing sheet characterized by having a diameter of 2 to 10 mm. 2. The viscoelastic material filling the recesses and/or the entire surface of the film base material, in which the convex portions filled with air and the recesses containing only the film are arranged alternately, performs a curing reaction, and after the curing reaction, The material retains its shape even when heated to 80℃, and its hardness is JIS at 20℃.
- The impact cushioning sheet according to claim 1, which has a hardness of 80 or less on a type A hardness tester. 3. The viscoelastic material filling the recesses and/or the entire surface of the film base material, in which the convex portions containing air and the recesses containing only the film are arranged alternately, contains a telechelic polymer having a hydroxyl group at the end. It is a crosslinked viscoelastic body obtained by subjecting a main ingredient as a basic component and a curing agent having two or more isocyanate groups per molecule to a curing reaction at room temperature. The impact cushioning sheet according to any of Item 2. 4. The crosslinked viscoelastic material filled in the concave portions of the film base material, in which convex portions containing air and concave portions containing only the film are arranged alternately, and/or the entire surface thereof, is made of hydroxyl-terminated liquid polybutadiene, asphalt, and plastic. Claim 1, characterized in that it is a crosslinked viscoelastic body obtained by causing a curing reaction at room temperature between a main ingredient having a curing agent as a basic component and a curing agent having two or more isocyanate groups per molecule. or third
Shock-absorbing sheet as described in any of paragraphs.
JP61114945A 1986-04-24 1986-05-21 Shock eliminating sheet Granted JPS62274129A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61114945A JPS62274129A (en) 1986-05-21 1986-05-21 Shock eliminating sheet
US07/039,425 US4803112A (en) 1986-04-24 1987-04-17 Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114945A JPS62274129A (en) 1986-05-21 1986-05-21 Shock eliminating sheet

Publications (2)

Publication Number Publication Date
JPS62274129A JPS62274129A (en) 1987-11-28
JPH0562652B2 true JPH0562652B2 (en) 1993-09-08

Family

ID=14650542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114945A Granted JPS62274129A (en) 1986-04-24 1986-05-21 Shock eliminating sheet

Country Status (1)

Country Link
JP (1) JPS62274129A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187115B2 (en) * 2008-10-10 2013-04-24 川䞊産業株匏䌚瀟 Synthetic resin foam sheet and method for producing the same
JP4700743B2 (en) * 2009-03-26 2011-06-15 日信工業株匏䌚瀟 Brake device for vehicle
WO2022154107A1 (en) * 2021-01-18 2022-07-21 むビデン株匏䌚瀟 Heat transfer suppression sheet for battery pack, and battery pack

Also Published As

Publication number Publication date
JPS62274129A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
US4803112A (en) Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same
US6231985B1 (en) Heat and radio frequency-curable two-pack soy protein-based polyurethane adhesive compositions
US3160549A (en) Vibration damping structures
US3658635A (en) Adhesive interlayer suitable for constrained layer vibration damping
JP4511180B2 (en) Two-component polyurethane adhesive and method for structural finger joints
JPS60186538A (en) Primer for polyolefin
US20020070074A1 (en) Vibration damping article and method of using same to damp vibration
JPH0562652B2 (en)
JPH0453837A (en) Fiber-containing rubber sheet
JPH02276629A (en) Vibration-damping and soundproofing panel
JPH08142273A (en) Composite panel
JPH01249845A (en) Rubber composition
JP7383517B2 (en) Polyurethane structure, soundproofing material, method for producing polyurethane structure, and liquid composition for forming polyurethane film
JP4204795B2 (en) One-part moisture-curing urethane resin leveling material and leveling method using the same
JPH02265736A (en) Vibration-damping and soundproof sheet
JPH0430508B2 (en)
JP2006070181A (en) Moisture-curable adhesive and laminated product using the same
JPS63151756A (en) Constraint type vibration-damping floor member for direct sticking
KR102527808B1 (en) Waterproof tape with excellent impact resistance
JPS6011992B2 (en) Polyolefin adhesive tape
JPS62296058A (en) Direct adhesive restriction type vibration damping floor member
JPH0448100B2 (en)
JP2006063190A (en) Coating type vibration-damping material composition and building composite plate
JPS63114755A (en) Direct adhering restriction type vibration damping floor member
TWI781542B (en) Rubber composition for shock absorption damper, manufacturing method thereof, and shock absorption damper

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees