JPS63151756A - Constraint type vibration-damping floor member for direct sticking - Google Patents

Constraint type vibration-damping floor member for direct sticking

Info

Publication number
JPS63151756A
JPS63151756A JP29861986A JP29861986A JPS63151756A JP S63151756 A JPS63151756 A JP S63151756A JP 29861986 A JP29861986 A JP 29861986A JP 29861986 A JP29861986 A JP 29861986A JP S63151756 A JPS63151756 A JP S63151756A
Authority
JP
Japan
Prior art keywords
closed cell
sheet
foam
floor
crosslinked viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29861986A
Other languages
Japanese (ja)
Other versions
JPH0518989B2 (en
Inventor
博文 柿本
治 木曽
伸也 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP29861986A priority Critical patent/JPS63151756A/en
Publication of JPS63151756A publication Critical patent/JPS63151756A/en
Publication of JPH0518989B2 publication Critical patent/JPH0518989B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、制振床部材に、特に直結用制振床部材に関す
るものである。近年のこの種の制振床部材に関する技術
進歩は目ざましく、建築分野に於ても残された課題は、
結露と音・振動の2点に絞られつつあるのが現状である
と言われている。音・振動の問題は近年各所で色々の対
応策が講じられ、改良されて来ているものの技術的困難
さもあって、充分な効果を上げるに到らない分野が多数
存在している。床材もその例に挙げられ、種々の研究が
なされているものの未だに良好な性能を発揮するものは
出ていないのが現状である。即ち、床材の中でも木質フ
ロア−材に関しては、清潔さを保てて、カビやダニを始
めとする害虫が生息しにくく、落着いた色調である等の
メリットから、木質床を要望する居住者が増加している
。ところが、木質床材の唯一の欠点は、床の歩行音や物
の落下音に対する床衝撃音の緩和が全く出来ず、階下に
居住する人の連窓を考慮すると階上では木質床は使用出
来ないのが現状である。その様な背景から、本発明者等
は床衝撃音の緩和性能に優れた床材を鋭意研究した結果
、特願昭61−93466号等に示す如く非常に良好な
結果が得られたが、更に改良試験を行った所、更に大幅
な改良が出来る方法を見出し、本発明を完成するに至っ
た。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a damping floor member, and particularly to a damping floor member for direct connection. In recent years, technological progress regarding this type of vibration-damping floor components has been remarkable, and the remaining issues in the architectural field are:
It is said that the current situation is narrowing down to two points: condensation and sound/vibration. In recent years, various countermeasures have been taken to address the problem of sound and vibration, and although improvements have been made, there are still many areas where sufficient effects have not been achieved, partly due to technical difficulties. Flooring materials are an example of this, and although various studies have been conducted, there is currently no material that exhibits good performance. In other words, among flooring materials, residents prefer wooden flooring because of its advantages such as being able to maintain cleanliness, being difficult for pests such as mold and mites to inhabit, and having a subdued color tone. is increasing. However, the only disadvantage of wood flooring is that it cannot at all reduce floor impact noise due to the sound of walking on the floor or the sound of objects falling, and considering the continuous windows of people living downstairs, wood flooring cannot be used upstairs. The current situation is that there is no such thing. Against this background, the inventors of the present invention conducted extensive research into flooring materials with excellent floor impact noise mitigation performance, and as a result, very good results were obtained as shown in Japanese Patent Application No. 61-93466, etc. After conducting further improvement tests, we discovered a method that could make even greater improvements, and completed the present invention.

未発明の制振床部材は、空気層の振動緩和性と、制振性
及び圧縮特性に優れた架橋粘弾性体とを利用し更に繊維
質基布及び/又は発泡体シートを併用したものである。
The uninvented vibration damping floor member utilizes the vibration damping properties of an air layer, a crosslinked viscoelastic material with excellent damping properties and compression properties, and also uses a fibrous base fabric and/or a foam sheet. be.

従来より公知の如く、床衝撃音を緩和するには、例えば
、フェルト類の様に小さな応力でも容易に圧縮変形を行
うものであれば、簡単に床衝撃音を緩和することが知ら
れている。一方、そうした性能を有する材質のものは、
圧縮変形が大きすぎるため、木質床の如く、平滑な仕上
面を要求される床部材を適用すると、例えば、家具等を
置いた丈でも歪が生じ、平滑性が保てなくなるという致
命的欠点を生じるのである。そこで、現在行なわれてい
る床衝撃音対策は、圧縮グラスウール、石綿、センチユ
リ−ボード、ゴム板、無機質板材、合板等を数種類組み
合せたり、それ等組み合せた物を床版から浮かせたりし
て床構成を行ない、更に床版と天井の空間に吸音材を入
れたり、場合によっては、天井を防振ゴムで吊天井とし
たりして床と天井との総合効果により床衝撃音の緩和対
策を行なっているのが現状である。
As is conventionally known, it is known that floor impact noise can be easily alleviated by using a material that can be compressed and deformed easily even under small stress, such as felt. . On the other hand, materials with such performance are
Because the compressive deformation is too large, if a floor material that requires a smooth finish, such as a wooden floor, is used, distortion will occur even at the height of furniture, etc., which is a fatal drawback, and smoothness cannot be maintained. It happens. Therefore, floor impact noise countermeasures that are currently being implemented are made by combining several types of compressed glass wool, asbestos, centimeter board, rubber boards, inorganic boards, plywood, etc., or by floating the combinations of these materials above the floor slabs. In addition, sound-absorbing material is placed in the space between the floor slab and ceiling, and in some cases, the ceiling is made of vibration-proof rubber to create a suspended ceiling, thereby taking measures to reduce floor impact noise through the combined effect of the floor and ceiling. The current situation is that

ところが、前記方法では、原材料部材数が多く、原材料
コストが高い。施工時の材料ロスが多い。
However, the method requires a large number of raw materials and high raw material costs. There is a lot of material loss during construction.

施工工数が多い等の原因でコストが高くなってしまう。The cost increases due to the large number of construction steps.

又、床衝撃音の緩和を行うための床部材の総厚みは非常
に厚くなってしまい、建物を同じ軒高とすると、住空間
を狭くするか、階数を減すかせざるを得なくなる。逆に
、同じ階数を確保し、住空間を同じとすれば、軒高のア
ップ分は建物の建築コストにはね返り高くついてしまう
という欠点を有する。
In addition, the total thickness of floor members for alleviating floor impact noise becomes extremely thick, and if buildings are kept at the same eave height, the living space must be narrower or the number of floors must be reduced. On the other hand, if the same number of floors and living space are maintained, the disadvantage is that the increase in eave height will add to the construction cost of the building.

本発明者等はこのような上記の欠点を解消し、低コスト
で床衝撃音を緩和し、出来る丈薄クシかも直結が可能な
、木質床材仕上げを行なっても床衝撃音を緩和できる直
貼用拘束型制振床部材を目標として多(の試行錯誤を繰
返した末、常温反応で架橋粘弾性体が得られる液状ゴム
と、独立気泡体を有する基材と繊維質基布及び/又は発
泡体シートを併用した場合には、さらに床衝撃音を緩和
する性能を発揮するだけでなく、単体で用いた場合の欠
点をも解消するという知見を得、各種試験の結果、本発
明を完成するに到った。
The inventors of the present invention have solved the above-mentioned drawbacks, and have developed a method that can reduce floor impact noise at low cost, can be directly connected to long and thin combs, and can also reduce floor impact noise even when finished with wood flooring. After repeated trial and error with the goal of creating a bonded restraint type vibration damping floor member, we developed a liquid rubber that can be reacted at room temperature to form a crosslinked viscoelastic material, a base material with closed cells, a fibrous base fabric, and/or As a result of various tests, the present invention was completed based on the knowledge that when used in combination with a foam sheet, it not only exhibits the ability to further reduce floor impact noise, but also eliminates the drawbacks when used alone. I came to the conclusion.

即ち、常温反応により架橋粘弾性体が得られる液状ゴム
は、単体で用いた場合はコスト高となり、汎用床材とし
ては不適当である点と、板状の拘束材の間で反応させる
場合は、やや多口に材料を使用し、余分の材料を押出す
方法を採らないと大きな空洞をランダムに生じやすいた
め、製品のバラツキが生じ易くなるという欠点があった
。又、予じめ板状体を作って貼付加工をする場合は定尺
寸法のものでないと厚み精度が不充分である上に、架橋
粘弾性体であるが故に、ブロッキング等が生じ易く、貼
合せ加工の工数が非常に多くなり、コスト高となってし
まう欠点があった。一方、独立気泡体を有する基材を単
体で用いる場合は、独立気泡体を形成するフィルムを保
護する材質が無い場合には、局部的に圧力がかかるとフ
ィルムが破壊し、床材の一部材として層状で使用し得る
材質では無いという欠点を有している。又、フィルム基
材の中では片面だけでなく両面から薄膜フィルムで覆っ
たものは、片面フィルム品より耐荷重は若干向上するも
のの、床材として層状で使用し得る材質ではない。又、
封入空気を有するプラスチックダンボールも知られてい
るが、表面フィルムの材厚を増し、全体の剛性を増した
ものは、圧縮荷重を与えた場合は、予想外に小さな応力
で坐屈し、復元しないという床材として致命的な欠点を
有するばかりか、床衝撃音の緩和性能も劣ってしまう欠
点を有している。
In other words, when liquid rubber is used alone to obtain a crosslinked viscoelastic body through room-temperature reaction, it is expensive and unsuitable for general-purpose flooring, and when reacted between plate-shaped restraining materials, However, unless a large amount of material is used and a method is used to extrude the excess material, large cavities are likely to be created randomly, resulting in product variations. In addition, if a plate-shaped body is made in advance and pasted, the thickness accuracy will be insufficient unless it is a standard size, and since it is a cross-linked viscoelastic body, blocking etc. will easily occur, and the pasting process will be difficult. This method has the disadvantage that the number of man-hours required for alignment processing is extremely large, resulting in high costs. On the other hand, when using a base material with closed cells alone, if there is no material to protect the film that forms the closed cells, the film will break if pressure is applied locally, and it may become a part of the flooring material. It has the disadvantage that it is not a material that can be used in layered form. Furthermore, among film base materials, those covered with a thin film not only on one side but also on both sides have a slightly higher load capacity than single-sided film products, but are not materials that can be used in a layered manner as flooring materials. or,
Plastic cardboard with enclosed air is also known, but those with increased surface film thickness and overall rigidity buckle under unexpectedly small stress when a compressive load is applied, and it is said that they do not recover. Not only does it have fatal drawbacks as a flooring material, but it also has poor floor impact noise mitigation performance.

上記欠点を解消せんが為に、片面又は両面にポリオレフ
ィン系発泡シートを貼付けた場合は、床衝撃音緩和性能
は改善されるものの、封入空気を持たせたプラスチック
ダンボールを使用した場合と、使用しない場合との差異
は全く生じなくなり、圧縮時に於ても、ポリオレフィン
系発泡シートの変形限界を越えれば、ポリオレフィン系
発泡シートを貼合せない場合と同様に座屈し、復元しな
くなる欠点がある。
In order to eliminate the above drawbacks, if a polyolefin foam sheet is pasted on one or both sides, the floor impact noise mitigation performance will be improved, but if a plastic cardboard with enclosed air is used or not. There is no difference between the two cases, and even during compression, if the deformation limit of the polyolefin foam sheet is exceeded, there is a drawback that it buckles and does not recover as in the case where the polyolefin foam sheet is not laminated.

本発明者等は、前記の両者の欠点を解消すべく試行錯誤
を繰返した後、常温反応で架橋粘弾性体が得られる液状
ゴムを独立気泡体凸部以外の空間に充填し、更に繊維質
基布や発泡体シートを併用する事により床衝撃音緩和性
能が優れ、床材としての圧縮特性も非常に優れたものが
得られるという知見を得た。
After repeated trial and error in order to solve both of the above drawbacks, the present inventors filled the spaces other than the convex parts of the closed cell with a liquid rubber that can be reacted at room temperature to form a crosslinked viscoelastic body, and further We have found that by using a base fabric and a foam sheet in combination, it is possible to obtain a floor material with excellent floor impact sound mitigation performance and very good compression properties as a floor material.

即ち、床衝撃音緩和性能に優れる理由は、空気封入部が
空気袋となり圧縮変形し易い点と、凸部以外の空間に充
填された粘弾性体が独立気泡体含有基材の凸凹に密着し
、衝撃時の変位を複雑な形状で拘束し、粘弾性体自体の
衝撃エネルギーの吸収性能に加えて、空気袋を形成する
凸部の変形と架橋粘弾性体とのすり変形部分が増すこと
により、衝撃エネルギーの吸収性能が増し、繊維質基布
や発泡体シートを積層する事により更に一層衝撃エネル
ギーの吸収性能が増したものと考えられる。
In other words, the reason for the excellent floor impact sound mitigation performance is that the air-filled portion becomes an air bag and is easily compressed and deformed, and the viscoelastic material filled in the spaces other than the convex portions adheres closely to the irregularities of the closed cell-containing base material. , the displacement at the time of impact is restrained by a complex shape, and in addition to the impact energy absorption performance of the viscoelastic body itself, the deformation of the convex part that forms the air bag and the sliding deformation part with the crosslinked viscoelastic body are increased. It is thought that the impact energy absorption performance is increased, and the impact energy absorption performance is further increased by laminating the fibrous base fabric or foam sheet.

又、多くの材質を組合せる事により固有振動数の差を存
効に利用できたものと考えられる。
It is also believed that by combining many materials, the difference in natural frequencies could be effectively utilized.

又、圧縮特性に於ては、衝撃を受けた場合には、繊維質
基布や発泡体シートや凸部である空気袋が圧縮され、粘
弾性体をより圧縮することにより非常に小さい変位では
容易に変形するものの、一定荷重以上の圧縮に対しては
、凸部空気袋中の圧縮空気の反力と、架橋粘弾性体の圧
縮反力とが働らき、変形を大きくするには一層大きな力
を要する様になるために、必要以上の変位をすることが
避けられる。又、圧縮荷重を除荷した場合は、架橋粘弾
性体の復元力と、圧縮された凸部の空気袋の復元力とが
総合されて、非常に早い回復力が得られるという特徴が
見出された。
In addition, in terms of compression properties, when an impact is applied, the fibrous base fabric, foam sheet, and air bag that is a convex part are compressed, and by compressing the viscoelastic material even more, it can be Although it deforms easily, when it is compressed under a certain load or more, the reaction force of the compressed air in the convex air bag and the compression reaction force of the crosslinked viscoelastic body act, and in order to increase the deformation, it is necessary to It is possible to avoid displacement more than necessary due to the need for force. Furthermore, when the compressive load is removed, the restoring force of the cross-linked viscoelastic body and the restoring force of the compressed convex air bladders are combined, resulting in a very quick recovery force. It was done.

又、架橋された物質といえども、架橋粘弾性体は温度変
化により硬度変化を受は易くなる傾向があるが、高温で
は空気の膨張により粘弾性体の硬度低下による圧縮力低
下を押えることが出来、逆に、低温では空気の収縮によ
り、粘弾性体の硬度アップによる圧縮強度増加を抑制す
ることが出来、温度変化による性能変化を少なくする点
でも制振床部材としてのメリットが生じる。
Furthermore, even though it is a cross-linked substance, cross-linked viscoelastic bodies tend to be easily affected by changes in hardness due to temperature changes, but at high temperatures, air expansion can suppress the decrease in compressive force due to the decrease in hardness of the viscoelastic body. On the other hand, at low temperatures, the shrinkage of air can suppress the increase in compressive strength due to increased hardness of the viscoelastic body, and it also has the advantage of being a vibration damping floor member in that it reduces changes in performance due to temperature changes.

又コスト面に於ても、少なくとも片面はフィルムやその
他のブロッキングしないものである点で取扱い作業が非
常に容易となり、長尺加工も可能となるというメリット
が生じ、工数減の度合が非常に大きくなるだけでなく、
凸部空気封入部は材料が不要という事もあうで、材料を
少なくすることが可能となり、低コスト化にも好適であ
る。
In terms of cost, at least one side is made of film or other non-blocking material, which makes handling work very easy, and it also has the advantage of being able to process long lengths, which greatly reduces the number of man-hours. Not only become;
Since the convex air sealing part does not require any material, it is possible to reduce the amount of material, which is suitable for cost reduction.

又熱伝動性の低い物質を積層したために断熱性能にもす
ぐれている。
It also has excellent heat insulation performance because it is made of laminated materials with low thermal conductivity.

次に、本発明の直貼用拘束型制振床部材を用いた床の断
面構成について述べる。
Next, the cross-sectional configuration of a floor using the restraint-type damping floor member for direct attachment of the present invention will be described.

第1図〜第4図に示す如く、架橋粘弾性体付き独立気泡
含有シート基材及びその片面若しくは両面に繊維質基材
や発泡体シートを積層(拘束)して更に比較的剛性の高
い板状体を拘束材として使用する方法と、第5図〜第6
図に示す如く、比較的剛性の高い板状体と床スラブを拘
束材として使用する方法との何れでもよい。
As shown in Figures 1 to 4, a sheet base material containing a closed cell with a crosslinked viscoelastic body and a fibrous base material or foam sheet laminated (constrained) on one or both sides of the base material are further made into a relatively rigid board. A method of using a shaped body as a restraining material, and Figures 5 to 6
As shown in the figure, either a relatively rigid plate-like body or a floor slab may be used as the restraining material.

又、架橋粘弾性体付き独立気泡含有シート基材の片面若
しくは両面に拘束接着する繊維質基材や発泡体シートは
片面に2種類供使用しても両方に同種のものを用いても
良い。
Further, two types of fibrous base materials or foam sheets to be bound and bonded to one or both sides of the closed cell-containing sheet base material with crosslinked viscoelastic body may be used on one side, or the same type may be used on both sides.

次に順を追って床構成部材の説明をする。Next, the floor components will be explained step by step.

仕上材とは、現在床仕上材として使用されている木質床
仕上材、塩ビ系床仕上材、コルクタイル等を挙げること
ができる。
Examples of finishing materials include wood floor finishing materials, vinyl chloride floor finishing materials, and cork tiles, which are currently used as floor finishing materials.

木質床材としては、フローリングボード、フローリング
ブロック、モザイクバーケラトより成る単層フローリン
グと天然木化粧複合フローリング、特殊加工化粧複合フ
ローリング、天然木化粧複合ブロック、特殊加工化粧複
合ブロックより成る複合フローリング、挽き板やつき板
とコルクと積層したフローリング等を挙げることが出来
る。これ等は、板層を薄(シた方が床衝撃音を緩和する
上では好ましい。拘束材として具体例を挙げると、前記
木質床材、合板、圧縮紙、プラスチ・ツク板、金属薄板
、パーティクルボード、木片セメント板、ファイバーボ
ード、パルプセメント扱、木毛セメント板、フレキシブ
ル板、軟質フレキシブル板、大平板、石綿セメント板、
石綿セメントパーライト板、石綿セメント珪酸カルシウ
ム板、せつこうボード等が挙げられ、これ等は何れも板
状であれば表面の化粧加工の有無、穴の有無に拘らず使
用出来るが、床構成部材の総厚みを低くする目的を重視
すれば、板厚の薄いものが望ましい。又、架橋粘弾性体
付き独立気泡体含有シート基材の片面又は両面に積層さ
せる拘束材としては発泡体シートとして、ポリエチレン
、ポリプロピレン、ウレタン、エチレン−酢酸ビニル、
塩化ビニル、塩化ビニリデン、クロロポリエチレンプロ
ピレン多元共重合体を始めとするゴムスポンジや上記発
泡体の粉砕品より成るシートであってもよい。布状基材
の具体例としては、ナイロン、ポリエステル、ポリプロ
ピレン、ポリエチレン、ガラス繊維を使用した不織布や
綿、麻等の天然繊維及び/又はナイロン、ウレタン、ポ
リプロピレン、アクリル、ポリエステル等の合成繊維か
ら成る布を挙げることが出来るが、繊維類を使用する場
合は、圧縮歪化を少なくするため、出来る丈、薄いもの
を使用することが望ましい。即ち、圧縮歪の点で圧縮し
た状態で用いてもよいが、架橋粘弾性体付独立気泡体含
有シート基材と積層し供用する時の合計厚みは3鶴〜1
0mmの間で使用する事が望ましい。
Wooden flooring materials include flooring boards, flooring blocks, single-layer flooring made of mosaic barkerato, natural wood decorative composite flooring, specially processed decorative composite flooring, natural wood decorative composite blocks, composite flooring made of specially processed decorative composite blocks, and sawn wood flooring. Examples include flooring made of boards, boards, cork, and laminated layers. It is preferable to have a thin board layer in order to reduce floor impact noise.Specific examples of the restraining material include the above-mentioned wooden flooring materials, plywood, compressed paper, plastic boards, thin metal sheets, Particle board, wood chip cement board, fiber board, pulp cement board, wood wool cement board, flexible board, soft flexible board, large flat board, asbestos cement board,
Asbestos-cement perlite boards, asbestos-cement calcium silicate boards, plaster boards, etc. can be used as long as they are in the form of a board, regardless of whether or not the surface has decorative finishing or holes. If the goal is to reduce the total thickness, a thin plate is desirable. Further, as a foam sheet, polyethylene, polypropylene, urethane, ethylene-vinyl acetate,
It may also be a sheet made of a rubber sponge made of vinyl chloride, vinylidene chloride, or a chloropolyethylene propylene multi-component copolymer, or a pulverized product of the above-mentioned foam. Specific examples of cloth-like base materials include nonwoven fabrics using nylon, polyester, polypropylene, polyethylene, and glass fibers, natural fibers such as cotton and hemp, and/or synthetic fibers such as nylon, urethane, polypropylene, acrylic, and polyester. Cloth can be used as an example, but when using fibers, it is desirable to use something as long and as thin as possible in order to reduce compression distortion. That is, although it may be used in a compressed state in terms of compressive strain, the total thickness when laminated with a closed cell-containing sheet base material with a crosslinked viscoelastic material and used is 3 to 1.
It is desirable to use it between 0 mm.

次に、架橋粘弾性物質について説明する。Next, the crosslinked viscoelastic material will be explained.

本発明で言う架橋粘弾性物質とは、常温で液状であり、
かつ常温で反応した後の硬化物が80℃に加温されても
形状を保持し、20℃の条件下で硬度が日本ゴム協会規
格SRIS −0101に示すC型硬度計で50以下で
あるという条件を満足するものである。
The crosslinked viscoelastic substance referred to in the present invention is liquid at room temperature,
In addition, the cured product after reacting at room temperature retains its shape even when heated to 80°C, and has a hardness of 50 or less on the C-type hardness tester shown in Japan Rubber Association standard SRIS-0101 at 20°C. It satisfies the conditions.

又、当然の事ではあるが、常温で反応する物質は加熱す
る事により一層硬化速度を上昇させる事が出来、この性
質を利用して加温して生産効率を向上せしめてもよい。
Furthermore, as a matter of course, the curing speed of substances that react at room temperature can be further increased by heating, and this property may be utilized to improve production efficiency by heating.

上記条件を満足し得る反応性物質としては、表1に示す
官能基を有する液状ゴムと架橋剤との組合せを例示する
ことが出来る。
Examples of reactive substances that can satisfy the above conditions include combinations of a liquid rubber having a functional group shown in Table 1 and a crosslinking agent.

これ等は、常温反応性の硬化速度のコントロールのし易
さ、コスト面、入手のし易さ等を含めて考慮すると、特
に水酸基を末端に有し、主鎖をポリブタジェン、水素添
加ポリブタジェン、ポリブタジェン−ニトリル、ポリブ
タジェン−スチレン、イソプレン等や、ポリエーテルポ
リオール、ポリエステルポリオール、ウレタンアクリル
ポリオール、アニリン誘導体ポリオール等を単独もしく
は併用して用いるのが望ましい。又、前記反応性物質の
硬化剤としては、イソシアネート系硬化剤が好適であり
、1分子当り2ヶ以上のイソシアネート基を有すること
が必要である。
Considering the ease of controlling curing rate, cost, and availability of room-temperature reactivity, these materials have a hydroxyl group at the end and a main chain consisting of polybutadiene, hydrogenated polybutadiene, and polybutadiene. -Nitrile, polybutadiene-styrene, isoprene, etc., polyether polyols, polyester polyols, urethane acrylic polyols, aniline derivative polyols, etc. are preferably used alone or in combination. Further, as the curing agent for the reactive substance, an isocyanate-based curing agent is suitable, and it is necessary that each molecule has two or more isocyanate groups.

表  1 液状ゴムの官能基  架橋剤の官能基 −011−NGO 金属酸化物、 −OH,−NCO −S11         )10−N =e0=N−
OH,金属酸化物、−NGO,パーオキサイド −NR,多価ハロゲン化合物(−Br)−NCO−OH
,−NHz、 −NHR,−COOH,−5H−Rr 
       −NRg+ −NHR+−NH2+金属
酸化物−5C−OR−Nib 蟻 その具体例としては、トルイレンジイソシアネート、ジ
フェニルメタンジイソシアネート、ヘキサメチレンジイ
ソシアネート、イソホロンジイソシアネート、末端イソ
シアネート基を有するプレポリマーを挙げることが出来
、単独若しくは併用して用いることも出来る。又、イソ
シアネート系硬化剤は配合比率及び/又は粘性等の問題
で可塑剤と混合して用いることも出来るが、可塑剤は脱
水処理したものであることと、イソシアネート化合物と
反応しないこととが必要である。
Table 1 Functional groups of liquid rubber Functional groups of crosslinking agent -011-NGO Metal oxide, -OH, -NCO -S11)10-N =e0=N-
OH, metal oxide, -NGO, peroxide-NR, polyvalent halogen compound (-Br)-NCO-OH
, -NHz, -NHR, -COOH, -5H-Rr
-NRg+ -NHR+ -NH2+ Metal oxide -5C-OR-Nib Specific examples thereof include toluylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and prepolymers having terminal isocyanate groups; Alternatively, they can be used in combination. Also, isocyanate curing agents can be used in combination with plasticizers due to problems such as blending ratio and/or viscosity, but the plasticizers must be dehydrated and do not react with isocyanate compounds. It is.

上記の常温反応をせしめる上での必須成分のみの組み合
せで本発明を満足しう得る架橋粘弾性体を得ることも出
来るが、コスト面、作業性面、物性向上の面で更に各種
の添加剤を加えることにより、幅広い安定した架橋粘弾
性物質を得ることが出来る。
Although it is possible to obtain a crosslinked viscoelastic material that satisfies the present invention by combining only the essential components required to cause the room-temperature reaction described above, various additives may be added in order to improve cost, workability, and physical properties. By adding , a wide variety of stable crosslinked viscoelastic materials can be obtained.

添加剤として、可塑剤、充填剤、瀝青物、粘着付与樹脂
、老化防止剤、防カビ剤、難燃剤、触媒、界面活性剤、
カップリング剤等が挙げられる。
Additives include plasticizers, fillers, bituminous substances, tackifying resins, anti-aging agents, anti-mold agents, flame retardants, catalysts, surfactants,
Coupling agents and the like can be mentioned.

可塑剤は、粘度調整、作業性調整、架橋粘弾性体の物質
調整、難燃性の付与等を目的として配合される。
The plasticizer is blended for the purpose of adjusting viscosity, adjusting workability, adjusting the substance of the crosslinked viscoelastic body, imparting flame retardance, and the like.

可塑剤の具体例として、ナフテン系オイル、パラフィン
系オイル、アマロティツク系オイル、ひまし油、綿実油
、パインオイル、トール油、フタル酸誘導体、イソフタ
ル酸誘導体、アジピン酸誘導体、アレイン酸誘導体、液
状ゴムの官能基を含まないもの等があり、単独又は併用
して用いることが出来る。難燃性を要する場合は、ハロ
ゲン化合物系、リン化合物系可塑剤を単独又は併用して
使用出来る。瀝青物としては、ストレートアスファルト
、ブロンアスファルト、タール等があり、所望の架橋粘
弾性体を得るために、予じめ粘着付与樹脂や可塑剤等で
改質して使用することも出来る。
Specific examples of plasticizers include naphthenic oil, paraffinic oil, amarotic oil, castor oil, cottonseed oil, pine oil, tall oil, phthalic acid derivatives, isophthalic acid derivatives, adipic acid derivatives, areic acid derivatives, and functional groups of liquid rubber. There are some that do not contain , and they can be used alone or in combination. When flame retardancy is required, halogen compound-based or phosphorus compound-based plasticizers can be used alone or in combination. Examples of the bituminous material include straight asphalt, blown asphalt, and tar, which may be modified in advance with a tackifying resin, plasticizer, etc. in order to obtain a desired crosslinked viscoelastic material.

粘着付与樹脂としては、天然樹脂、ロジン、変性ロジン
、ロジン及び変性ロジンの誘導体、ポリテルペン系樹脂
、テルペン変性体、脂肪族系炭化水素樹脂、シクロペン
タジェン系樹脂、芳香族系石油樹脂、フェノール樹脂、
アルキルフェノール−アセチレン系樹脂、キシレン樹脂
、クマロン−インデン樹脂、ビニルトルエン−αメチル
スチレン共重合体等を単独又は併用して用いることが出
来る。
Tackifying resins include natural resins, rosins, modified rosins, derivatives of rosins and modified rosins, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, and phenolic resins. ,
Alkylphenol-acetylene resins, xylene resins, coumaron-indene resins, vinyltoluene-α-methylstyrene copolymers, and the like can be used alone or in combination.

充填剤は、振動減衰性、遮音性、難燃性の改善に効果が
あり、主剤/硬化剤の配合比率の調整、粘性の調整、配
合コストダウンを計る目的で使用するのもであり、ゴム
及び塗料関連で一般に使用されるものが使用出来る。
Fillers are effective in improving vibration damping properties, sound insulation properties, and flame retardancy, and are used to adjust the blending ratio of the main ingredient/curing agent, adjust viscosity, and reduce compounding costs. and those commonly used in paint-related applications can be used.

その具体例としては、マイカ、グラファイト、ヒル石、
タルク、クレー等の鱗片状無機粉体、フェライト、金属
粉、硫酸バリウム、リトポン等の高比重充填剤、炭酸カ
ルシウム、微粉シリカ、カーボン、炭酸マグネシウム、
水酸化アルミ、アスベスト等の汎用充填剤を単独若しく
は併用して使用出来る。又、三酸化アンチモン、ホウ砂
等を難燃化を目的として使用することも出来る。
Specific examples include mica, graphite, vermiculite,
Scale-like inorganic powders such as talc and clay, ferrite, metal powders, barium sulfate, high specific gravity fillers such as lithopone, calcium carbonate, finely divided silica, carbon, magnesium carbonate,
General-purpose fillers such as aluminum hydroxide and asbestos can be used alone or in combination. Moreover, antimony trioxide, borax, etc. can also be used for the purpose of flame retardation.

その他の添加剤として老化防止剤、触媒、顔料、界面活
性剤、カップリング剤、防止カビ剤等が挙げられるが、
これ等は必要に応じ添加することが出来る。
Other additives include anti-aging agents, catalysts, pigments, surfactants, coupling agents, anti-mold agents, etc.
These can be added as necessary.

次に、独立気泡体配設基材の説明を行う。Next, the closed cell-equipped base material will be explained.

独立気泡体配設基材とは、1ケ当たり0.005cc〜
10ccの容積を有する独立気泡体がフィルム状物、糸
状物、発泡体シート状物、板状物、シート状物、粘着剤
、接着剤等を介して無数に一定間隔に若しくは不定間隔
に連結された基材を言い、第7図、第8図にその具体例
を示した。
The closed cell base material is 0.005cc or more per piece.
A countless number of closed cell cells each having a volume of 10 cc are connected at regular or irregular intervals via a film, thread, foam sheet, plate, sheet, adhesive, adhesive, etc. Specific examples are shown in FIGS. 7 and 8.

独立気泡体の袋の部分の材質は、ポリエチレン、ポリエ
チレン、エチレン−酢酸ビニル共重合体、塩化ビニル、
塩化ビニリデン、ナイロン、ポリエステル、ブチルゴム
、天然ゴム、クロロプレン等を始めとするゴム等を単独
若しくは積層しても良く、又、不織布や紙と積層しても
良い。又貸の部分の厚みは6龍以下が好ましく更に好適
な範囲は2〜41−である。
The materials of the closed cell bag include polyethylene, polyethylene, ethylene-vinyl acetate copolymer, vinyl chloride,
Rubbers such as vinylidene chloride, nylon, polyester, butyl rubber, natural rubber, chloroprene, etc. may be used alone or in layers, or may be layered with nonwoven fabric or paper. The thickness of the cross section is preferably 6 mm or less, and a more preferable range is 2 to 41 mm.

独立気泡体の凸部の形状は円柱状、角柱状、球状、半球
状、楕円状等何れでも良く、独立気泡体が形成されれば
良い。
The shape of the convex portion of the closed cell may be cylindrical, prismatic, spherical, hemispherical, elliptical, etc., as long as a closed cell is formed.

架橋粘弾性体付き独立気泡体含有シート基材とした時の
架橋粘弾性体の容積と独立気泡体の空気部分の容積との
比率が2=8〜8:2である事が望ましい。架橋粘弾性
体の容積:独立気泡体の空気部分の容積=2=8より架
橋粘弾性体の容積が少なくなると、原材料コストは下が
るものの、空気袋の破壊危険性が高まる点と、復元性が
悪くなる点が欠点となる。逆に架橋粘弾性体の容積:独
立気泡体の空気部分の容積=8:2より架橋粘弾性体の
容積が増すと原材料コストアップとなり、復元性も悪く
なる傾向が生じる。
When a sheet base material containing a closed cell with a crosslinked viscoelastic body is used, the ratio of the volume of the crosslinked viscoelastic body to the volume of the air portion of the closed cell is preferably 2=8 to 8:2. Volume of crosslinked viscoelastic body: Volume of air portion of closed cell = 2 = 8 If the volume of the crosslinked viscoelastic body becomes smaller, the cost of raw materials will decrease, but the risk of destruction of the air bag will increase and the recovery performance will decrease. The disadvantage is that it gets worse. On the other hand, if the volume of the crosslinked viscoelastic body increases from the ratio of the volume of the crosslinked viscoelastic body to the volume of the air portion of the closed cell body = 8:2, the cost of raw materials increases and the restorability tends to deteriorate.

次に、床スラブと貼合せる部分を不陸吸収材と言うが、
不陸吸収材の材質等について説明すると、材質としては
ポリエチレン、ポリスチレン、ポリプロピレン、塩化ビ
ニル、エチレン−酢酸ビニル共重合体、クロロプレン、
エチレンプロピレン共重合体、天然ゴム等のゴムの発泡
体基材やウレタン、アクリル、ナイロン、ポリエステル
、・ポリプロピレン、ポリエチレン、ガラス繊維、ロッ
クウール、綿、麻等から成る繊維質基材を挙げる事が出
来る。これ等の材質は単独若しくは併用して用いる事も
できる。
Next, the part that is attached to the floor slab is called the uneven absorbent material.
To explain the materials of the uneven absorbent material, the materials include polyethylene, polystyrene, polypropylene, vinyl chloride, ethylene-vinyl acetate copolymer, chloroprene,
Rubber foam base materials such as ethylene propylene copolymer and natural rubber, and fibrous base materials made of urethane, acrylic, nylon, polyester, polypropylene, polyethylene, glass fiber, rock wool, cotton, linen, etc. I can do it. These materials can be used alone or in combination.

又、発泡体基材は適当な間隔と深さでスリソトを入れた
り、小さな板状として適当な間隔を於いて貼付けてもよ
い。
Further, the foam base material may be slitted at appropriate intervals and depths, or may be attached in the form of small plates at appropriate intervals.

次に床材同志の継ぎ方としては床材の周辺に実部を設け
て実継ぎとすれば施工後の平滑性を保つ事ができる。
Next, as for how to join flooring materials together, if you create a real part around the flooring material and make a real joint, you can maintain smoothness after construction.

次に本発明を実施例、比較例により説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

表■2表■にこれ等をまとめて示す。These are summarized in Table ■2 Table ■.

次に本発明の実施例、比較例について説明する。Next, examples and comparative examples of the present invention will be described.

表■に示す実施例、比較例は表に示す配合処方例に従っ
て作成し、主剤と硬化剤を表に示す比率にて混合し、独
立気泡体配設基材の空間部を充填し、常温で硬化させた
。一方、硬度、80℃形状保持性、常温反応性は次に示
す方法にてチェックした。
The examples and comparative examples shown in Table ■ were prepared according to the formulation example shown in the table, and the base material and curing agent were mixed in the ratio shown in the table, the space in the closed cell substrate was filled, and the mixture was heated at room temperature. hardened. On the other hand, hardness, 80°C shape retention, and room temperature reactivity were checked using the following methods.

(1)硬度:表■に示す配合処方に基づき主剤を作成し
、表■に示す硬化剤量と主剤量を秤り取り混合した後、
離型処理をした121mX50mmX50mmの型枠に
流し込み、常温で反応せしめ、室温7日、50℃7日の
養生を行った後、日本ゴム協会規格5RIs−0101
に定めるC型硬度計にて硬度を測定した。
(1) Hardness: After creating a base resin based on the formulation shown in Table ■, weighing out the amounts of curing agent and base resin shown in Table ■ and mixing them,
It was poured into a 121m x 50mm x 50mm mold that had been subjected to mold release treatment, allowed to react at room temperature, and cured for 7 days at room temperature and 7 days at 50°C.
The hardness was measured using a C-type hardness meter specified in .

(2)80℃形状保持性=(1)に示した方法で得られ
た資料を脱型し、上下面に離型紙を当てて、50gの荷
重をかけて80℃×24時間静置した後、除荷し、室温
に静置し、目視により4時間後の変形の大小により判定
した。
(2) Shape retention at 80°C = After demolding the material obtained by the method shown in (1), applying release paper to the upper and lower surfaces, and leaving it at 80°C for 24 hours under a load of 50 g. The sample was unloaded, left to stand at room temperature, and visually determined based on the degree of deformation after 4 hours.

エツジ部もシャープで変形がほとんどないものを○印、
エツジ部のシャープさが無いもの、変形の大きいものを
X印とした。
Mark ○ if the edges are sharp and there is almost no deformation.
Those with no sharp edges or those with large deformation were marked with an X.

(3)常温反応性:(1)で主剤と硬化剤を混合した液
を100 ccカップ中に入れ、常温で静置し、1日後
にカップ中全体がゲル化又は硬化しているものをO印と
し、それ以外をX印とした。
(3) Room temperature reactivity: Pour the mixture of the base agent and curing agent in (1) into a 100 cc cup, let it stand at room temperature, and after 1 day, if the entire cup has gelled or hardened, O Marked as a mark, and the rest marked as an X.

次に表■に示した床構成に関する実施例、比較例につい
て説明する。
Next, examples and comparative examples regarding the floor configurations shown in Table (1) will be described.

実施例、比較例に用いる架橋粘弾性体は表■に示す実施
例1を用い、実施例、2及び比較例は独立気泡体容積が
0.3 ccであり、架橋粘弾性体と独立気泡体との容
積比が5:5の独立気泡体配設基材を用いて架橋粘弾性
体付き独立気泡含有シートを作成した。実施例3は架橋
粘弾性体は他の実施例、2及び比較例1と同一とし、独
立気泡体の容積が3ccであり、架橋粘弾性体と独立気
泡体の容積比が4:6である、独立気泡体配設基材を用
いて、架橋粘弾性体付き独立気泡含有シートを作成した
The crosslinked viscoelastic body used in the Examples and Comparative Examples was Example 1 shown in Table 1, and in the Examples, 2, and Comparative Examples, the closed cell volume was 0.3 cc, and the crosslinked viscoelastic body and closed cell A closed cell-containing sheet with a crosslinked viscoelastic material was prepared using a closed cell-arranged base material having a volume ratio of 5:5. In Example 3, the crosslinked viscoelastic body was the same as in other Examples, 2, and Comparative Example 1, the volume of the closed cell was 3 cc, and the volume ratio of the crosslinked viscoelastic body to the closed cell was 4:6. A closed cell-containing sheet with a crosslinked viscoelastic material was prepared using a closed cell-equipped base material.

又、床衝撃音レベルは第9図に示す方法によりJIS−
A−1418に基づいて行った。復元性は実施例、比較
例に示す構成とし、点荷重にて1kg/cm”、3 k
g/cm” 、5 kg/cm”として20日間、荷重
をかけた後、荷重を取り去り、3日後の変位量を測定し
た。3日後の変位量が0.2層型以内のものを○印、0
.2龍以上のものをX印とした。床表面材破壊強度は1
cm”の鋼製治具を床面に直接当てて、2us/min
の速度で圧縮し、表面材の割れ現象の生じた荷重を測定
した。
In addition, the floor impact sound level was determined according to JIS-1 by the method shown in Figure 9.
It was conducted based on A-1418. Restorability was determined using the configurations shown in the examples and comparative examples, with a point load of 1 kg/cm" and 3 k
After applying a load at 5 kg/cm'' and 5 kg/cm'' for 20 days, the load was removed and the amount of displacement was measured 3 days later. If the amount of displacement after 3 days is within 0.2 layer type, mark ○, 0
.. Those with 2 dragons or more are marked with an X. Floor surface material breaking strength is 1
cm" steel jig directly on the floor, 2us/min
The load at which cracking of the surface material occurred was measured.

表  ■ 注、  ARCO社製 商品名Po1y bd R−4
5HT注2.第−工業製薬−社製 商品名 ポリハード
ナー〇−350 注3.出光興産−社製 商品名 ダイアナプロセスオイ
ル ^H−16 注4.東京樹脂工業−社製 商品名 U−レックス80
EF 注5.安原油脂工業−社製 商品名 ysレジン#注6
. 日本化学産業■社製 商品名28χオクチル酸スズ 注7.第−工業製薬■社製 商品名 ポリフレックスM
H 表■ 注、床構成断面図の記号は下記の通りである。
Table ■ Note: Manufactured by ARCO, product name: Po1y bd R-4
5HT Note 2. Manufactured by Dai-Kogyo Seiyaku Co., Ltd. Product name Poly Hardener 〇-350 Note 3. Manufactured by Idemitsu Kosan Product name Diana Process Oil ^H-16 Note 4. Manufactured by Tokyo Jushi Kogyo Co., Ltd. Product name: U-Rex 80
EF Note 5. Manufactured by Yasuyu Kogyo Co., Ltd. Product name: ys resin #Note 6
.. Manufactured by Nippon Kagaku Sangyo ■Product name: 28χ Tin Octylate Note 7. Manufactured by Dai-Kogyo Seiyaku ■ Product name Polyflex M
H Table■ Note: The symbols in the floor configuration cross-sectional diagram are as follows.

A 表面化粧木質フローリング5.5tB 繊維f基材
2.Ot C架橋粘弾性体付き独立気泡体含有シート基材4.Ot D 合板 3.Ot E 不陸吸収材2.Ot F 床スラブ150t G 発泡体シート2.Ot Hミゾ付不陸吸収材10.Ot 表■に示した実施例及び比較例は本発明に用いる架橋粘
弾性体についての一例である。表■により、実施例1及
び2は本発明の目的を達成できる配合例であるが、比較
例1は硬度は特許請求の範囲よりはずれ、遮音性能が十
分でないことを示している。
A Surface decorative wood flooring 5.5tB Fiber f base material 2. Closed cell-containing sheet base material with OtC crosslinked viscoelastic body 4. Ot D Plywood 3. Ot E Unconventional absorbent material 2. Ot F Floor slab 150t G Foam sheet 2. Ot H grooved uneven absorbent material 10. The examples and comparative examples shown in Table 1 are examples of crosslinked viscoelastic bodies used in the present invention. Table 3 shows that Examples 1 and 2 are formulation examples that can achieve the object of the present invention, but Comparative Example 1 has a hardness that is outside the claimed range, indicating that the sound insulation performance is not sufficient.

表■に示した実施例及び比較例は本発明の床構成の断面
図を示す一例である。実施例1は架橋粘弾性体付き独立
気泡体含有シート基材の片面に繊維質基材を貼付け、更
に上下面に拘束層を取付け、発泡体シートを不陸吸収材
としたものである。これは床衝磐音レベルも良好であり
、床材としての復元性及び床表面材破壊強度も良好であ
ることを示している。
The examples and comparative examples shown in Table 1 are examples showing cross-sectional views of the floor structure of the present invention. In Example 1, a fibrous base material was attached to one side of a closed cell-containing sheet base material with a crosslinked viscoelastic body, and a restraining layer was further attached to the upper and lower surfaces, and the foam sheet was used as a non-contact absorbent material. This indicates that the floor impact sound level is good, and the restorability as a floor material and the breaking strength of the floor surface material are also good.

実施例2は、実施例1に用いた架橋粘弾性体付き独立気
泡体含有シート基材の下側拘束層側に発泡体シートを積
層した場合である。床衝撃音レベルも良好であり、床材
としての復元性及び床表面材破壊強度も良好であること
を示している。
Example 2 is a case where a foam sheet is laminated on the lower constraining layer side of the crosslinked viscoelastic closed cell-containing sheet base material used in Example 1. The floor impact sound level was also good, indicating that the restorability as a floor material and the breaking strength of the floor surface material were also good.

実施例3は架橋粘弾性体付き独立気泡体含有シート基材
の両面に発泡体シートを積層し、上下に拘束層を設け、
不陸吸収材に溝を設けた場合を示す。床衝撃音レベルも
更に向上し、床材としての復元性、床表面材破壊強度も
良好であることを示している。
In Example 3, foam sheets were laminated on both sides of a closed cell-containing sheet base material with a crosslinked viscoelastic body, and constraining layers were provided on the top and bottom,
This shows the case where grooves are provided in the uneven absorbing material. The floor impact sound level was further improved, indicating that the restorability of the floor material and the breaking strength of the floor surface material were also good.

比較例1は、架橋粘弾性体付き独立気泡含有シート基材
の上下に何れも繊維質基材も発泡体シートも設けていな
い場合を示した。
Comparative Example 1 showed a case in which neither a fibrous base material nor a foam sheet was provided above and below a closed cell-containing sheet base material with a crosslinked viscoelastic body.

比較例1でも床衝撃音レベルは悪くはないが実施例を施
す事により大きく改善できることが判る。  。
Although the floor impact sound level in Comparative Example 1 is not bad, it can be seen that it can be greatly improved by implementing the example. .

上記の如(、本発明を利用することにより、特願昭61
−93466号に示した方法を更に改良することができ
、しかも床材としての機能も失われない床材を得ること
ができた。
As mentioned above (by utilizing the present invention,
It was possible to further improve the method shown in No.-93466, and to obtain a flooring material that does not lose its functionality as a flooring material.

すなわち、床衝撃音レベルは従来、木質仕上床材では非
常に困難であると言われて来たし一45等級を床材総厚
みを2511以下に抑えることにより可能にした点と、
床材として復元性が良く、表面材の破壊強度の点でも従
来の木質フローリングと同等に抑える事ができ、下階の
人にきかねなく生活できる点で多くの要望に応えること
ができる。
In other words, the floor impact sound level, which has traditionally been said to be extremely difficult to achieve with wood-finished flooring materials, has been made possible by keeping the total thickness of the flooring material to 2511 or less.
It has good resilience as a flooring material, and the breaking strength of the surface material can be kept to the same level as conventional wood flooring, and it can meet many requests in that it can be lived on without causing damage to people on the floor below.

前記理由で本発明の工業上の利用価値は非常に高いもの
である。
For the above reasons, the industrial utility value of the present invention is very high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の片面
に繊維質基布を配設し、更に上側拘束層として表面化粧
木質板を使用し、下側拘束層として合板を使用し、下側
拘束層とスラブの間に不陸吸収材を設け、床材同志の接
合に適する実部を設けたものである。 第2図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の片面
に発泡体シートを配設し、更に上側拘束層として表面化
粧木質板を使用し、下側拘束層として合板を使用し、不
陸吸収材に溝を設け、床材同志の接合に適する実部を設
けたものである。 第3図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の両面
に繊維質基布を配設し、更に拘束層を上下に使用した例
である。 第4図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の片面
に繊維質基布と発泡体シートを積層し、更に、拘束層を
上下に使用した例である。 第5図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の両面
に繊維質基布と発泡体シートを積層し、上側拘束層を表
面化粧木質板として、下側拘束層を床スラブとした例で
ある。 第6図は本発明の一実施例の施工断面図を示すものであ
り、架橋粘弾性体付き独立気泡体含有シート基材の片面
に繊維質基材と発泡体シートを積層し、もう一方の片面
に発泡体シートを拘束層として配設した例である。 第7図及び第8図は架橋粘弾性体付き独立気泡体含有シ
ート基材の斜視図である。 第9図は床衝撃音の測定を行った装置の説明図である。 1・・・表面化粧木質板  2・・・メス実部3・・・
オス実部 4・・・繊維質基材又は発泡体シート 5・・・架橋粘弾性体付き独立気泡体含有シート基材6
・・・合板(下側拘束材) 7・・・不陸吸収材    8・・・床スラブ9・・・
独立気泡体    10・・・架橋粘弾性体11・・・
音源質      12・・・タッピングマシン13・
・・試料       14・・・床スラブ15・・・
受音室      16・・・マイクロホン17・・・
精密騒音計    18・・・周波数分析器19・・・
レベルコーダ− 第1図 ・第2図 第3図 第4図 第6図
FIG. 1 shows a construction cross-sectional view of one embodiment of the present invention, in which a fibrous base fabric is provided on one side of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and a fibrous base fabric is further provided on the surface as an upper restraining layer. A decorative wood board is used, plywood is used as the lower restraining layer, an uneven absorbing material is provided between the lower restraining layer and the slab, and a real part suitable for joining the flooring materials is provided. FIG. 2 shows a construction cross-sectional view of one embodiment of the present invention, in which a foam sheet is provided on one side of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and a surface decoration is further provided as an upper restraining layer. A wooden board is used, plywood is used as the lower restraining layer, grooves are provided in the uneven absorbing material, and a real part is provided that is suitable for joining the flooring materials together. FIG. 3 shows a construction cross-sectional view of one embodiment of the present invention, in which a fibrous base fabric is provided on both sides of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and furthermore, constraining layers are placed on the top and bottom. This is an example used. FIG. 4 shows a construction cross-sectional view of an embodiment of the present invention, in which a fibrous base fabric and a foam sheet are laminated on one side of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and This is an example of using layers one above the other. FIG. 5 shows a construction sectional view of an embodiment of the present invention, in which a fibrous base fabric and a foam sheet are laminated on both sides of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and an upper restraining layer is formed. This is an example in which the surface decorative wood board is used and the lower restraining layer is a floor slab. FIG. 6 shows a construction sectional view of one embodiment of the present invention, in which a fibrous base material and a foam sheet are laminated on one side of a sheet base material containing a closed cell with a crosslinked viscoelastic body, and the other side is laminated with a fibrous base material and a foam sheet. This is an example in which a foam sheet is provided as a restraining layer on one side. FIG. 7 and FIG. 8 are perspective views of a sheet base material containing a closed cell with a crosslinked viscoelastic body. FIG. 9 is an explanatory diagram of an apparatus that measures floor impact sound. 1...Surface decorative wood board 2...Female fruit part 3...
Male fruit part 4...Fibrous base material or foam sheet 5...Closed cell containing sheet base material with crosslinked viscoelastic body 6
...Plywood (lower restraining material) 7...Uneven absorbing material 8...Floor slab 9...
Closed cell body 10...Crosslinked viscoelastic body 11...
Sound source quality 12...Tapping machine 13.
...Sample 14...Floor slab 15...
Sound receiving room 16...Microphone 17...
Precision sound level meter 18... Frequency analyzer 19...
Level coder - Figure 1, Figure 2, Figure 3, Figure 4, Figure 6

Claims (1)

【特許請求の範囲】 1、独立気泡体配設基材(A)とは、1ケ当り0.00
5cc〜10ccの気体を封入して独立気泡体とした凸
部分を、フィルム状物、発泡体シート状物、シート状物
、布状物、糸状物に熱融着、粘接着、糸状物による強制
固定を利用して、無数に一定間隔又は不定間隔で連結せ
しめた構成の基材であり、 架橋粘弾性体(B)とは、常温で硬化反応を行い、その
硬化反応後の生成物質が80℃に加温されても形状を保
持し、20℃の条件下で硬度が日本ゴム協会規格SRI
S−0101に定めるC型硬度計で50以下であるとい
う3つの条件を具備する物質であり、 繊維質基布及び/又は発泡体シート(C)とは、合成繊
維、天然繊維、無機質繊維、金属繊維を単独又は併用し
て布状にしたものを繊維質基布と言い、ポリエチレン、
ウレタン、ポリプロピレン、ポリスチレン、各種ゴムを
発泡体とし、単一シート状物、上記発泡体の粉砕品をバ
インダー、不織布を介してシート状とした基材を発泡体
シートといい、 架橋粘弾性体付き独立気泡体含有シート基材(D)とは
、独立気泡体配設基材(A)の独立気泡体同志の空間を
架橋粘弾性体(B)で充填したシート基材であり、さら
に、 不陸吸収材(E)とは、繊維質基布及び/又は発泡体シ
ート、発泡体ブロックより構成されるものであると定義
した場合に、 架橋粘弾性体付き独立気泡体含有シート基材(D)の片
面又は両面に、繊維質基布及び/又は発泡体シート(C
)を積層し、さらにその片面又は両面に、板状体を拘束
材として積層せしめ、床スラブ側に接着せしめる面をそ
のまま又は不陸吸収材(E)を設けた床断面構成とした
ことを特徴とする直貼用拘束型制振床部材。 2、架橋粘弾性体付き独立気泡体含有シート基材(D)
の架橋粘弾性体(B)の容積と、独立気泡体の容積との
比率が2:8〜8:2であり、独立気泡体の凸部の厚み
が6mm以下であることを特徴とする特許請求の範囲第
1項記載の直貼用拘束型制振床部材。 3、架橋粘弾性体付き独立気泡体含有シート基材(D)
の片面又は両面に、繊維質基布及び/又は発泡体シート
(C)を積層し床構成部材の一部材として使用される時
に、前記CとDの合計厚みが3mm〜10mmであるこ
とを特徴とする特許請求の範囲第1項記載の直貼用拘束
型制振床部材。 4、独立気泡体配設基材(A)とは、1ケ当り0.00
5cc〜10ccの気体を封入して独立気泡体とした凸
部分を、フィルム状物、発泡体シート状物、シート状物
、布状物、糸状物に熱融着、粘接着、糸状物による強制
固定を利用して、無数に一定間隔又は不定間隔で連結せ
しめた構成の基材であり、 架橋粘弾性体(B)とは、常温で硬化反応を行い、その
硬化反応後の生成物質が80℃に加温されても形状を保
持し、20℃の条件下で硬度が日本ゴム協会規格SRI
S−0101に定めるC型硬度計で50以下であるとい
う3つの条件を具備する物質であり、 繊維質基布及び/又は発泡体シート(C)とは、合成繊
維、天然繊維、無機質繊維、金属繊維を単独又は併用し
て布状にしたものを繊維質基布と言い、ポリエチレン、
ウレタン、ポリプロピレン、ポリスチレン、各種ゴムを
発泡体とし、単一シート状物、上記発泡体の粉砕品をバ
インダー、不織布を介し不陸吸収材(E)とは、繊維質
基布及び/又は発泡体シート、発泡体ブロックより構成
されるものであると定義した場合に、独立気泡体配設基
材(A)として、2枚のフィルムより成る円筒状独立気
泡体である凸部とフィルム融着部である凹部とが交互に
形成された基材を用い、架橋粘弾性体(B)を凹部に形
成させ、その片面又は両面に、合成繊維をニードルパン
チした繊維質基布(C)を積層し、さらにその片面又は
両面に木質板材を拘束層として形成させ、床スラブ側に
接着せしめる面をそのまま又は不陸吸収材(E)を設け
た床断面構成としたことを特徴とする直貼用拘束型制振
床部材。
[Claims] 1. The closed cell-arranged base material (A) is 0.00 per piece.
The convex portion made into a closed cell by enclosing 5cc to 10cc of gas is bonded to a film-like material, foam sheet-like material, sheet-like material, cloth-like material, or thread-like material by heat-sealing, adhesive, or thread-like material. It is a base material with a structure in which a countless number of pieces are connected at regular or irregular intervals using forced fixation.The crosslinked viscoelastic material (B) undergoes a curing reaction at room temperature, and the product after the curing reaction is It retains its shape even when heated to 80°C, and its hardness at 20°C meets the Japan Rubber Association standard SRI.
It is a substance that satisfies the three conditions of having a hardness of 50 or less on the C-type hardness tester specified in S-0101, and the fibrous base fabric and/or foam sheet (C) refers to synthetic fibers, natural fibers, inorganic fibers, Fabrics made from metal fibers alone or in combination are called fibrous base fabrics, and include polyethylene,
A single sheet made of foam made of urethane, polypropylene, polystyrene, or various rubbers is called a foam sheet, and a base material made of a pulverized product of the above foam and made into a sheet with a binder and nonwoven fabric is called a foam sheet, with a crosslinked viscoelastic material. The closed cell-containing sheet substrate (D) is a sheet substrate in which the spaces between the closed cells of the closed cell-arranged substrate (A) are filled with a crosslinked viscoelastic material (B), and further contains When the land absorbent material (E) is defined as being composed of a fibrous base fabric and/or a foam sheet or a foam block, ) on one or both sides of the fibrous base fabric and/or foam sheet (C
) are laminated, and a plate-like body is further laminated on one or both sides as a restraining material, and the surface to be adhered to the floor slab side is made into a floor cross-sectional structure, either as it is or with an uneven absorbing material (E) provided. A restraining type vibration damping floor member for direct attachment. 2. Closed cell-containing sheet base material with crosslinked viscoelastic body (D)
A patent characterized in that the ratio of the volume of the crosslinked viscoelastic body (B) to the volume of the closed cell body is 2:8 to 8:2, and the thickness of the convex portion of the closed cell body is 6 mm or less A restraining type vibration damping floor member for direct attachment according to claim 1. 3. Closed cell-containing sheet base material with crosslinked viscoelastic body (D)
When used as a part of a floor component by laminating a fibrous base fabric and/or foam sheet (C) on one or both sides of the floor, the total thickness of C and D is 3 mm to 10 mm. A restraining type vibration damping floor member for direct attachment according to claim 1. 4. Closed cell-equipped base material (A) is 0.00 per piece.
The convex portion made into a closed cell by enclosing 5cc to 10cc of gas is bonded to a film-like material, foam sheet-like material, sheet-like material, cloth-like material, or thread-like material by heat-sealing, adhesive, or thread-like material. It is a base material with a structure in which a countless number of pieces are connected at regular or irregular intervals using forced fixation.The crosslinked viscoelastic material (B) undergoes a curing reaction at room temperature, and the product after the curing reaction is It retains its shape even when heated to 80°C, and its hardness at 20°C meets the Japan Rubber Association standard SRI.
It is a substance that satisfies the three conditions of having a hardness of 50 or less on the C-type hardness tester specified in S-0101, and the fibrous base fabric and/or foam sheet (C) refers to synthetic fibers, natural fibers, inorganic fibers, Fabrics made from metal fibers alone or in combination are called fibrous base fabrics, and include polyethylene,
Urethane, polypropylene, polystyrene, and various rubbers are used as a foam, and a single sheet-like material is used, and a crushed product of the above-mentioned foam is used as a binder, and a nonwoven absorbent material (E) is a fibrous base fabric and/or foam. When defined as consisting of a sheet or a foam block, the closed cell-arranged substrate (A) includes a convex portion and a film-fused portion, which is a cylindrical closed cell consisting of two films. A crosslinked viscoelastic material (B) is formed in the recesses using a base material in which recesses are alternately formed, and a fibrous base fabric (C) made of needle-punched synthetic fibers is laminated on one or both sides of the crosslinked viscoelastic body (B). A restraint for direct application, characterized in that a wooden board material is formed as a restraint layer on one or both sides of the same, and the surface to be adhered to the floor slab side has a floor cross-sectional structure, either as it is or with an uneven absorbing material (E). Type vibration damping floor member.
JP29861986A 1986-12-17 1986-12-17 Constraint type vibration-damping floor member for direct sticking Granted JPS63151756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29861986A JPS63151756A (en) 1986-12-17 1986-12-17 Constraint type vibration-damping floor member for direct sticking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29861986A JPS63151756A (en) 1986-12-17 1986-12-17 Constraint type vibration-damping floor member for direct sticking

Publications (2)

Publication Number Publication Date
JPS63151756A true JPS63151756A (en) 1988-06-24
JPH0518989B2 JPH0518989B2 (en) 1993-03-15

Family

ID=17862071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29861986A Granted JPS63151756A (en) 1986-12-17 1986-12-17 Constraint type vibration-damping floor member for direct sticking

Country Status (1)

Country Link
JP (1) JPS63151756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208957A (en) * 1990-01-11 1991-09-12 Hayakawa Rubber Co Ltd Impact relaxing flooring material
JP2011168966A (en) * 2010-02-16 2011-09-01 Yasumasa Sasahara Heat insulating panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208957A (en) * 1990-01-11 1991-09-12 Hayakawa Rubber Co Ltd Impact relaxing flooring material
JP2011168966A (en) * 2010-02-16 2011-09-01 Yasumasa Sasahara Heat insulating panel

Also Published As

Publication number Publication date
JPH0518989B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
EP3838589A1 (en) Roof cover board derived from engineered recycled content
KR101843811B1 (en) Hybrid water proofing material comprising acrylic copolymer and inorganic powder
WO1981000985A1 (en) Composite structures,new adhesive,and cement composition
JPS63151756A (en) Constraint type vibration-damping floor member for direct sticking
JPS62253866A (en) Restriction type vibration control floor member for direct adhesion
JPH02276629A (en) Vibration-damping and soundproofing panel
JPH0448100B2 (en)
JPH0481020B2 (en)
JPS63114755A (en) Direct adhering restriction type vibration damping floor member
JPS63201257A (en) Restriction type vibration damping floor member for direct adhesion
JPH0562652B2 (en)
JPH02265736A (en) Vibration-damping and soundproof sheet
JPS6242953B2 (en)
JPH09131818A (en) Damping soundproof material
JP2006063190A (en) Coating type vibration-damping material composition and building composite plate
KR100521092B1 (en) Waterproofing structure and Construction method by Embossing polyvinyl sheet, Waterbone-multi fuctional acrylic resin waterproofing agent, Insulating film
JP4008863B2 (en) Insulation board manufacturing method
JPH10264280A (en) Damping sound-insulation material and its manufacture
CN211597533U (en) Thick vulcanized rubber plate for manufacturing composite floor
JPH116234A (en) Vibration-control and noise-insulating sheet and manufacture thereof, and vibration-control and noise-insulating floor material
JPH08209002A (en) Fusible vibration-damping resin for structural member, vibration-proof structural body and its production
JPS62251131A (en) Vibration-damping sound-insulating sheet for car
JPH08207187A (en) Dampling soundproof material, damping soundproof floor material and production of damping soundproof material
JPH0262210A (en) Manufacture of shock absorbing sheet
JPH09131824A (en) Damping soundproof material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees