JPH0481020B2 - - Google Patents

Info

Publication number
JPH0481020B2
JPH0481020B2 JP13811486A JP13811486A JPH0481020B2 JP H0481020 B2 JPH0481020 B2 JP H0481020B2 JP 13811486 A JP13811486 A JP 13811486A JP 13811486 A JP13811486 A JP 13811486A JP H0481020 B2 JPH0481020 B2 JP H0481020B2
Authority
JP
Japan
Prior art keywords
floor
base material
viscoelastic body
crosslinked viscoelastic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13811486A
Other languages
Japanese (ja)
Other versions
JPS62296058A (en
Inventor
Hirobumi Kakimoto
Osamu Kiso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP13811486A priority Critical patent/JPS62296058A/en
Priority to US07/039,425 priority patent/US4803112A/en
Publication of JPS62296058A publication Critical patent/JPS62296058A/en
Publication of JPH0481020B2 publication Critical patent/JPH0481020B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、制振床部材に、特に直貼用制振床部
材に関するものである。 (従来の技術) 近年の技術進歩は目ざましく、建築分野に於て
も残された課題は、結露と音・振動の2点に絞ら
れつつあるのが現状であると言われている。音・
振動の問題は近年各所で色々の対応策が講じら
れ、改良されて来ているものの技術的困難さもあ
つて、充分な効果を上げるに到らない分野が多数
存在している。床材もその例に挙げられ、種々の
研究がなされているものの未だに良好な性能を発
揮するものは出ていないのが現状である。 (発明が解決しようとする課題) 床材の中でも木質フロアー材に関しては、清潔
さを保てて、カビやダニを始めとする害虫が生息
しにくく、落着いた色調である等のメリツトか
ら、木質床を要望する居住者が増加している。と
ころが、木質床材の唯一の欠点は、床の歩行音や
物の落下音に対する床衝撃音の緩和が全く出来
ず、階下に居住する人の迷惑を考慮すると階上で
は木質床は使用出来ないのが現状である。その様
な背景から、本発明者等は床衝撃音の緩和性能に
優れた床材を脱意研究した結果、次の部材を床構
成材とすることにより、著るしく床衝撃音の緩和
効果が生じることを確認し、本発明を完成させる
に到つたものである。 本発明の直貼用拘束型制振床部材は架橋粘弾性
体と繊維質より成る基布若しくは発泡体若しくは
繊維質と発泡体の積層物より成るシート基材との
相乗力によれば制振効果と耐水耐湿性、圧縮性、
復元性、接着性に優れる制振床部材が得られると
いう事を利用したものである。 従来より公知の如く、床衝撃音を緩和するに
は、例えば、フエルト類の様に小さな応力でも容
易に圧縮変形を行うものであれば、簡単に床衝撃
音を緩和することが知られている。一方、そうし
た性能を有する材質のものは、圧縮変形が大きす
ぎるため、本質床の如く、平滑な仕上面を要求さ
れる床部材を適用すると、例えば、家具等を置い
た丈でも歪が生じ、平滑性が保てなくなるという
致命的欠点を生じるのである。そこで、現在行な
われている床衝撃音対策は、圧縮グラスウール、
石綿、木片セメント板、ゴム板、無機質板材、合
板等を数種類組み合せたり、それ等組み合せた物
を床版から浮かせたりして床構成を行ない、更に
床版と天井の空間に吸音材を入れたり、場合によ
つては、天井を防振ゴム吊天井としたりして床と
天井との総合効果により床衝撃音の緩和対策を行
なつているのが現状である。 ところが、前記方法では、原材料部材数が多
く、原材料コストが高い。施工時の材料ロスが多
い。施工工数が多い等の原因でコストが高くなつ
てしまう。施工工数が多い為、施工作業者により
床衝撃音の緩和性能に差が生じる危険性が高い。
又、床衝撃音の緩和を行うための床部材の総厚み
は非常に厚くなつてしまい、建物を同じ軒高とす
ると、住空間を狭くするか、階数を減すかせざる
を得なくなる。逆に、同じ階数を確保し、住空間
を同じとすれば、軒高のアツプ分は建物の建築コ
ストにはね返り高くついてしまうという欠点を有
する。 本発明者等はこのような上記の欠点を解消し、
低コストで床衝撃音を緩和し、出来る丈薄くしか
直貼が可能な、木質床材仕上げを行なつても床衝
撃音を緩和できる直貼用拘束型制振床部材を目標
として多くの試行錯誤を繰返した末、常温反応で
架橋粘弾性体が得られる液状ゴムと、繊維、若し
くは発泡体、若しくは繊維と発泡体の積層物より
成る基材を併用した場合には、床衝撃音を緩和す
る性能を発揮する丈でなく、単体で用いた場合の
欠点をも解消するという知見を得、各種試験の結
果、本発明を完成するに到つた。 即ち、常温反応により架橋粘弾性体が得られる
液状ゴムは、単体で用いた場合はコスト高とな
り、汎用床材としては不適当である点と、板状の
拘束材の間で反応させる場合は、やや多目に材料
を使用し、余分の材料を押出す方法を採らないと
大きな空洞をランダムに生じやすいため、製品の
バラツキが生じ易くなるという欠点があつた。 一方、繊維若しくは発泡体若しくは繊維と発泡
体の積層品より成る基材を架橋粘弾性体と併用す
る事なく用いた場合には、小さな応力でも容易に
圧縮変形を受け、非常に優れた床衝撃音緩和効果
を示すものの、復元性能が悪く圧縮変形歪が大き
すぎる為、木質仕上材の如く、平滑な仕上面を要
求される床部材を適用すると、例えば、家具等を
置いた丈でも歪が生じ、平滑性が保てなくなると
いう致命的欠点を有するものである。又、耐水、
耐湿性が一般的に悪く、カビやダニの生息場所に
もなり易いという欠点をも有するものである。
又、特に発泡体を基材とした場合には、床衝撃を
加えた部屋自体に於ける反響音が大きいという傾
向があり、反響音により隣室への迷惑も考慮する
必要性が生じる欠点もある。 (課題を解決するための手段) 本発明者等は、制振特性の優れた架橋粘弾性体
の上記欠点を解消し制振性、経済性、耐久性に優
れた制振床部材は、安価な繊維や発泡体を介在さ
せる事により、非常に優れた制振床部材を得ると
いう知見を得た。 本発明の特徴とする所は穴の面積が0.03cm2〜13
cm2の無数の穴明け加工を施した厚みが2mm〜20mm
の繊維若しくは発泡体、若しくは繊維と発泡体の
積層物より成る基材であつて、穴部、穴部以外の
面積比が2:8〜8:2であり、当該基材の穴部
及び/又は全面に、架橋粘弾性体を形成して成る
架橋粘弾性体付き基材を床構成部材とし、架橋粘
弾性体付き基材の上下に隣接する床構成部材、若
しくは上に隣接する床構成部材と床板とを拘束材
とすることを特徴とする直貼用拘束型制振床部材
にある。 本発明の穴部及び/又は全面に形成せしめる架
橋粘弾性体が、常温反応性を有する水酸基末端テ
レキーリツクポリマーを基本成分としる主剤と、
イソシアネート基を1分子当り、2個以上有する
硬化剤とを硬化反応せしめて得られたものである
ことを特徴とする。 また本発明の制振床材おいて、架橋粘弾性体は
常温で硬化反応を行ない、その硬化反応後の生成
物質が80℃に加温されても固体形状を保持し、20
℃の条件下で硬度が日本ゴム協会規格SRIS−
0101に定めるC型硬度計で60℃以下であるという
3つの条件を具備する架橋粘弾性体を形成して成
るという3つの条件を具備するものであることを
特徴とする。 (作 用) 本発明において、「拘束型」とは、制振処理方
法の1つで拘束材を使用して制振する方法をい
う。第7図A,Bに示すように、基板3と拘束材
2で粘弾性体4をはみこむことにより、加振され
た場合は基材17の動きを粘弾性体18の剪断力
と拘束材19の復元力とによつて加振前の元の状
態にかえろうとする力が働き、より早く振動を止
める効果が高くなる。このように、基板17と拘
束材19によつて粘弾性体18をはさむ法を拘束
型制振方法という。 本発明において、「拘束材」とは粘弾性体18
の基板17と接する面と反対面に密着させる板状
物をいい、振動している基板17の動きを止める
ために比較的剛性の高い物質が適している。 本発明において、「拘束」とは、本発明におい
て振動する物体に粘弾性体18を介して密着させ
加振された時に振動する基板17が微小な波打ち
現象を呈し基板17に密着した粘弾性体8が拘束
材19と密着していれば拘束材19と基板17の
波打ち現象にはわずかな動きの差が生じる。その
ために粘弾性体18は基板17の動きと拘束材1
9の動きの両方に追従しようとする動きをするた
めに、必然的に粘弾性体18内に剪断応力が加わ
る。この動きを起こさせる物が拘束材19であ
る。 従つて、拘束材19と基板17は、拘束材19
側から加振された場合は、丁度逆の状態となり、
基板17が拘束材19として働き、拘束材19が
基板17として働くことになるために、拘束材1
9と基板17とを区別することはできないが一般
的に拘束材19、基板というように言われる。 即ち、制振床を構成した場合に、床衝撃音緩和
性能を始めとする諸特性に優れ単体で用いた場合
の欠点を解消する理由は次の理由であると考えら
れる。当該基板に交互に無数に穴明け加工し、架
橋粘弾性体を形成せしめる事により、基材の圧縮
変形のしやすさと架橋粘弾性体の一定変形に達す
ると非常に大きな圧縮力を要するという圧縮応力
特性により、更に架橋粘弾性体が衝撃を受けた時
に穴の周囲及び上下面に接する床部材との拘束効
果及びずり剪断応力により衝撃エネルギーを吸収
し、優れた床衝撃音緩和効果が生じるものと考え
られる。 又、特に繊維から成る基材と架橋粘弾性体を組
合せた場合は、繊維表層全面若しくは穴周囲に含
浸する事が出来、接着力の向上、基布の補強を行
う事が出来る為、耐水耐湿性を大幅に改善出来、
防カビ剤等を架橋粘弾性体に添加する事により、
カビやダニの生息を防止する事が出来る。 又、架橋粘弾性体により、圧縮復元性にもすぐ
れ、繊維や発泡体の最大の欠点を克服する事が出
来る。コスト面に於ても繊維や発泡体は架橋粘弾
性体より安価であり、非常に大幅なコスト削減を
行う事が出来、シート化された制振層を得る事が
出来る点でも非常に作業効率も向上する。又、長
尺加工も可能となり、材料ロスを少なくする点で
も有利である。 次に本発明の制振床部材を用いた床の断面構成
について述べる。 第1図、第2図に示す様に、比較的剛性の高い
板状体を拘束材として架橋粘弾性体を配設した繊
維から成る基材や発泡体から成る基材を接着固定
して使用する方法と第3図、第4図に示す様に床
版との不陸調整をも兼ねた形で使用する方法の何
れを用いても良く、特に第4図の如く、二層に用
いた場合の効果は、非常に大である。 次に順を追つて床構成部材の説明をする。 仕上材とは、現在床仕上材として使用されてい
る木質床仕上材、塩ビ系床仕上材、コルクタイル
等を挙げることができる。 木質床材としては、フローリングボード、フロ
ーリングブロツク、モザイクパーケツトより成る
単層フローリングと天然木化粧複合フローリン
グ、特殊加工化粧複合フローリング、天然木化粧
複合ブロツク、特殊加工化粧複合ブロツクより成
る複合フローリング、挽き板やつき板とコルクと
積層したフローリング等を挙げるとが出来る。こ
れ等は、板層を薄くした方が床衝撃音を緩和する
上では好ましい。拘束材として具体例を挙げる
と、前記木質床材、合板、圧縮紙、プラスチツク
板、金属薄板、パーテイクルボード、木片セメン
ト板、フアイバーボード、パルプセメント板、木
毛セメント板、フレキシブル板、軟質フレキシブ
ル板、大平板、石綿セメント板、石綿セメントパ
ーラライト板、石綿セメント珪酸カルシウム板、
せつこうボード等が挙げられ、これ等は何れも板
状であれば表面の化粧加工の有無、穴の有無に拘
らず使用出来るが、床構成部材の総厚みを低くす
る目的を重視すれば、板厚の薄いものが望まし
い。又、シート状及びフイルム状の基材として、
加硫ゴム、非加硫ゴム、塩化ビニル、ポリエチレ
ン、ポリプロピレン、ナイロン、ポリエステル、
塩化ビニリデン、エチレン−酢酸ビニル共重合体
等から成るフイルムやシートを挙げることが出来
る。尚、拘束材と基板の材質は同じで、衝撃の加
えられる方の反対側が拘束材となり、また反対側
より衝撃が加えられるときは基板が拘束材とな
る。このことは第7図A,Bに例示した通りであ
る。 従つて、拘束材と基板は拘束材から加振された
場合は、丁度逆の状態となり、基板が拘束材とし
て働き、拘束材が基板として働くことになるため
に、拘束材と基板とを区別することはできないが
一般的に拘束材、基板というように言われてい
る。 次に基板について説明する。 繊維より成る基板は、ナイロン、ポリエステ
ル、ウレタン、アクリル、ポリプロピレン、ポリ
エチレン等の合成繊維や、羊毛、綿、麻等の天然
繊維や、ガラス、石綿等の無機質繊維やアルミニ
ウム、鉛等の金属繊維を単独若しくは併用して成
るものを挙げる事が出来る。それ等は上記繊維質
だけでなく、樹脂をバインダーとして併用したも
のであつてもよい。発泡体より成る基材は、ウレ
タン、ポリエチレン、ポリプロピレン、スチレ
ン、塩化ビニル、エチレン−酢酸ビニル共重合
体、クロロプレン、エチレンプロピレン共重合
体、天然ゴム、ブチルゴム、スチレンブタジエン
ゴム、ブタジエンゴム等が挙げられる。これ等は
定尺でも長尺でも良いが、生産効率上では長尺の
方が好ましい。一素材又は複数の素材の発泡体の
粉砕品をバインダーで固めたものでもよい。繊維
と発泡体を積層した基材は上記の繊維基材と発泡
体基材とを一種同志若しくは数種同志を積層した
ものであり、サンドイツチ状の場合は繊維が内側
でも外側でも何れでもよい。 前記基材には架橋粘弾性体を形成させる為に予
じめ穴明け加工をする必要があるが、その穴の面
積は0.03cm2〜13cm2が良く、更に好ましくは0.2cm2
〜5.0cm2が良い。即ち、穴の面積が0.03cm2より小
さい場合は、硬化反応前の粘度を非常に低粘度に
する必要があり、硬化反応速度により繊維に含浸
され、穴の中で形成される架橋粘弾性体の厚みの
コントロールがし難しい欠点がある。逆に13cm2
越える時は基材の引張強度が弱く製造工程で基材
破断等が生じ易い点と、床に適用した場合には特
に端部に於て基材部と架橋粘弾性体部分との圧縮
特性の差が生じ易く段差の原因となり好ましくな
い。 又、穴の形状は丸、楕円、三角、四角、その他
の多角形、スリツト状等があり何れの形状でも使
用できる。 又、基材の厚みは2mm〜20mmが好ましく、繊維
の基材中での密度や繊維の径や、発泡体に於ては
発泡倍率や材質により決定する必要がある。基材
厚みが2mm未満の場合は衝撃緩和効果が少なくな
り、逆に20mmを越える場合は、架橋粘弾性体の使
用量が増加しコスト面でのメリツトが少ない点
と、圧縮歪代が大きくなり望ましくない。 次に、架橋粘弾性物質について説明する。 本発明で言う架橋粘弾性物質とは、常温で液状
であり、かつ常温で反応した後の硬化物が80℃に
加温されても固体形状を保持し、20℃の条件下で
硬度が日本ゴム協会規格SRIS−0101に示すC型
硬度計で60以下であるという条件を満足するもの
が好ましい。 本発明の架橋粘弾性体の硬度が60以上である
と、粘弾性がなくなるので所期の制振効果が低下
するので好ましくない。 またその硬度は理論的には零もあり得るが少く
とも60より小さいものであれば所期の効果が得ら
れるのである。 本発明において、穴部;穴部以外の面積比が
2:8〜8:2であることが必要で、この面積比
の範囲に設定すると良好な衝撃緩和効果が得られ
る。上記条件を満足し得る反応性物質としては、
表に示す官能基を有する液状ゴムと架橋剤との
組合せを例示することが出来る。これ等は、常温
反応性の硬化速度のコントロールのし易さ、コス
ト面、入手のし易さ等を含めて考慮すると、特に
水酸基を末端に有し、主鎖をポリブタジエン、水
素添加ポリブタジエン、ポリブタジエン−ニトリ
ル、ポリブタジエン−スチレン、イソプレン等
や、ポリエーテルポリオール、ポリエステルポリ
オール、ウレタンアクリルポリオール、アニリン
誘導体ポリオール等を単独もしくは併用して用い
るのが望ましい。又、前記反応性物質の硬化剤と
しては、イソシアネート系硬化剤が好適であり、
1分子当り2ケ以上のイソシアネート基を有する
ことが必要である。その具体例としては、トルイ
レンジイソシアネート、ジフエニルメタンジイソ
シアネート、ヘキサメチレンジイソシアネート、
イソホロンジイソシアネート、末端イソシアネー
ト基を有するプレポリマーを挙げることが出来、
単独若しくは併用して用いることも出来る。又、
イソシアネート系硬化剤は配合比率及び/又は粘
性等の問題で可塑剤と混合して用いることも出来
るが、可塑剤は脱水処理したものであることと、
イソシアネート化合物と反応しないこととが必要
である。
(Industrial Application Field) The present invention relates to a damping floor member, and particularly to a damping floor member for direct attachment. (Conventional technology) Technological progress has been remarkable in recent years, and it is said that the remaining issues in the construction field are currently narrowing down to two issues: dew condensation and sound/vibration. sound·
In recent years, various countermeasures have been taken to address the problem of vibration, and although improvements have been made, there are still many areas where sufficient effects cannot be achieved due to technical difficulties. Flooring materials are an example of this, and although various studies have been conducted, there is currently no material that exhibits good performance. (Problem to be solved by the invention) Among flooring materials, wooden flooring has advantages such as being able to maintain cleanliness, being difficult for pests such as mold and mites to inhabit, and having a subdued color tone. The number of residents requesting floors is increasing. However, the only disadvantage of wooden flooring is that it cannot at all reduce floor impact noise due to the sound of walking on the floor or the sound of objects falling, and considering the inconvenience to the people living downstairs, wooden flooring cannot be used upstairs. is the current situation. Against this background, the inventors of the present invention conducted extensive research into flooring materials that have excellent floor impact noise mitigation performance.The inventors found that by using the following materials as floor construction materials, the floor impact noise mitigation effect was significantly improved. It was confirmed that this occurs, and the present invention was completed. The restraining type vibration damping floor member for direct attachment of the present invention is damped by the synergistic force between the crosslinked viscoelastic body and the base cloth or foam made of fibrous material, or the sheet base material made of a laminate of fibrous material and foam. Effect and water resistance, moisture resistance, compressibility,
This method takes advantage of the fact that a damping floor member with excellent restorability and adhesiveness can be obtained. As is conventionally known, it is known that floor impact noise can be easily alleviated by using a material that can be compressed and deformed easily even under small stress, such as felt. . On the other hand, materials with such performance undergo too large a compression deformation, so if a floor material that requires a smooth finished surface, such as an essential floor, is used, distortion may occur even at the height of furniture, etc. This results in a fatal drawback that smoothness cannot be maintained. Therefore, the measures currently being taken to counter floor impact noise are compressed glass wool,
The floor is constructed by combining several types of asbestos, wood chips, cement boards, rubber boards, inorganic board materials, plywood, etc., or by raising these combinations above the floor slabs, and also by putting sound-absorbing materials in the space between the floor slabs and the ceiling. In some cases, the ceiling is now made of a vibration-proof rubber suspended ceiling to reduce floor impact noise through the combined effect of the floor and ceiling. However, the method requires a large number of raw materials and high raw material costs. There is a lot of material loss during construction. The cost increases due to the large number of construction steps. Since the number of construction steps is large, there is a high risk that the floor impact sound mitigation performance will differ depending on the contractor.
In addition, the total thickness of the floor members for alleviating floor impact noise becomes extremely thick, and if buildings are kept at the same eave height, the living space must be made narrower or the number of floors must be reduced. On the other hand, if buildings have the same number of floors and the same living space, the disadvantage is that the increased height of the eaves will add to the construction cost of the building. The present inventors solved the above-mentioned drawbacks,
Numerous trials were conducted with the goal of creating a restraining type vibration-damping flooring material for direct attachment that can reduce floor impact noise at low cost, can be directly attached only to thin materials, and can reduce floor impact noise even when finished with wood flooring. After repeated mistakes, we found that when liquid rubber, which can be obtained by reacting at room temperature to form a crosslinked viscoelastic material, was used in combination with a base material made of fibers, foam, or a laminate of fibers and foam, it was found that floor impact noise was reduced. As a result of various tests, we have completed the present invention. In other words, when liquid rubber is used alone to obtain a crosslinked viscoelastic body through room-temperature reaction, it is expensive and unsuitable for general-purpose flooring, and when reacted between plate-shaped restraining materials, However, unless a large amount of material is used and a method is used to extrude the excess material, large cavities tend to occur randomly, resulting in product variations. On the other hand, when a base material made of fibers, foams, or a laminate of fibers and foams is used without a crosslinked viscoelastic material, it easily undergoes compressive deformation even under small stress, and has excellent floor impact resistance. Although it shows a sound mitigation effect, the restoration performance is poor and the compressive deformation strain is too large, so if you apply a floor material that requires a smooth finish, such as a wood finishing material, the distortion may occur even at the height of furniture, etc. This has the fatal drawback that smoothness cannot be maintained. Also, water resistant,
They also have the disadvantage that they generally have poor moisture resistance and can easily become habitats for mold and mites.
In addition, especially when foam is used as the base material, there is a tendency for the reverberant sound in the room itself where the floor impact is applied to be large, and there is also a drawback that it is necessary to consider the nuisance to the neighboring room due to the reverberant sound. . (Means for Solving the Problems) The present inventors have proposed a vibration damping floor member that eliminates the above-mentioned drawbacks of cross-linked viscoelastic bodies with excellent vibration damping properties and has excellent vibration damping properties, economical efficiency, and durability. We have obtained the knowledge that an extremely excellent vibration-damping floor member can be obtained by interposing fibers or foams. The feature of the present invention is that the hole area is 0.03 cm 2 ~ 13
The thickness is 2mm to 20mm with countless cm2 holes.
A base material made of fibers or foams, or a laminate of fibers and foams, wherein the area ratio of holes and non-holes is 2:8 to 8:2, and the holes and / Or, the floor component is a base material with a crosslinked viscoelastic material formed on the entire surface thereof, and the floor component is adjacent to the top and bottom of the base material with a crosslinked viscoelastic material, or the floor component is adjacent to the top of the base material with a crosslinked viscoelastic material. The present invention is directed to a constraint-type vibration-damping floor member for direct attachment, characterized in that the restraint material includes a restraint material and a floorboard. The cross-linked viscoelastic body formed in the holes and/or the entire surface of the present invention has a main component containing a hydroxyl-terminated telechelic polymer having room temperature reactivity as a basic component;
It is characterized by being obtained by a curing reaction with a curing agent having two or more isocyanate groups per molecule. In addition, in the damping flooring material of the present invention, the crosslinked viscoelastic body undergoes a curing reaction at room temperature, and the product produced after the curing reaction maintains its solid shape even when heated to 80°C.
The hardness under the conditions of °C is the Japan Rubber Association standard SRIS-
It is characterized by forming a crosslinked viscoelastic body that satisfies the three conditions of being 60° C. or less on a C-type hardness tester defined in 0101. (Function) In the present invention, "constraint type" refers to a method of damping vibration using a restraining material, which is one of the vibration damping processing methods. As shown in FIGS. 7A and 7B, by inserting the viscoelastic body 4 between the substrate 3 and the restraint material 2, when vibration is applied, the movement of the base material 17 is controlled by the shearing force of the viscoelastic body 18 and the restraint material. Due to the restoring force of 19, a force that tries to return to the original state before vibration acts, and the effect of stopping the vibration more quickly becomes high. The method in which the viscoelastic body 18 is sandwiched between the substrate 17 and the restraint material 19 in this manner is called a restraint-type vibration damping method. In the present invention, the "restraint material" refers to the viscoelastic body 18
This refers to a plate-shaped object that is brought into close contact with the surface opposite to the surface in contact with the substrate 17, and a material with relatively high rigidity is suitable for stopping the movement of the vibrating substrate 17. In the present invention, "restraint" refers to a viscoelastic body that is tightly attached to a vibrating object via the viscoelastic body 18 and that causes the vibrating substrate 17 to exhibit minute waving phenomenon when it is vibrated. If 8 is in close contact with the restraining material 19, a slight difference in movement will occur in the waving phenomenon between the restraining material 19 and the substrate 17. For this purpose, the viscoelastic body 18 is controlled by the movement of the substrate 17 and the restraining material 1.
In order to make a movement that attempts to follow both of the movements of 9, shear stress is inevitably applied within the viscoelastic body 18. The object that causes this movement is the restraint material 19. Therefore, the restraint material 19 and the substrate 17 are
If the vibration is applied from the side, the situation will be exactly the opposite,
Since the substrate 17 works as the restraint material 19 and the restraint material 19 works as the board 17, the restraint material 1
Although it is not possible to distinguish between the restraining material 9 and the substrate 17, they are generally referred to as the restraining material 19 and the substrate. In other words, the following is thought to be the reason why when a damping floor is constructed, it has excellent properties including floor impact sound mitigation performance and eliminates the drawbacks when used alone. By drilling a countless number of holes alternately in the substrate and forming a cross-linked viscoelastic body, the base material can easily be compressed and deformed. Due to its stress characteristics, when the cross-linked viscoelastic body receives an impact, it absorbs the impact energy through the restraint effect and shear shear stress with the floor members in contact with the periphery of the hole and the upper and lower surfaces, resulting in an excellent floor impact noise mitigation effect. it is conceivable that. In addition, especially when a base material made of fibers and a crosslinked viscoelastic material are combined, the entire surface layer of the fibers or around the holes can be impregnated, improving adhesive strength and reinforcing the base fabric, making it water and moisture resistant. can significantly improve sex,
By adding antifungal agents etc. to the crosslinked viscoelastic body,
It can prevent the growth of mold and mites. In addition, the crosslinked viscoelastic material has excellent compression recovery properties and can overcome the biggest drawback of fibers and foams. In terms of cost, fibers and foams are cheaper than cross-linked viscoelastic materials, allowing for very large cost reductions, and the ability to obtain a damping layer in the form of a sheet is very efficient. It also improves. In addition, long length processing is also possible, which is advantageous in terms of reducing material loss. Next, the cross-sectional configuration of a floor using the damping floor member of the present invention will be described. As shown in Figures 1 and 2, a base material made of fibers or a base material made of foam on which a cross-linked viscoelastic material is arranged is used by adhesively fixing a relatively rigid plate-like material as a restraining material. Either method can be used, such as a method that also uses a method that also adjusts unevenness with the floor slab as shown in Figures 3 and 4. In particular, as shown in Figure 4, a method that is used for two layers The effect in this case is very large. Next, the floor components will be explained step by step. Examples of finishing materials include wood floor finishing materials, vinyl chloride floor finishing materials, and cork tiles, which are currently used as floor finishing materials. Wooden flooring materials include flooring boards, flooring blocks, single-layer flooring made of mosaic parquet, natural wood decorative composite flooring, specially processed decorative composite flooring, natural wood decorative composite blocks, composite flooring made of specially processed decorative composite blocks, and sawn wood flooring. Examples include flooring made of boards, boards, cork, and laminated layers. For these, it is preferable to make the plate layer thinner in order to alleviate floor impact noise. Specific examples of restraining materials include the aforementioned wooden flooring materials, plywood, compressed paper, plastic boards, thin metal boards, particle boards, wood chip cement boards, fiber boards, pulp cement boards, wood wool cement boards, flexible boards, and soft flexible boards. board, large flat board, asbestos cement board, asbestos cement perlerite board, asbestos cement calcium silicate board,
Gypsum boards, etc. can be used regardless of whether or not the surface is decorated or has holes, as long as they are plate-shaped, but if the purpose is to reduce the total thickness of the floor component, A thin plate is desirable. Also, as a sheet-like and film-like base material,
Vulcanized rubber, non-vulcanized rubber, vinyl chloride, polyethylene, polypropylene, nylon, polyester,
Examples include films and sheets made of vinylidene chloride, ethylene-vinyl acetate copolymer, and the like. Note that the restraining material and the substrate are made of the same material, and the opposite side to which the impact is applied serves as the restraining material, and when the impact is applied from the opposite side, the substrate serves as the restraining material. This is as illustrated in FIGS. 7A and 7B. Therefore, when the restraining material and the substrate are vibrated by the restraining material, they will be in exactly opposite states, with the substrate acting as the restraining material and the restraining material acting as the substrate, so it is difficult to distinguish between the restraining material and the substrate. Although it cannot be used as a restraining material, it is generally referred to as a restraining material or a substrate. Next, the substrate will be explained. Substrates made of fibers include synthetic fibers such as nylon, polyester, urethane, acrylic, polypropylene, and polyethylene, natural fibers such as wool, cotton, and linen, inorganic fibers such as glass and asbestos, and metal fibers such as aluminum and lead. These may be used alone or in combination. They may contain not only the above-mentioned fibers but also resins as a binder. Examples of base materials made of foam include urethane, polyethylene, polypropylene, styrene, vinyl chloride, ethylene-vinyl acetate copolymer, chloroprene, ethylene-propylene copolymer, natural rubber, butyl rubber, styrene-butadiene rubber, butadiene rubber, etc. . These may be of regular length or long length, but long length is preferable in terms of production efficiency. It may also be a pulverized foam product made of one material or a plurality of materials and hardened with a binder. The base material in which fibers and foam are laminated is a lamination of one type or several types of the above-mentioned fiber base material and foam base material, and in the case of a sandwich-like structure, the fibers may be on either the inside or the outside. It is necessary to drill holes in the base material in advance in order to form a crosslinked viscoelastic body, and the area of the holes is preferably 0.03 cm 2 to 13 cm 2 , more preferably 0.2 cm 2
~ 5.0cm2 is good. That is, if the area of the hole is smaller than 0.03cm2 , the viscosity before the curing reaction must be made very low, and the crosslinked viscoelastic body impregnated into the fiber and formed in the hole due to the speed of the curing reaction. The disadvantage is that it is difficult to control the thickness. On the other hand, if it exceeds 13 cm 2 , the tensile strength of the base material is weak and the base material is likely to break during the manufacturing process, and when applied to a floor, the base material and the crosslinked viscoelastic material part will be damaged, especially at the edges. This is undesirable because it tends to cause a difference in compression characteristics between the two and causes a difference in level. Further, the shape of the hole can be round, oval, triangular, square, other polygons, slits, etc., and any shape can be used. The thickness of the base material is preferably 2 mm to 20 mm, and must be determined based on the density of the fibers in the base material, the diameter of the fibers, and the expansion ratio and material of the foam. If the base material thickness is less than 2 mm, the impact mitigation effect will be reduced, and if it exceeds 20 mm, the amount of crosslinked viscoelastic material will increase, resulting in little cost advantage and a large compression strain allowance. Undesirable. Next, the crosslinked viscoelastic material will be explained. The crosslinked viscoelastic material referred to in the present invention is liquid at room temperature, and after reacting at room temperature, the cured product retains a solid shape even when heated to 80°C, and has a hardness of It is preferable that the hardness satisfies the condition of 60 or less on the C-type hardness tester shown in the Rubber Association standard SRIS-0101. If the hardness of the crosslinked viscoelastic body of the present invention is 60 or more, it is not preferable because the viscoelasticity is lost and the desired vibration damping effect is reduced. Although the hardness could theoretically be zero, the desired effect can be obtained if the hardness is at least less than 60. In the present invention, it is necessary that the area ratio of the hole to the area other than the hole is 2:8 to 8:2, and if the area ratio is set within this range, a good impact mitigation effect can be obtained. Reactive substances that can satisfy the above conditions include:
Combinations of liquid rubbers having functional groups shown in the table and crosslinking agents can be exemplified. Considering the ease of controlling curing rate, cost, and availability of room-temperature reactivity, these materials have a hydroxyl group at the end and a main chain consisting of polybutadiene, hydrogenated polybutadiene, and polybutadiene. -Nitrile, polybutadiene-styrene, isoprene, etc., polyether polyols, polyester polyols, urethane acrylic polyols, aniline derivative polyols, etc. are preferably used alone or in combination. Further, as the curing agent for the reactive substance, an isocyanate-based curing agent is suitable,
It is necessary to have two or more isocyanate groups per molecule. Specific examples include toluylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate,
Mention may be made of isophorone diisocyanate, a prepolymer having terminal isocyanate groups,
They can be used alone or in combination. or,
Isocyanate curing agents can be used in combination with plasticizers due to problems such as blending ratio and/or viscosity, but the plasticizers must be dehydrated.
It is necessary that it not react with isocyanate compounds.

【表】 上記の常温反応せしめる上での必須成分のみの
組み合せで本発明を満足し得る架橋粘弾性体を得
ることも出来るが、コスト面、作業性面、物性向
上の面で更に各種の添加剤を加えることにより、
幅広い安定した架橋粘弾性物質を得るとが出来
る。 添加剤として、可塑剤、充填剤、瀝青物、粘着
付与樹脂、老化防止剤、防カビ剤、難燃剤、触
媒、界面活性剤、カツプリング剤等が挙げられ
る。 可塑剤は、粘度調整、作業性調整、架橋粘弾性
体の物質調整、難燃性の付与等を目的として配合
される。 可塑剤の具体例として、ナフテン系オイル、パ
ラフイン系オイル、アマロテイツク系オイル、ひ
まし油、綿実油、パインオイル、トール油、フタ
ル酸誘導体、イソフタル酸誘導体、アジピン酸誘
導体、アレイン酸誘導体、液状ゴムの官能基を含
まないもの等があり、単独又は併用して用いるこ
とが出来る。難燃性を要する場合は、ハロゲン化
合物系、リン化合物系可塑剤を単独又は併用して
使用出来る。瀝青物としては、ストレートアスフ
アルト、ブロンアスフアルト、タール等があり、
所望の架橋粘弾性体を得るために、予じめ粘着付
与樹脂や可塑剤で改質して使用することも出来
る。 粘着付与樹脂としては、天然樹脂、ロジン、変
性ロジン、ロジン及び変性ロジンの誘導体、ポリ
テルペン系樹脂、テルペン変性体、脂肪族系炭化
水素樹脂、シクロペンタジエン系樹脂、芳香族系
石油樹脂、フエノール樹脂、アルキルフエノール
−アセチレン系樹脂、キシレン樹脂、クマロン−
インデン樹脂、ビニルトルエン−αメチルスチレ
ン共重合体等を単独又は併用して用いることが出
来る。 充填剤は、振動減衰性、遮音性、難燃性の改善
に効果があり、主剤/硬化剤の配合比率の調整、
粘性の調整、配合コストダウンを計る目的で使用
するものであり、ゴム及び塗料関連で一般に使用
されるものが使用出来る。 その具体例としては、マイカ、グラフアイト、
ヒル石、タルク、クレー等の鱗片状無機粉体、フ
エライト、金属粉、硫酸バリウム、リトポン等の
高比重充填剤、炭酸カルシウム、微粉シリカ、カ
ーボン、炭酸マグネシウム、水酸化アルミ、アス
ベスト等の汎用充填剤を単独若しくは併用して使
用出来る。又、三酸化アンチモン、ホウ砂等を難
燃化を目的として使用することも出来る。 その他の添加剤として老化防止剤、触媒、顔
料、界面活性剤、カツプリング剤、防カビ剤等が
挙げられるが、これ等は必要に応じ添加すること
が出来る。 次に本発明を実施例、比較例により説明する。 表に実施例、比較例を示す。
[Table] Although it is possible to obtain a crosslinked viscoelastic material that satisfies the present invention by combining only the essential components for the room-temperature reaction described above, various additions may be added in order to improve cost, workability, and physical properties. By adding the agent,
A wide range of stable crosslinked viscoelastic materials can be obtained. Examples of additives include plasticizers, fillers, bituminous substances, tackifying resins, antiaging agents, antifungal agents, flame retardants, catalysts, surfactants, coupling agents, and the like. The plasticizer is blended for the purpose of adjusting viscosity, adjusting workability, adjusting the substance of the crosslinked viscoelastic body, imparting flame retardance, and the like. Specific examples of plasticizers include naphthenic oil, paraffinic oil, amarotic oil, castor oil, cottonseed oil, pine oil, tall oil, phthalic acid derivatives, isophthalic acid derivatives, adipic acid derivatives, areic acid derivatives, and functional groups of liquid rubber. There are some that do not contain , and they can be used alone or in combination. When flame retardancy is required, halogen compound-based or phosphorus compound-based plasticizers can be used alone or in combination. Bituminous materials include straight asphalt, blown asphalt, and tar.
In order to obtain a desired crosslinked viscoelastic body, it can be used after being modified with a tackifying resin or a plasticizer in advance. Tackifier resins include natural resins, rosins, modified rosins, derivatives of rosins and modified rosins, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, Alkylphenol - acetylene resin, xylene resin, coumaron -
Indene resin, vinyltoluene-α-methylstyrene copolymer, etc. can be used alone or in combination. Fillers are effective in improving vibration damping properties, sound insulation properties, and flame retardancy, and can be used to adjust the blending ratio of main ingredient/curing agent.
It is used for the purpose of adjusting viscosity and reducing compounding costs, and those commonly used in rubber and paints can be used. Specific examples include mica, graphite,
General-purpose fillings such as scale-like inorganic powders such as vermiculite, talc, and clay, high-density fillers such as ferrite, metal powder, barium sulfate, and lithopone, calcium carbonate, finely divided silica, carbon, magnesium carbonate, aluminum hydroxide, and asbestos. Agents can be used alone or in combination. Moreover, antimony trioxide, borax, etc. can also be used for the purpose of flame retardation. Other additives include anti-aging agents, catalysts, pigments, surfactants, coupling agents, antifungal agents, etc., and these can be added as necessary. Next, the present invention will be explained with reference to Examples and Comparative Examples. Examples and comparative examples are shown in the table.

【表】【table】

【表】 (1) 実施例及び比較例に示す配合処方例に沿つて
主剤を作成し、所定の硬化剤を添加混合し、表
中に記した穴明き基材の穴部に充填し、架橋せ
しめた後、架橋粘弾性体付制振床部材を得た。 実施例1は前記方法にて得られた制振床部材
の上面を5.5t厚の木質複合フローリングに接着
し、下面を2.5t合板に接着し、更に2.5t合板の
下面に2t厚発泡ポリエチレンを接着し測定試料
とした。 実施例2は前記方法にて得られた制振床部材
の上下面に2.5t合板を貼付け、更に上面に5.5t
木質複合フローリングを接着し、下面に更に制
振床部材を接着して測定試料とした。 比較例1は前記方法にて得られた制振床部材
の上面に5.5t厚木質複合フローリングを貼付
け、下面に2.5t合板を貼付け、更に2.5t合板の
下面に2t発泡ポリエチレンを貼付けて、測定試
料とした。 比較例2は前記方法にて得られた制振床部材
の上面に5.5t厚木質複合フローリングを貼付
け、下面に2.5合板を貼付け、更に2.5t合板の下
面に2t発泡ポリエチレンを貼付けて測定試料と
した。 比較例3は前記方法にて得られた制振床部材
の上面に5.5t木質複合フローリングを貼付け、
下面に2.5t合板を貼付け、更に2.5t合板の下面
に2t発泡ポリエチレンを貼付けて測定試料とし
た。 (2) 前記(1)と同様にして得た粘弾性配合物の主剤
と、硬化剤とを所定比率で混合し、12mm×50mm
×50mmの寸法の型枠に流し込み、硬度測定用試
料とした。 室温7日、50℃7日の養生を行なつた後、日
本ゴム協会規格SRIS−0101に定めるC型硬度
計にて硬度の測定をした。 (3) 硬度測定と同様にして得た12mm×50mm×50mm
の試料に架橋粘弾性体面に離型紙を当てて、
500gの荷重をかけて、80℃×24時間静置した
後、徐荷し室温に静置し、目視により4時間後
の変形の大小により判定した。エツジ部のシヤ
ープで変形の少ないものを〇印、エツジ部のシ
ヤープさが無いもの、変形の大いもは×印で表
示した。 (4) 床衝撃音の測定は、150mm厚RCスラブに対
し、前記(1)で作成した試料を貼付けてタツピン
グマシンにより軽量衝撃音を測定した。 測定方法はJIS−A−1418に準じ、第5図に
示す方法とした。 結果は床衝撃音の遮断等級により示した。 (5) 前記(1)で得られた制振床部材を用い、上下
各々2.5tの合板を貼合せ、30cm角の寸法で端部
に1cm2当り10Kgの点荷重を加え、基材部と架橋
粘弾性体部の歪代をチエツクした。 次に前記(1)で得られた制振床部材を用い4mm
×50mm×50mmの寸法で、上下各々2.5tの合板に
貼合せ圧縮試験機により、圧縮速度2mm/min
にて50%圧縮し、30分保持した後、除荷し10分
後の復元性をチエツクした。表示は両者の歪代
の差が1mm以内であり95%以上の復元性を示し
たものを〇印、95%以下のものを×印で表示し
た。 以上より、実施例1は本発明の基材を発泡ポリ
エチレンとした制振床部材を木質複合フローリン
グ材と合板を拘束材として適用した場合であり、
良好な床衝撃緩和効果と床材として必要な圧縮特
性を示している。 実施例2は基材をポポリプロピレン繊維とポリ
エチレン発泡体を積層した場合の制振床部材を二
層に使用した例であり、非常に優れた床衝撃緩和
効果を示し、更に、床材として必要な圧縮特性を
も備えている。 比較例1は架橋粘弾性体を形成する穴部の面積
が本発明の範囲外である場合を示し、圧縮歪が切
断端部で大きくなる点で好ましくない。 比較例2は基材の厚みが本発明の範囲外である
場合を示し、圧縮歪が大であり復元性も悪く床材
としては実部の破壊等の危険性が高く、床衝撃音
の緩和効果が少ない為望ましくない。 比較例3は穴部:穴部以外の基材=9:1の面
積比であり、床衝撃音の緩和効果が少ない事を示
す。
[Table] (1) Prepare a base material according to the formulation examples shown in Examples and Comparative Examples, add and mix the specified curing agent, and fill in the holes of the perforated base material shown in the table. After crosslinking, a vibration damping floor member with a crosslinked viscoelastic body was obtained. In Example 1, the upper surface of the damping floor member obtained by the above method was adhered to a 5.5t thick wood composite flooring, the lower surface was adhered to a 2.5t plywood, and a 2t thick polyethylene foam was further bonded to the lower surface of the 2.5t plywood. It was glued together and used as a measurement sample. In Example 2, 2.5t plywood was attached to the upper and lower surfaces of the damping floor member obtained by the above method, and 5.5t plywood was further attached to the upper surface.
Wood composite flooring was glued on, and a damping floor member was further glued on the bottom surface to prepare a measurement sample. In Comparative Example 1, 5.5t thick wood composite flooring was attached to the upper surface of the damping floor member obtained by the above method, 2.5t plywood was attached to the lower surface, and 2t foamed polyethylene was further attached to the lower surface of the 2.5t plywood, and measurements were taken. It was used as a sample. Comparative Example 2 is a measurement sample in which 5.5t thick wood composite flooring is pasted on the top surface of the damping floor member obtained by the above method, 2.5t plywood is pasted on the bottom surface, and further 2t foamed polyethylene is pasted on the bottom surface of the 2.5t plywood. did. In Comparative Example 3, 5.5t wood composite flooring was pasted on the top surface of the vibration damping floor member obtained by the above method,
A 2.5t plywood was attached to the bottom surface, and a 2t polyethylene foam was attached to the bottom of the 2.5t plywood to serve as a measurement sample. (2) Mix the main ingredient of the viscoelastic compound obtained in the same manner as in (1) above and a curing agent at a predetermined ratio, and form a 12 mm x 50 mm
It was poured into a formwork with dimensions of 50 mm and used as a sample for hardness measurement. After curing for 7 days at room temperature and 7 days at 50°C, hardness was measured using a C-type hardness meter specified in the Japan Rubber Association standard SRIS-0101. (3) 12mm x 50mm x 50mm obtained in the same way as hardness measurement
Apply release paper to the crosslinked viscoelastic material surface of the sample,
After applying a load of 500 g and allowing it to stand at 80°C for 24 hours, it was unloaded, left to stand at room temperature, and was visually judged based on the magnitude of deformation after 4 hours. Those with sharp edges and little deformation are marked with an ○, and those with no sharp edges or large deformations are marked with an x. (4) To measure floor impact sound, the sample prepared in (1) above was attached to a 150 mm thick RC slab, and light impact sound was measured using a tapping machine. The measurement method was in accordance with JIS-A-1418, as shown in FIG. The results were shown in terms of floor impact sound insulation grade. (5) Using the damping floor member obtained in (1) above, 2.5t plywood was pasted on the top and bottom each, and a point load of 10 kg per 1 cm 2 was applied to the end of a 30 cm square, and the base material was The strain margin of the crosslinked viscoelastic material was checked. Next, using the vibration damping floor member obtained in (1) above,
×50mm×50mm, the upper and lower sides were laminated to 2.5t plywood each, and the compression speed was 2mm/min using a compression tester.
After compressing it by 50% and holding it for 30 minutes, it was unloaded and the restorability was checked after 10 minutes. The difference in strain margin between the two was within 1 mm, and those that showed 95% or more restorability were marked with an ○, and those that were 95% or less were marked with an x. From the above, Example 1 is a case where the vibration damping floor member of the present invention whose base material is foamed polyethylene is applied with wood composite flooring material and plywood as restraining materials,
It shows good floor impact mitigation effects and compression properties necessary for flooring materials. Example 2 is an example in which a two-layer vibration-damping floor material is used in which the base material is a laminate of polypropylene fiber and polyethylene foam, and it exhibits an extremely excellent floor impact mitigation effect, and is also necessary as a floor material. It also has excellent compression characteristics. Comparative Example 1 shows a case in which the area of the hole forming the crosslinked viscoelastic body is outside the scope of the present invention, and is not preferable in that the compressive strain becomes large at the cut end. Comparative Example 2 shows a case where the thickness of the base material is outside the range of the present invention, and the compressive strain is large and the restorability is poor, and as a floor material, there is a high risk of destruction of the real part, etc., and it is difficult to reduce floor impact noise. This is not desirable as it has little effect. Comparative Example 3 has an area ratio of hole: base material other than the hole = 9:1, indicating that the effect of mitigating floor impact noise is small.

【表】【table】

【表】 前記の如く、本発明によると、繊維や発泡体
の衝撃緩和効果と架橋粘弾性体の衝撃緩和効果を
利用し、床衝撃音の緩和効果を発揮できる。架
橋粘弾性体の復元性の良さを利用して繊維や発泡
体の欠点である圧縮歪を大幅に改善する事が出来
る。繊維や発泡体から成る基材にあけられた穴
に架橋粘弾性体を形成する事により、架橋粘弾性
体の有効接着面を著るしく増加する事が出来、衝
撃を受けた時の変形による拘束効果及びずり変形
効果により振動エネルギーの吸収効果にすぐれ
る。繊維や発泡体の安価な材質で架橋粘弾性体
の一部を置換える事が出来、材料面でのコストダ
ウンと繊維や発泡体が制振床部材の支持体にもな
り、取扱作業性が良い点で作業効率アツプによる
コストダウンにより汎用の制振床部材として使え
る。制振床部材の厚みが薄くても効果を発揮す
る事が出来、建物の軒高アツプをしなくてすむ為
に建築コストを下げる効果が非常に大きい。繊
維や発泡体を利用する為、断熱効果も利用出来
る。 上記の様なメリツトを生じ、従来より要望の高
い木質フローリング仕上を低コストで可能にした
本発明は工業上の利用価値は大である。
[Table] As described above, according to the present invention, the impact-reducing effect of the fibers and foam and the impact-reducing effect of the crosslinked viscoelastic body can be utilized to exert the effect of alleviating floor impact noise. By utilizing the good restorability of crosslinked viscoelastic materials, compressive strain, which is a drawback of fibers and foams, can be significantly improved. By forming a crosslinked viscoelastic material in a hole drilled in a base material made of fibers or foam, the effective bonding surface of the crosslinked viscoelastic material can be significantly increased, resulting in less deformation due to impact. Excellent vibration energy absorption effect due to restraint effect and shear deformation effect. It is possible to partially replace the cross-linked viscoelastic material with inexpensive materials such as fibers and foams, reducing costs in terms of materials, and the fibers and foams also serve as supports for vibration damping floor members, improving handling workability. The good thing is that it can be used as a general-purpose vibration-damping floor member because it increases work efficiency and reduces costs. Even if the thickness of the damping floor member is thin, it can still be effective, and since there is no need to increase the height of the building's eaves, it is extremely effective in reducing construction costs. Since it uses fibers and foam, it can also have an insulating effect. The present invention, which provides the above-mentioned merits and enables a wood flooring finish that has been more highly desired than before at a low cost, has great industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例品の施工断面を示す
ものであり、上下に板状拘束材を適用した例、第
2図は同じく本発明の一実施例品の施工断面を示
すものであり、仕上材を上側拘束材とし、下側拘
束材を板状拘束材とした例、第3図は同じく本発
明の一実施例品の施工断面を示すものであり、仕
上材を上側拘束材とし、下側拘束材を床版スラブ
とした例、第4図は同じく本発明の一実施例品の
施工断面を示すものであり、上下に板状拘束材を
適用し、更に制振と不陸調整を考慮して下側拘束
材と床版スラブを拘束材として用いて、制振部材
層を2層とした例、第5図は本発明の制振床部材
の実施例品を示す斜視図、第6図は床衝撃音の測
定を行つた装置を示す説明図、第7図A,Bは衝
撃を加えられた方に対する拘束材と基板との関係
を示す説明図である。 1……木質フローリング、2……上側拘束材、
3……穴あき基材、4……架橋粘弾性体、5……
下側拘束材、6……不陸調整材、7……床版スラ
ブ、8……音源室、9……タツピングマシン、1
0……試料、11……床版スラブ、12……受音
室、13……マイクロホン、14……精密騒音
計、15……周波数分析器、16……レベルコー
ダー、17……基板、18……粘弾性体、19…
…拘束材、20……加振方向。
Figure 1 shows a construction cross section of an example product of the present invention, in which plate-like restraining materials are applied to the upper and lower parts, and Figure 2 similarly shows a construction cross section of an example product of the present invention. An example in which the finishing material is an upper restraining material and the lower restraining material is a plate-like restraining material. FIG. Figure 4 shows a construction cross-section of an example product of the present invention, in which plate-like restraints are applied on the upper and lower sides, and further vibration damping and vibration damping are performed. An example in which the lower restraint material and the floor slab are used as restraint materials in consideration of land adjustment, and the damping member layer is two layers. Fig. 5 is a perspective view showing an example product of the vibration damping floor member of the present invention. 6A and 6B are explanatory diagrams showing an apparatus for measuring floor impact sound, and FIGS. 7A and 7B are explanatory diagrams showing the relationship between the restraining material and the substrate for the direction to which the impact was applied. 1...Wood flooring, 2...Upper restraint material,
3... Perforated base material, 4... Crosslinked viscoelastic body, 5...
Lower restraint material, 6... Unevenness adjustment material, 7... Floor slab, 8... Sound source room, 9... Tapping machine, 1
0... Sample, 11... Floor slab, 12... Sound receiving room, 13... Microphone, 14... Precision sound level meter, 15... Frequency analyzer, 16... Level coder, 17... Board, 18 ...Viscoelastic body, 19...
...Restraint material, 20...Excitation direction.

Claims (1)

【特許請求の範囲】 1 穴の面積が0.03cm2〜13cm2の無数の穴明け加工
を施した厚みが2mm〜20mmの繊維若しくは発泡
体、若しくは繊維と発泡体の積層物より成る基材
であつて、穴部、穴部以外の面積比が2:8〜
8:2であり、当該基材の穴部及び/又は全面
に、架橋粘弾性体を形成して成る架橋粘弾性体付
き基材を床構成部材とし、架橋粘弾性体付き基材
の上下に隣接する床構成部材、若しくは上に隣接
する床構成部材と床版とを拘束材とすることを特
徴とする直貼用拘束型制振床部材。 2 穴部及び/又は全面に形成せしめる架橋粘弾
性体が、常温反応性を有する水酸基末端テレキー
リツクポリマーを基本成分とする主剤と、イソシ
アネート基を1分子当り、2個以上有する硬化剤
とを硬化反応せしめて得られたものであることを
特徴とする特許請求の範囲第1項記載の直貼用拘
束型制振床部材。 3 架橋粘弾性体は常温で硬化反応を行ない、そ
の硬化反応後の生成物質が80℃に加温されても固
体形状を保持し、20℃の条件下で硬度が日本ゴム
協会規格SRIS−0101に定めるC型硬度計で60以
下であるという3つの条件を具備する架橋粘弾性
体を形成して成る3つの条件を具備するものであ
る特許請求の範囲第1項記載の直貼用拘束型制振
床部材。
[Scope of Claims] 1. A base material made of fibers or foams, or a laminate of fibers and foams, with a thickness of 2 mm to 20 mm, which has been subjected to innumerable holes with a hole area of 0.03 cm 2 to 13 cm 2 The area ratio of the hole and the area other than the hole is 2:8~
8:2, the base material with a crosslinked viscoelastic body formed by forming a crosslinked viscoelastic body on the hole and/or the entire surface of the base material is used as a floor constituent member, and the base material with a crosslinked viscoelastic body is placed above and below the base material with a crosslinked viscoelastic body. A constraint-type vibration-damping floor member for direct attachment, characterized in that an adjacent floor constituent member or an adjacent floor constituent member and a floor slab are used as constraint members. 2. The crosslinked viscoelastic body formed in the holes and/or the entire surface contains a main ingredient having a hydroxyl group-terminated telechelic polymer that is reactive at room temperature as a basic component, and a curing agent having two or more isocyanate groups per molecule. The restraint-type damping floor member for direct attachment according to claim 1, which is obtained by subjecting it to a curing reaction. 3. The crosslinked viscoelastic material undergoes a curing reaction at room temperature, and the product after the curing reaction retains its solid form even when heated to 80°C, and its hardness at 20°C meets the Japan Rubber Association standard SRIS-0101. The restraint type for direct attachment according to claim 1, which is formed by forming a crosslinked viscoelastic body that satisfies the three conditions of having a hardness of 60 or less on a C-type hardness tester as defined in claim 1. Vibration damping floor components.
JP13811486A 1986-04-24 1986-06-16 Direct adhesive restriction type vibration damping floor member Granted JPS62296058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13811486A JPS62296058A (en) 1986-06-16 1986-06-16 Direct adhesive restriction type vibration damping floor member
US07/039,425 US4803112A (en) 1986-04-24 1987-04-17 Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13811486A JPS62296058A (en) 1986-06-16 1986-06-16 Direct adhesive restriction type vibration damping floor member

Publications (2)

Publication Number Publication Date
JPS62296058A JPS62296058A (en) 1987-12-23
JPH0481020B2 true JPH0481020B2 (en) 1992-12-22

Family

ID=15214283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13811486A Granted JPS62296058A (en) 1986-04-24 1986-06-16 Direct adhesive restriction type vibration damping floor member

Country Status (1)

Country Link
JP (1) JPS62296058A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244927B2 (en) * 2010-02-19 2013-07-24 永大産業株式会社 Wooden floor for shock absorption
JP5244929B2 (en) * 2010-02-19 2013-07-24 永大産業株式会社 Wooden flooring for shock absorption
JP6360663B2 (en) * 2013-08-20 2018-07-18 アイカ工業株式会社 Finishing material

Also Published As

Publication number Publication date
JPS62296058A (en) 1987-12-23

Similar Documents

Publication Publication Date Title
US4803112A (en) Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same
US4303722A (en) Building components
KR20020041407A (en) Compound tile having a natural stone visible face and fabrication process
US6996947B2 (en) Building product using an insulation board
WO1999016984A1 (en) Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition
MX2008002521A (en) Lightweight panel.
CN115279981A (en) Panel for constructing floor or wall coverings
JPH0481020B2 (en)
DE102010003726B4 (en) Flooring bases
JPS61261048A (en) Constraint type vibration-damping floor member
EP0206832A2 (en) Upgrading of composites
JPH0555296B2 (en)
JPH0430508B2 (en)
JPH0448098B2 (en)
JPH0518989B2 (en)
DE202007007372U1 (en) Sound-deadening system for e.g. ceramic tiles and other floor coverings, bonds undersides of tiles adhesively to fibrous damping layer
JPH0546419B2 (en)
JPH0518988B2 (en)
JPH0541431B2 (en)
JPH0448099B2 (en)
JPH04131461A (en) Sound insulating floor material
DE202006000728U1 (en) Floor or wall comprises mineral or ceramic outer surface, adhesive layer and insulating layer containing fibrous support material
JPH116234A (en) Vibration-control and noise-insulating sheet and manufacture thereof, and vibration-control and noise-insulating floor material
JPH08207187A (en) Dampling soundproof material, damping soundproof floor material and production of damping soundproof material
JPH0533614Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees