JPH0541431B2 - - Google Patents

Info

Publication number
JPH0541431B2
JPH0541431B2 JP1086941A JP8694189A JPH0541431B2 JP H0541431 B2 JPH0541431 B2 JP H0541431B2 JP 1086941 A JP1086941 A JP 1086941A JP 8694189 A JP8694189 A JP 8694189A JP H0541431 B2 JPH0541431 B2 JP H0541431B2
Authority
JP
Japan
Prior art keywords
sound
sheet
damping
vibration
insulating sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1086941A
Other languages
Japanese (ja)
Other versions
JPH02265736A (en
Inventor
Hirobumi Kakimoto
Masanori Igaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP1086941A priority Critical patent/JPH02265736A/en
Publication of JPH02265736A publication Critical patent/JPH02265736A/en
Publication of JPH0541431B2 publication Critical patent/JPH0541431B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は制振防音シートに関するものである。 (従来の技術) 従来、住宅又は建築物の内壁材又は外壁材に使
用する遮音材としては合板、石膏ボード又は金属
板に、塩化ビニル系、ゴム系又はアスフアルト系
の遮音シート又は遮音シートとグラスウール、ロ
ツクウール等の吸音材を積層した吸音ボードが用
いられている。 (発明が解決しようとする課題) 従来のボード板は、防音性を上げる為に合板に
貼り合わせる遮音材の厚みを大きくしたり、比重
を上げて面密度を大きくし且つグラスウール、ロ
ツクウール等の吸音材を積層したりする為に、厚
みが大きく且つ重量が大で作業性が悪い欠点を有
し、また、空気伝搬音に対して優れていて衝撃音
又は振動が上階又は下階から伝達し、充分に防音
できない欠点があつた。 (課題を解決するための手段) 本発明は前述の欠点を解消する為、制振、遮
音、吸音特性に優れた制振防音シートを提供する
ことを目的とする。 本発明は単位気泡容積の独立気泡構造体をフイ
ルム状物、発泡シート状物、シート状物、布状物
又は糸状物に固定した独立気泡構造体配設基材シ
ートに所定の間隔をもつて、又はランダムに独立
気泡構造体を配位し、その独立気泡相互間の空間
を、常温で液体であり常温で硬化剤との硬化反応
後の生成物質が80℃に加温されても形状を保持す
る架橋粘弾性体で充填し、硬化させたシート基材
の片面に、遮音シート及び/又は吸音シート又は
両シートの複合材を積層して成ることを特徴とす
る制振防音シートである。 上述の単位気泡の容積は0.005〜10c.c.であるこ
とが好ましい。 本発明の一見地においては、シート基材の他方
の面に一枚以上の板状の拘束材を積層する。この
ように板状の拘束材を積層した制振防音シート
は、制振防音ボードと記すことがあるが、本発明
の制振防音シートに含まれるものである。 板状の拘束材は、第7図に示す如く、両面から
上記制振防音シートをサンドイツチ構造としても
良い。 制振防音シートに用いる遮音シートとしては、
塩化ビニル又は合成ゴムに無機充填材を多量に混
練りして比重を1.5〜3.0に高めたシートと、鉛等
の金属シートと、特願昭63−47537号に記載され
た自己粘着性難燃遮音シートとがあり、自己粘着
性難燃遮音シートが最も好ましい。これは合成ゴ
ム100重量部に対して30〜300μの金属粉100〜500
重量部、粘着付与剤50〜150重量部、難燃剤10〜
100重量部から成り、針入度が20〜200のシートと
補強基材から成る難燃遮音シートである。 本発明に用いる吸音シートとしては、グラスウ
ール、ロツクウール、フエルト、発泡ウレタン等
があり、目的に応じて自由に選択することができ
る。 本発明で云う架橋粘弾性体とは、常温で液状で
あり、常温で硬化剤(架橋剤)と硬化反応した後
の硬化物が80℃に加温されても形状を保持し、20
℃で硬度で日本ゴム協会規格SRIS−0101に示す
C型硬度計で50以下であるものである。また、常
温で反応する粘弾性物質は加熱することにより一
層硬化速度を高めることができ、この性質を利用
して加温して生産効率を向上せしめても良い。こ
のような条件を満足し得る粘弾性体物質として
は、例えば次の第1表に示す官能基を有する液状
ゴムでであり、これ等を同じく第1表に示す官能
基を有する硬化剤と組合せて用いることができ
る。 これ等の粘弾性体を硬化速度の制御の容易さ、
コスト面、入手の容易さ等を含めて考慮すると、
特に水酸基を末端に有し、主鎖がポリブタジエ
ン、水素添加ポリブタジエン、ポリブタジエン−
ニトリル、ポリブタジエン−スチレン、イソプレ
ン等や、ポリエーテルポリオール、ポリエステル
ポリオール、ウレタンアクリルポリオールアニリ
ン誘導体ポリオール等であるものを、単独で又は
併用して用いるのが望ましい。 硬化剤としてはイソシアネート系硬化剤が好適
であり、1分子当り2ケ以上のイソシアネート基
を有することが必要である。その具体例としては
例えば、トルイレンジイソシアネート、ジフエニ
ルメタンジイソシアネート、ヘキサメチレンジイ
ソシアネート、イソホロンジイソシアネート、末
端イソシアネート基を有するプレポリマーを挙げ
ることができ、これ等を単独又は併用して用いる
ことができる。また、イソシアネート系硬化剤は
配合比率及び/又は粘性等の関係で可塑剤と混合
して用いることもできるが、可塑剤は脱水処理し
たものであることとイソシアネート化合物と反応
しないことが必要である。
(Industrial Application Field) The present invention relates to a vibration damping and sound insulating sheet. (Prior art) Conventionally, sound insulation materials used for interior or exterior walls of houses or buildings include plywood, gypsum board, or metal plates, vinyl chloride, rubber, or asphalt sound insulation sheets, or sound insulation sheets and glass wool. Sound-absorbing boards laminated with sound-absorbing materials such as , rock wool, etc. are used. (Problem to be Solved by the Invention) Conventional boards have been manufactured by increasing the thickness of the sound insulating material attached to the plywood in order to improve soundproofing properties, increasing the surface density by increasing the specific gravity, and using sound absorbing materials such as glass wool and rock wool. Because it is made of laminated materials, it has the drawbacks of being thick and heavy, making it difficult to work with.It is also good at resisting air-borne noise, so that impact noise or vibrations are not transmitted from the upper or lower floors. However, it had the disadvantage of not being sufficiently soundproof. (Means for Solving the Problems) In order to eliminate the above-mentioned drawbacks, an object of the present invention is to provide a vibration-damping and sound-insulating sheet having excellent vibration-damping, sound-insulating, and sound-absorbing properties. The present invention relates to a closed cell structure having a unit cell volume fixed to a film-like material, a foamed sheet-like material, a sheet-like material, a cloth-like material, or a thread-like material at predetermined intervals on a closed-cell structure-arranged base material sheet. Or, by randomly coordinating closed cell structures, the spaces between the closed cells are liquid at room temperature, and the product after a curing reaction with a curing agent at room temperature retains its shape even when heated to 80℃. This is a vibration-damping and sound-insulating sheet characterized by laminating a sound-insulating sheet and/or a sound-absorbing sheet, or a composite material of both sheets, on one side of a sheet base material filled with a crosslinked viscoelastic material and cured. The volume of the above-mentioned unit cell is preferably 0.005 to 10 c.c. At first glance, the present invention includes laminating one or more plate-shaped restraining materials on the other side of the sheet base material. A vibration-damping and sound-insulating sheet in which plate-shaped restraining materials are laminated in this manner is sometimes referred to as a vibration-damping and sound-insulating board, and is included in the vibration-damping and sound-insulating sheet of the present invention. As shown in FIG. 7, the plate-shaped restraining material may have a sandwich structure with the vibration damping and sound insulating sheet on both sides. Sound insulation sheets used for vibration damping and sound insulation sheets include:
A sheet made of vinyl chloride or synthetic rubber kneaded with a large amount of inorganic filler to increase the specific gravity to 1.5 to 3.0, a sheet of metal such as lead, and a self-adhesive flame retardant as described in Japanese Patent Application No. 1983-47537. There are sound insulation sheets, and self-adhesive flame-retardant sound insulation sheets are most preferred. This is 100 to 500 parts of 30 to 300μ metal powder per 100 parts by weight of synthetic rubber.
Parts by weight, tackifier 50~150 parts by weight, flame retardant 10~
This is a flame-retardant and sound-insulating sheet consisting of a sheet containing 100 parts by weight and a penetration of 20 to 200 and a reinforcing base material. The sound absorbing sheet used in the present invention includes glass wool, rock wool, felt, urethane foam, etc., and can be freely selected depending on the purpose. The crosslinked viscoelastic material referred to in the present invention is liquid at room temperature, and after a curing reaction with a curing agent (crosslinking agent) at room temperature, the cured product retains its shape even when heated to 80°C.
The hardness at °C is 50 or less on a type C hardness tester specified by the Japan Rubber Association standard SRIS-0101. Further, a viscoelastic substance that reacts at room temperature can further increase its curing speed by heating, and this property may be utilized to improve production efficiency by heating. Examples of viscoelastic substances that can satisfy these conditions include liquid rubbers having the functional groups shown in Table 1 below, which can be combined with curing agents having the functional groups also shown in Table 1. It can be used as The ease of controlling the curing speed of these viscoelastic materials,
Considering cost, ease of acquisition, etc.
In particular, it has a hydroxyl group at the end and the main chain is polybutadiene, hydrogenated polybutadiene, polybutadiene.
It is desirable to use nitrile, polybutadiene-styrene, isoprene, etc., polyether polyol, polyester polyol, urethane acrylic polyol, aniline derivative polyol, etc. alone or in combination. As the curing agent, an isocyanate-based curing agent is suitable, and it is necessary to have two or more isocyanate groups per molecule. Specific examples thereof include toluylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and prepolymers having terminal isocyanate groups, and these can be used alone or in combination. Additionally, isocyanate curing agents can be used in combination with plasticizers depending on the blending ratio and/or viscosity, but the plasticizer must be dehydrated and must not react with the isocyanate compound. .

【表】【table】

【表】 粘弾性体と架橋剤とを常温で反応せしめること
によつて本発明に用い得る架橋粘弾性を得ること
ができるが、コスト面、作業面、物性向上の面で
さらに各種の添加剤を加えることにより幅広い安
定した架橋粘弾性体を得ることができる。 添加剤として可塑剤、充填剤、瀝青物、粘着付
与樹脂、老化防止剤、防カビ剤、難燃剤、触媒、
界面活性剤、カツプリング剤等がある。 可塑剤は粘度調整、作業性調整、架橋粘弾性体
の物性調整、難燃性の付与等を目的として配合す
る。 可塑剤の具体例として、ナフテン系オイル、パ
ラフイン系オイル、芳香族系オイル、ひまし油、
綿実油、パインオイル、トール油、フタル酸誘導
体、イソフタル酸誘導体、アジピン酸誘導体、マ
レイン酸誘導体、官能基を含まない液状ゴム等が
あり、単独又は併用して用いることができる。 難燃性を要する場合はハロゲン化合物系、リン
化合物系可塑剤を単独又は併用して使用できる。 瀝青物としてはストレートアスフアルト、ブロ
ーンアスフアルト、タール等があり、所望の架橋
粘弾性体を得る為、予じめ粘着付与樹脂や可塑剤
等で改質して使用することもできる。 粘着付与樹脂としては、天然樹脂、ロジン、変
成ロジン、ロジン及び変成ロジンの誘導体、ポリ
テルペン系樹脂、テルペン変性体、脂肪族系炭化
水素樹脂、シクロペンタジエン系樹脂、芳香族系
石油樹脂、フエノール樹脂、アルキルフエノール
−アセチレン系樹脂、キシレン樹脂、クマロン−
インデン樹脂、ビニルトルエン−αメチルスチレ
ン共重合体等を単独又は併用して用いることがで
きる。 充填剤は振動減衰性と遮音性難燃性の改善に効
果があり、粘弾性体/硬化剤の配合比率の調整、
粘性の調整、配合コスト低減を図る目的で使用で
きるものであり、ゴム及び塗料関連で一般に使用
されているものが使用できる。 その具体例としてはマイカ、グラフアイト、ヒ
ル石、タルク、クレー等の無機粉体、フエライ
ト、金属粉、硫酸バリウム、リトポン等の高比重
充填剤、炭酸カルシウム、微粉シリカ、カーボ
ン、炭酸マグネシウム、水酸化アルミ、アスベス
ト等の汎用充填剤を単独若しくは併用して使用で
きる。 三酸化アンチモン、ホウ砂等を難燃化を目的と
して添加することもできる。 その他の添加剤として、老化防止剤、触媒、顔
料、界面活性剤、カツプリング剤、防カビ剤等を
必要に応じ、添加することができる。 次に、独立気泡構造体配設基材について説明す
る。 独立気泡構造体配設基材シートは、単位気泡容
積0.005〜10c.c.の独立気泡体をフイルム状物、糸
状物、シート状発泡体、板状物、シート状物に、
多数一定間隔又は不定間隔に固定したものが好ま
しく、第7図及び第8図にその具体例を示した。
固定には粘着剤又は接着剤等を用いることができ
るが、フイルム状物及び/又は独立気泡体の形成
時の付着力を利用して固定することもできる。 独立気泡構造体の袋の部分の材質は、ポリエチ
レン、ポリプロピレン、エチレン−酢酸ビニル共
重合体、塩化ビニル、塩化ビニリデン、ナイロ
ン、ポリエステル、ブチルゴム、天然ゴム、クロ
ロプレン等を単独、併用又は積層して用いること
ができ、これ等に不織布や紙を積層しても良い。
袋の部分の厚みは6mm以下が好ましく、特に2〜
4mmが好ましい。独立気泡構造体の単位気泡は一
定の容積をもつた規則配位(第8図参照)でも不
規則配位(第9図参照)でもよく、単位気泡の容
積は0.005〜10c.c.が好ましい。 独立気泡構造体の凸部の形状は、円柱状、角柱
状、球状、半球状、楕円状等何れでも良く、独立
気泡構造体が形成されれば良い。 架橋粘弾性体を独立気泡構造体配設基材の独立
気泡間に充填した場合、架橋粘弾性体の容積と独
立気泡構造体の空気容積との比率が2:8〜8:
2であることが望ましい。架橋粘弾性体の容積:
独立気泡構造体の空気容積=2:8よりも架橋粘
弾性体の容積が少なくなると、原材料のコストア
ツプとなり、形状復元性も悪くなる。 制振防音ボードに用いる拘束材としては、例え
ば、板厚0.5〜20mmの合板、圧縮紙、プラスチツ
ク板、金属箔板、パーテイクルボード、木片セメ
ント板、フアイバーボード、パルプセメント板、
木毛セメント板、フレキシブル板、軟質フレキシ
ブル板、大平板、石綿セメント板、パーライト
板、石綿セメント珪酸カルシウム板、石膏ボード
等があり、これらは何れも板状であれば表面の化
粧及び加工の有無に拘らず使用できるが、制振防
音ボードの総厚みを小さくする観点からは板厚の
薄いものが望ましい。 防音特性を向上させる為には、拘束材は開口率
が3〜40%であり、一個の有孔の面積が0.003〜
3.5cm2の有孔板であることが望ましい。 本発明の一例においては、有孔板とシート基材
との間に単位開口直径0.1〜200mm網状体を配設す
る。網状体の材質は、ポリエチレン、ポリスチレ
ン、ポリプロピレン、塩化ビニル、エチレン−酢
酸ビニル共重合体、ナイロン、ポリエステル、ガ
ラス繊維、ビニロン、ロツクウール、綿、麻等の
天然又は合成繊維質の基材で、縦糸と横糸が熱融
着されたもの又は接着材で貼り合わせたもの、織
布、不織布等が用いられる。 (作用) 本発明の制振防音シートは、軽量でありなが
ら、独立気泡構造体により貼付け面の固体振動の
伝達を著しく減少できる為、防音性能が優れてい
る。然も架橋粘弾性体の使用により、制振性と圧
縮特性に優れている。 また、遮音シートとして柔軟性に優れ、粘着性
を有し、厚みが1mm以下である自己粘着性難燃遮
音シートを用いることにより、貼付作業性と寸法
安定性に優れ、且つ高比重シートでありながら防
音性に優れ厚みを薄くできる上に、制振防音シー
トの軽量化を達成できる。 板状の拘束材を積層した制振防音シートは、従
来の遮音ボードと比較して軽量で厚みが薄く、制
振防音性能が優れている。 板状体の拘束材として、開口率3〜40%、板厚
0.5〜20mm、単位孔面積が0.003〜3.5cm2の有孔板を
拘束材として用いると、低中域の周波数の改善が
できる。また、有孔板とシート基材との間に孔の
直径が0.1〜20mmの網状体を挿入すると、一層低
中域周波数の音を防音できる。 (実施例) 次に本発明を実施例につきさらに詳細に説明す
る 実施例1〜2及び比較例1 第2表に示す配合組成に従つて主剤と硬化剤を
混合し、独立気泡構造体配設基材の空間部を充填
し、常温で硬化させた。単位気泡の容積は0.3c.c.
であつた。架橋粘弾性体と独立気泡構造体の容積
比は5:5であつた。硬度、80℃形状保持性、常
温反応性を次に記す方法によつて試験した。 (1) 硬度:主剤と硬化剤を混合した後、離型処理
した12mm×50mm×50mmの型枠に流し込み、常温
で反応せしめ、室温7日、50℃7日の養生を行
なつた後、日本ゴム協会規格SRIS−0101に定
めるC型硬度計にて硬度を測定した。 (2) 80℃形状保持性:(1)に示した方法で得た試料
を脱型し、上下面に離型紙を当て50gの荷重を
かけて80℃×24時間静置した後、除荷し、室温
に静置し、目視により4時間後の変形の大小に
より判定した。エツジ部がシヤープで変形が殆
んどないものを〇印、エツジ部のシヤーブさが
無いものと変形の大きいものを×印とした。 (3) 常温反応性:主剤と硬化剤を混合した液を
100c.c.カツプ中に入れ常温で静置し、1日後に
カツプ中全体がゲル化又は硬化しているものを
〇印とし、それ以外のものを×印とした。
[Table] Crosslinked viscoelasticity that can be used in the present invention can be obtained by reacting a viscoelastic body and a crosslinking agent at room temperature, but from the viewpoint of cost, workability, and physical property improvement, various additives may be added. By adding , a wide range of stable crosslinked viscoelastic bodies can be obtained. Additives include plasticizers, fillers, bituminous substances, tackifying resins, anti-aging agents, anti-mold agents, flame retardants, catalysts,
There are surfactants, coupling agents, etc. The plasticizer is blended for the purpose of adjusting viscosity, adjusting workability, adjusting the physical properties of the crosslinked viscoelastic body, imparting flame retardance, etc. Specific examples of plasticizers include naphthenic oil, paraffinic oil, aromatic oil, castor oil,
Cottonseed oil, pine oil, tall oil, phthalic acid derivatives, isophthalic acid derivatives, adipic acid derivatives, maleic acid derivatives, liquid rubbers containing no functional groups, and the like can be used alone or in combination. When flame retardancy is required, halogen compound-based or phosphorus compound-based plasticizers can be used alone or in combination. Bituminous materials include straight asphalt, blown asphalt, tar, etc., and in order to obtain a desired crosslinked viscoelastic body, they can be used after being modified with a tackifying resin, a plasticizer, etc. in advance. Tackifying resins include natural resins, rosins, modified rosins, derivatives of rosins and modified rosins, polyterpene resins, modified terpenes, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, Alkylphenol - acetylene resin, xylene resin, coumaron -
Indene resin, vinyltoluene-α-methylstyrene copolymer, etc. can be used alone or in combination. Fillers are effective in improving vibration damping properties, sound insulation, and flame retardancy, and can be used to adjust the blending ratio of viscoelastic body/curing agent.
It can be used for the purpose of adjusting viscosity and reducing compounding costs, and those commonly used in rubber and paint-related fields can be used. Specific examples include inorganic powders such as mica, graphite, vermiculite, talc, and clay, ferrite, metal powders, barium sulfate, high-density fillers such as lithopone, calcium carbonate, finely divided silica, carbon, magnesium carbonate, and water. General-purpose fillers such as aluminum oxide and asbestos can be used alone or in combination. Antimony trioxide, borax, etc. can also be added for the purpose of flame retardation. As other additives, anti-aging agents, catalysts, pigments, surfactants, coupling agents, antifungal agents, etc. can be added as necessary. Next, the closed cell structure provided base material will be explained. The closed cell structure-equipped base material sheet is made by forming a closed cell structure with a unit cell volume of 0.005 to 10 c.c. into a film, a thread, a sheet foam, a plate, or a sheet.
It is preferable that a large number of them be fixed at regular or irregular intervals, and specific examples thereof are shown in FIGS. 7 and 8.
A pressure-sensitive adhesive or an adhesive can be used for fixing, but it can also be fixed by utilizing the adhesive force when forming a film-like material and/or closed cell. The material for the bag portion of the closed-cell structure may be polyethylene, polypropylene, ethylene-vinyl acetate copolymer, vinyl chloride, vinylidene chloride, nylon, polyester, butyl rubber, natural rubber, chloroprene, etc. alone, in combination, or in a layered manner. It is also possible to laminate non-woven fabric or paper onto these materials.
The thickness of the bag part is preferably 6 mm or less, especially 2 to 2 mm.
4 mm is preferred. The unit cells of the closed cell structure may have a fixed volume and have a regular configuration (see Figure 8) or an irregular configuration (see Figure 9), and the volume of the unit cell is preferably 0.005 to 10 c.c. . The shape of the convex portion of the closed cell structure may be cylindrical, prismatic, spherical, hemispherical, elliptical, etc., as long as a closed cell structure is formed. When the crosslinked viscoelastic body is filled between the closed cells of the closed cell structure-arranged base material, the ratio of the volume of the crosslinked viscoelastic body to the air volume of the closed cell structure is 2:8 to 8:
2 is desirable. Volume of crosslinked viscoelastic body:
If the volume of the crosslinked viscoelastic body is smaller than the air volume of the closed cell structure = 2:8, the cost of raw materials will increase and the shape recovery properties will also deteriorate. Examples of restraining materials used for vibration damping and soundproofing boards include plywood with a thickness of 0.5 to 20 mm, compressed paper, plastic boards, metal foil boards, particle boards, wood cement boards, fiber boards, pulp cement boards,
There are wood wool cement boards, flexible boards, soft flexible boards, large flat boards, asbestos cement boards, perlite boards, asbestos cement calcium silicate boards, gypsum boards, etc. All of these are board-shaped, with or without surface decoration and processing. Although it can be used regardless of the thickness, from the viewpoint of reducing the total thickness of the vibration damping and sound insulating board, a thin board is preferable. In order to improve soundproofing properties, the aperture ratio of the restraining material should be 3 to 40%, and the area of each hole should be 0.003 to 40%.
Preferably a perforated plate of 3.5 cm 2 . In one example of the present invention, a net-like body having a unit opening diameter of 0.1 to 200 mm is disposed between the perforated plate and the sheet base material. The material of the net is a natural or synthetic fiber base material such as polyethylene, polystyrene, polypropylene, vinyl chloride, ethylene-vinyl acetate copolymer, nylon, polyester, glass fiber, vinylon, rock wool, cotton, linen, etc., and the warp A material in which the weft and weft threads are heat-sealed or bonded together with an adhesive, a woven fabric, a non-woven fabric, etc. are used. (Function) Although the vibration damping and sound insulating sheet of the present invention is lightweight, it has excellent sound insulating performance because the closed cell structure can significantly reduce the transmission of solid vibrations on the surface to which it is attached. Furthermore, the use of cross-linked viscoelastic material provides excellent vibration damping and compression properties. In addition, by using a self-adhesive flame-retardant sound insulation sheet that has excellent flexibility and adhesiveness and a thickness of 1 mm or less as a sound insulation sheet, it has excellent application workability and dimensional stability, and is a high specific gravity sheet. However, it has excellent soundproofing properties and can be made thinner, and the weight of the vibration damping and soundproofing sheet can be reduced. A vibration-damping and sound-insulating sheet made of laminated plate-shaped restraining materials is lighter and thinner than conventional sound-insulating boards, and has superior vibration-damping and sound-proofing performance. As a restraining material for plate-shaped bodies, aperture ratio of 3 to 40% and plate thickness
When a perforated plate with a diameter of 0.5 to 20 mm and a unit hole area of 0.003 to 3.5 cm 2 is used as a restraining material, it is possible to improve the low-mid frequency range. Further, by inserting a net-like material with holes having a diameter of 0.1 to 20 mm between the perforated plate and the sheet base material, it is possible to further reduce sound at low and mid-range frequencies. (Example) Next, the present invention will be explained in more detail with reference to Examples Examples 1 to 2 and Comparative Example 1 The base resin and curing agent were mixed according to the composition shown in Table 2, and a closed cell structure was formed. The space in the base material was filled and cured at room temperature. Unit bubble volume is 0.3cc
It was hot. The volume ratio of the crosslinked viscoelastic body to the closed cell structure was 5:5. Hardness, shape retention at 80°C, and room temperature reactivity were tested using the methods described below. (1) Hardness: After mixing the main agent and hardening agent, pour into a mold release-treated 12mm x 50mm x 50mm mold, allow to react at room temperature, and cure for 7 days at room temperature and 7 days at 50°C. Hardness was measured using a C-type hardness meter specified in the Japan Rubber Association standard SRIS-0101. (2) Shape retention at 80℃: Demold the sample obtained by the method shown in (1), apply release paper to the top and bottom surfaces, apply a load of 50g, leave it at 80℃ for 24 hours, and then unload. The specimens were then allowed to stand at room temperature, and the deformation was visually determined after 4 hours. Those with sharp edges and almost no deformation were marked with an ○, and those with no sharp edges or large deformations were marked with an x. (3) Room temperature reactivity: A liquid mixture of the base resin and curing agent is
It was placed in a 100 c.c. cup and allowed to stand at room temperature, and after 1 day, the entire cup had gelled or hardened, which was marked with an ○, and the others were marked with an x.

【表】 第2表から明らかな通り、実施例1及び2の制
振防音シートは本発明の目的を達成できるが、比
較例1の制振防音シートは遮音性能が十分でなか
つた。 かくて得たシート基材の片面に遮音シート及
び/又は吸音シート又は両者の複合材を複合材を
積層して、制振防音シートを得た。 実施例 3〜4 実施例1,2と同一の架橋粘弾性体を用い、単
位気泡の容積が3c.c.であり、架橋粘弾性体と独立
気泡構造体の容積比が4:6である独立気泡構造
体配設基材を用いて、シート基材を製造し、以下
実施例1〜2と同様にして制振防音シートを得
た。 使用例1〜3及び比較例1 実施例1〜3と比較例1の制振防音シートを、
次の第3表に示すように厚さ150mmの普通コンク
リート壁に貼り付けて、遮音性と制振性を試験し
た。 遮音性能は第10図に示す装置を用いて
JISA1416に基づいて測定した。 結果は同じく第3表に示す通りであつた。
[Table] As is clear from Table 2, the vibration-damping and sound-insulating sheets of Examples 1 and 2 were able to achieve the object of the present invention, but the vibration-damping and sound-insulating sheet of Comparative Example 1 did not have sufficient sound insulation performance. A sound-insulating sheet and/or a sound-absorbing sheet, or a composite material of both, was laminated on one side of the sheet base material thus obtained to obtain a vibration-damping and sound-insulating sheet. Examples 3 to 4 The same crosslinked viscoelastic body as in Examples 1 and 2 was used, the volume of the unit cell was 3 c.c., and the volume ratio of the crosslinked viscoelastic body to the closed cell structure was 4:6. A sheet base material was manufactured using the closed cell structure-equipped base material, and a vibration damping and soundproofing sheet was obtained in the same manner as in Examples 1 and 2. Usage Examples 1 to 3 and Comparative Example 1 The vibration damping and soundproofing sheets of Examples 1 to 3 and Comparative Example 1 were
As shown in Table 3 below, it was attached to a 150 mm thick ordinary concrete wall to test its sound insulation and vibration damping properties. Sound insulation performance was measured using the equipment shown in Figure 10.
Measured based on JISA1416. The results were also as shown in Table 3.

【表】 実施例1はシート基材の片面に拘束材として3
mm合板Eを貼り合わせ、他方の面に遮音シートC
と吸音シートD(12.0mm厚のグラスウール)を積
層して成る制振防音ボードを厚さ150mmの普通コ
ンクリートに貼り合わせた例であり、壁体からの
固体振動を防止するだけでなく、低周波域に発生
する共鳴透過による遮音欠損の防止が達成でき
た。 実施例2は拘束材として単位孔面積0.28cm2の有
孔部を有し開口率6.0%の石膏ボードを用いた場
合で、その他の構成は実施例1と同様なものであ
る。制振性能は実施例1と同様であり、遮音性能
として低周波域がさらに防止できた。 実施例3は実施例2に用いた構成に加えて、有
孔板とシート基材との間に単位網開口直径2mmの
網状体を挿入して成るものであり、さらに遮音性
能を向上することができた。 比較例1は、本発明に係るシート基材を設けて
いない場合で、250Hz帯域前後の音の共鳴透過と
2KHz帯域前後のコインシデインス効果により遮
音欠損を生じたボンド工法(GL工法)の例であ
る。 このように、本発明はシート基材が架橋粘弾性
体付独立気泡構造体を有する為、50〜500Hzの低
周波域の振動に対して制振効果が高い為、階上、
階下からの振動の伝搬が防止でき、且つボンド工
法の欠点であつた透過欠損の改善が図れ、さらに
施工上の音性能の安定化を達成でき、低コスト化
が可能である為に経済性にも優れている。 (発明の効果) 本発明の制振防音シートは、制振性と防音性能
が優れていることから壁体の厚みを薄くすること
が可能で、且つ軽量化が図れることから、構造体
の設計にあたつて部材を減少でき、且つ製造時、
運搬時又は建込み時のコストを低減することがで
きる。 本発明の制振防音シートは制振、遮音、防音特
性に優れた制振防音シートとして使用でき、ま
た、土木、建築用の内壁材、外壁材、床材及び天
井材として極めて有用である。
[Table] In Example 1, three layers were used as a restraining material on one side of the sheet base material.
Paste mm plywood E and sound insulation sheet C on the other side.
This is an example of a vibration-damping and sound-insulating board made by laminating sound-absorbing sheet D (12.0 mm thick glass wool) attached to 150 mm thick ordinary concrete, which not only prevents solid vibration from the wall but also suppresses low frequency We were able to prevent sound insulation defects due to resonance transmission occurring in the area. Example 2 is a case in which a gypsum board having a perforated portion with a unit hole area of 0.28 cm 2 and an aperture ratio of 6.0% is used as a restraining material, and the other configurations are the same as in Example 1. The damping performance was the same as in Example 1, and the sound insulation performance was further able to prevent low frequencies. In Example 3, in addition to the configuration used in Example 2, a mesh body with a unit mesh opening diameter of 2 mm was inserted between the perforated plate and the sheet base material, and the sound insulation performance was further improved. was completed. Comparative Example 1 is a case where the sheet base material according to the present invention is not provided, and the resonance transmission and resonance transmission of sound around the 250 Hz band are
This is an example of the bond construction method (GL construction method) that caused sound insulation defects due to the coincidence effect around the 2KHz band. As described above, since the sheet base material of the present invention has a closed cell structure with cross-linked viscoelastic material, it has a high vibration damping effect against vibrations in the low frequency range of 50 to 500 Hz.
It is possible to prevent the propagation of vibrations from downstairs, improve the transmission defects that were a drawback of the bond construction method, stabilize the sound performance during construction, and reduce costs, making it economical. is also excellent. (Effects of the Invention) The vibration-damping and sound-insulating sheet of the present invention has excellent vibration-damping and sound-insulating properties, which makes it possible to reduce the thickness of the wall and also to reduce the weight of the structure. The number of parts can be reduced during manufacturing, and
Costs during transportation or construction can be reduced. The vibration-damping and sound-insulating sheet of the present invention can be used as a vibration-damping and sound-insulating sheet with excellent vibration-damping, sound-insulating, and sound-insulating properties, and is extremely useful as interior wall materials, exterior wall materials, floor materials, and ceiling materials for civil engineering and construction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜7図は夫々本発明の実施例を示すもので
あり、第1図はシート基材と遮音シートとを積層
した制振防音シートの線図的横断面図、第2図は
シート基材と吸音シートとを積層した制振防音シ
ートの線図的横断面図、第3図はシート基材に遮
音シートと吸音シートとを積層した制振防音シー
トの線図的横断面図、第4図は第3図の制振防音
シートの他方の面に板状の拘束材を積層した制振
防音ボードの線図的横断面図、第5図は第3図の
制振防音シートの他方の面に有孔板を積層した制
振防音ボードの線図的横断面図、第6図は第5図
の制振防音ボードの有孔板とシート基材との間に
網状体を挿入した制振防音シートの線図的横断面
図、第7図は第3図の制振防音シートを板状の拘
束材でサンドイツチ構造とした制振防音ボードの
線図的横断面図、第8図〜9図は本発明に係るシ
ート基材の線図的斜視図、第10図は遮音性能の
測定に用いた装置のブロツク線図、第11〜13
図は夫々本発明の制振防音シートの使用例を示す
線図的縦断面図、第14図は本発明外の制振防音
シートの比較使用例を示す線図的縦断面図、第1
5図はオクターブバンド中心周波数と平均音圧レ
ベル差との関係を示す特性線図、第16図は基材
シートに配位した単位気泡構造体の間に充填した
架橋粘弾性体との相互関係を示す説明用略図であ
る。 1…シート基材、2…遮音シート、3…吸音シ
ート、4…板状の拘束材、5…有孔板、6…網状
体、7…独立気泡構造体、8…架橋粘弾性体、9
…精密騒音計、10…1/3オクターブ分析器、1
1…高速度記録計、12…音源室、13…受音
室、14…音源側マイク、15…受音側マイク、
16…スピーカー、17…ノイズフイールドゼネ
レーター、A…3mm厚の合板の拘束板、B…4.0
mm厚のシート基材、C…遮音シート、D…12.0mm
厚のグラスウール、E…有孔板、F…網状体、G
…厚さ150mmの普通コンクリート壁、H…GLボン
ド、I…プラスターボード。
Figures 1 to 7 show examples of the present invention, respectively. Figure 1 is a diagrammatic cross-sectional view of a vibration damping and sound insulating sheet in which a sheet base material and a sound insulating sheet are laminated, and Figure 2 is a diagrammatic cross-sectional view of a sheet base material and a sound insulation sheet. Fig. 3 is a diagrammatic cross-sectional view of a vibration-suppressing and sound-insulating sheet in which a sound-insulating sheet and a sound-absorbing sheet are laminated on a sheet base material; Figure 4 is a diagrammatic cross-sectional view of a vibration-damping and sound-insulating board in which a plate-shaped restraining material is laminated on the other side of the vibration-damping and sound-insulating sheet in Figure 3, and Figure 5 is the other side of the vibration-damping and sound-insulating sheet in Figure 3. Figure 6 is a diagrammatic cross-sectional view of a vibration damping and sound insulating board in which a perforated board is laminated on the surface of the board, and a mesh body is inserted between the perforated board and the sheet base material of the vibration damping and sound insulating board in Figure 5. Fig. 7 is a diagrammatic cross-sectional view of a vibration-damping and sound-insulating sheet, and Fig. 8 is a diagrammatic cross-sectional view of a vibration-damping and sound-insulating board in which the vibration-damping and sound-insulating sheet shown in Fig. 3 is made into a sandwich structure using plate-shaped restraining materials. Figures 9 to 9 are diagrammatic perspective views of the sheet base material according to the present invention, Figure 10 is a block diagram of the apparatus used to measure sound insulation performance, and Figures 11 to 13.
14 is a diagrammatic longitudinal sectional view showing an example of use of the vibration damping and sound insulating sheet of the present invention, FIG. 14 is a diagrammatic longitudinal sectional view showing a comparative usage example of a vibration damping and sound insulating sheet other than the invention,
Figure 5 is a characteristic diagram showing the relationship between the octave band center frequency and the average sound pressure level difference, and Figure 16 is the interaction with the crosslinked viscoelastic material filled between the unit cell structures coordinated on the base sheet. FIG. DESCRIPTION OF SYMBOLS 1... Sheet base material, 2... Sound insulating sheet, 3... Sound absorbing sheet, 4... Plate-shaped restraining material, 5... Perforated plate, 6... Reticular body, 7... Closed cell structure, 8... Crosslinked viscoelastic body, 9
...Precision sound level meter, 10...1/3 octave analyzer, 1
1...High-speed recorder, 12...Sound source room, 13...Sound receiving room, 14...Sound source side microphone, 15...Sound receiving side microphone,
16...Speaker, 17...Noise field generator, A...3mm thick plywood restraint plate, B...4.0
mm thick sheet base material, C...sound insulation sheet, D...12.0mm
Thick glass wool, E...perforated plate, F...reticular body, G
...150mm thick ordinary concrete wall, H...GL bond, I...plaster board.

Claims (1)

【特許請求の範囲】 1 単位気泡容積の独立気泡構造体をフイルム状
物、発泡シート状物、シート状物、布状物又は糸
状物に固定した独立気泡構造体配設基材シートに
所定の間隔をもつて、又はランダムに独立気泡構
造体を配位し、その独立気泡相互間の空間を、常
温で液体であり常温で硬化剤との硬化反応後の生
成物質が80℃に加温されても形状を保持する架橋
粘弾性体で充填し、硬化させたシート基材の片面
に、遮音シート及び/又は吸音シート又は両シー
トの複合材を積層して成ることを特徴とする制振
防音シート。 2 遮音シートが針入度20〜200のシートと補強
基材とから成る厚みが1mm以下の自己粘着性難燃
遮音シートである請求項1記載の制振防音シー
ト。 3 シート基材の他方の面に板状の拘束材を1枚
以上積層した請求項1又は2記載の制振防音シー
ト。 4 板状の拘束材として開口率3〜40%、板厚
0.5〜20mm、単位孔面積が0.003〜3.5cm2である有孔
板を用いた請求項3記載の制振防音シート。 5 有孔板とシート基材との間に直径0.1〜20mm
の網状体を配設した請求項4記載の制振防音シー
ト。 6 単位気泡容積は0.005〜10c.c.である請求項1
記載の制振防音シート。 7 前記架橋粘弾性体は常温で液体であり、常温
で硬化剤との硬化反応後の生成物質が80℃に加温
されても形状を保持し、20℃で硬度が日本ゴム協
会規格SRIS−0101に定めるC型硬度計で50以下
である請求項1記載の制振防音シート。 8 前記架橋粘弾性体の容積と独立気泡構造体の
空気容積との比率は2:8〜8:2である請求項
1記載の制振防音シート。
[Scope of Claims] 1. A closed-cell structure-equipped base sheet in which a closed-cell structure with a unit cell volume is fixed to a film-like material, a foamed sheet-like material, a sheet-like material, a cloth-like material, or a thread-like material has a predetermined structure. Closed cell structures are arranged at intervals or randomly, and the spaces between the closed cells are filled with a material that is liquid at room temperature and that is produced after a curing reaction with a curing agent at room temperature and is heated to 80°C. A vibration-damping and sound-insulating device characterized by laminating a sound-insulating sheet and/or a sound-absorbing sheet, or a composite material of both sheets, on one side of a sheet base material filled with a cross-linked viscoelastic material that retains its shape even when the material is hardened. sheet. 2. The vibration-damping and sound-insulating sheet according to claim 1, wherein the sound-insulating sheet is a self-adhesive flame-retardant sound-insulating sheet having a thickness of 1 mm or less and comprising a sheet with a penetration degree of 20 to 200 and a reinforcing base material. 3. The vibration damping and sound insulating sheet according to claim 1 or 2, wherein one or more plate-shaped restraining materials are laminated on the other surface of the sheet base material. 4 Opening ratio 3-40%, plate thickness as a plate-shaped restraining material
The vibration damping and sound insulating sheet according to claim 3, using a perforated plate having a diameter of 0.5 to 20 mm and a unit hole area of 0.003 to 3.5 cm 2 . 5 Diameter 0.1 to 20 mm between perforated plate and sheet base material
5. The vibration-damping and sound-insulating sheet according to claim 4, further comprising a net-like body. 6. Claim 1, wherein the unit cell volume is 0.005 to 10 c.c.
The vibration damping and soundproofing sheet listed. 7 The crosslinked viscoelastic body is liquid at room temperature, and the product formed after a curing reaction with a curing agent at room temperature retains its shape even when heated to 80°C, and has a hardness at 20°C that meets the Japan Rubber Association standard SRIS- The vibration damping and sound insulating sheet according to claim 1, which has a hardness of 50 or less on a C-type hardness tester defined in 0101. 8. The vibration damping and sound insulating sheet according to claim 1, wherein the ratio of the volume of the crosslinked viscoelastic body to the air volume of the closed cell structure is 2:8 to 8:2.
JP1086941A 1989-04-07 1989-04-07 Vibration-damping and soundproof sheet Granted JPH02265736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086941A JPH02265736A (en) 1989-04-07 1989-04-07 Vibration-damping and soundproof sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086941A JPH02265736A (en) 1989-04-07 1989-04-07 Vibration-damping and soundproof sheet

Publications (2)

Publication Number Publication Date
JPH02265736A JPH02265736A (en) 1990-10-30
JPH0541431B2 true JPH0541431B2 (en) 1993-06-23

Family

ID=13900895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086941A Granted JPH02265736A (en) 1989-04-07 1989-04-07 Vibration-damping and soundproof sheet

Country Status (1)

Country Link
JP (1) JPH02265736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211442A (en) * 2011-03-30 2012-11-01 Yamamoto Emiko Soundproof sheet and soundproof material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027068B2 (en) * 2001-10-11 2007-12-26 昭和電線デバイステクノロジー株式会社 Sound absorbing material
JP2003150170A (en) * 2001-11-09 2003-05-23 Showa Electric Wire & Cable Co Ltd Sound absorbing and vibration damping material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211442A (en) * 2011-03-30 2012-11-01 Yamamoto Emiko Soundproof sheet and soundproof material

Also Published As

Publication number Publication date
JPH02265736A (en) 1990-10-30

Similar Documents

Publication Publication Date Title
US4803112A (en) Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same
EP1149691B1 (en) Honeycomb core material for sandwich structure and method for manufacturing the same
US4303722A (en) Building components
WO2009103420A1 (en) Sound-absorbent foam system
WO1997011925A1 (en) Inorganic-organic composite foam and process for the production thereof
JPH0637099B2 (en) Vibration control panel
JPH0541431B2 (en)
WO1999002468A1 (en) Inorganic/organic composite foam and process for producing the same
EP0922568A1 (en) Arid-polymer construction material
JPS62296058A (en) Direct adhesive restriction type vibration damping floor member
JP3652968B2 (en) Insulating incombustible material, method for manufacturing the same, and construction method for insulative incombustible wall
JP4220347B2 (en) Honeycomb core material for sound absorbing structure and manufacturing method thereof
JPH09131824A (en) Damping soundproof material
JPH0546419B2 (en)
JPH0512130B2 (en)
JPH0562652B2 (en)
JPH0430508B2 (en)
JPH0518989B2 (en)
JP2004252083A (en) Honeycomb core material for sandwich structure, and sound isolation panel
JPH116234A (en) Vibration-control and noise-insulating sheet and manufacture thereof, and vibration-control and noise-insulating floor material
JP3148680B2 (en) Manufacturing method of inorganic-organic composite foam
JP2004291478A (en) Honeycomb core material and sound insulating material for sandwich construction body
JPS59226014A (en) Production of soundproofing material
JPS63114755A (en) Direct adhering restriction type vibration damping floor member
KR100263022B1 (en) Manufacturing method sound arrester

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees