JPS58205124A - Reflecting and refracting telephoto lens - Google Patents

Reflecting and refracting telephoto lens

Info

Publication number
JPS58205124A
JPS58205124A JP57087886A JP8788682A JPS58205124A JP S58205124 A JPS58205124 A JP S58205124A JP 57087886 A JP57087886 A JP 57087886A JP 8788682 A JP8788682 A JP 8788682A JP S58205124 A JPS58205124 A JP S58205124A
Authority
JP
Japan
Prior art keywords
lens
group
lens group
focal length
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57087886A
Other languages
Japanese (ja)
Other versions
JPH0318162B2 (en
Inventor
Kiyoshi Hayashi
清志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP57087886A priority Critical patent/JPS58205124A/en
Publication of JPS58205124A publication Critical patent/JPS58205124A/en
Publication of JPH0318162B2 publication Critical patent/JPH0318162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0852Catadioptric systems having a field corrector only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0884Catadioptric systems having a pupil corrector

Abstract

PURPOSE:To obtain a compact, high-performance telephoto lens, by arranging the 1st convergent lens group, the 2nd divergent lens group movable on an optical axis, and the 3rd convergent lens group successively in the traveling direction of a beam, and allowing them to meet specific requirements. CONSTITUTION:The lens system consists of the 1st convergent lens group G1 including a reflecting member L12, the 2nd divergent lens group G2 movable on the optical axis, and the 3rd lens group G3 successively in the traveling direction of a light beam. The 1st lens group G1 and the 2nd lens group G2 form a nearly afocal system in an infinite-distance in-focus state and a body at a close distance is put in focus by moving the 2nd lens group G2 to the image side, satisfying inequalities I and II. In the inequalities, f1 anf f2 are the focal lengths of the 1st group G1 and the 2nd group G2 and (f) is the total focal length of the system.

Description

【発明の詳細な説明】 本発明は反射屈折型望遠レンズ、特に近距離収差変動の
少ない合焦方式を採用したものVC関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catadioptric telephoto lens, particularly a VC that employs a focusing method with little variation in near-field aberrations.

35■判カメラ用レンズとして焦点距離が250−以上
の望遠レンズをコンパクト化する一合、しばしば反射屈
折型レンズ系が採用される。反射屈折型レンズ系を用い
ることにより、望巡比(焦点距離に対する最前レンズl
から11 fi tでの距離の比)が0.3以下の小型
なレンズが実現でき、操作上大変有利であり、更に収差
的には、色収差が発生しにくいという利点がある。この
ような反射属折皺レンズVζ於ける合焦方式としては、
従来■全体〈り出し方式、■2つの反射面の間隔を変え
る方式、■2つの反射面の間隔を一定に保ちつつ波力レ
ンズ群との間隔を変える方式等が知られてい名。
In order to make a telephoto lens with a focal length of 250 mm or more compact as a lens for a 35-inch camera, a catadioptric lens system is often adopted. By using a catadioptric lens system, the magnification ratio (the front lens l relative to the focal length)
It is possible to realize a compact lens with a distance ratio of 0.3 or less (distance ratio from 11 fit to 11 fit), which is very advantageous in terms of operation, and has the further advantage that chromatic aberration is less likely to occur. The focusing method for such a reflective folding lens Vζ is as follows:
Conventional methods include: (1) total projection method, (2) changing the distance between the two reflecting surfaces, and (2) changing the distance between the two reflecting surfaces while keeping the distance between them constant and the wave power lens group.

具体的には、例えば特開昭50−161143号公ME
開ホされているごとく、反射屈折型レンズは、大きく分
けて光の進行方向より順次、前群屈折系(ic、  )
N第1反射糸(R1)、第2反射系(i)、後群屈折系
(K、)の4つの部分より構成される。1g1図に%−
昭50−151143号公報に記載された反射屈折型レ
ンズの構成及び軸上無限遠物点からの光−を示し次。こ
こで、前記■の全体くり出し式合焦方式とはに諺 +R
1”R1+K。
Specifically, for example, JP-A-50-161143 ME
As you can see, catadioptric lenses are broadly divided into front group refractive systems (IC, ) sequentially from the direction of light propagation.
It is composed of four parts: the N first reflection thread (R1), the second reflection system (i), and the rear group refraction system (K,). %- in 1g1 figure
The configuration of the catadioptric lens described in Publication No. 151143/1983 and light from an object point at infinity on the axis are shown below. Here, what is the above-mentioned whole-extension focusing method? +R
1”R1+K.

金糸を物体側へ移動させて合焦を行なう方式であり、■
の反射面間隔を変える方式とはR1父はR1+ic、に
対してR3又はR,十に*t−41動させて合焦を行な
う方式であり、■の方式とは上記公報に開示され友発明
であり、Kl ”R1”a、とに鵞の…j隔を変化させ
て合焦を行なう方式である。
This method focuses by moving the gold thread toward the object, and ■
The method of changing the interval between reflective surfaces is a method in which R1 is focused by moving R3 or R10*t-41 with respect to R1+ic, and method (2) is disclosed in the above publication and is a friend invention. This is a method in which focusing is performed by changing Kl ``R1''a and the distance between the two.

次に以上のような従来知られている反射屈折レンズの合
焦方式について概観してみる。
Next, we will give an overview of the conventionally known focusing methods of catadioptric lenses as described above.

■の全体〈り出し式合焦方式は、被写体が無限遠位置よ
り近距離へくるとその焦点位置はレンズ後方へ伸びてい
くが、単純にその増加分だけ、レンズ系全体音物体側に
くり出して、その葎面位nt tフィルム面上へもって
ゆくもので、反射屈折型レンズに限らず一般の写真用レ
ンズでは蝋もひろくまわれているものでbる。このくり
出しJltX’とすると x /は近似的に x’ #f” / (R2f ) ”・(a)但し、f
:レンズの焦点距離 R:@写体とフィルム面間距離 で表わされる。反射屈折機レンズでは焦点距Mfの長い
ものがほとんどであシ、とのく9出し皺は、焦点距触が
長くなればなる程惚めて大きな菫となっていくので、機
械的にも長大な練り出し慎婢を必要とし複雑な機械構造
が要求芒れる。又近距融物体に合焦した際の盆長の変化
も憾めて大きくなり、レンズの保丁寸バランスも変化し
、操作性の1からも、レンズのコンパクト化の面からも
不利であることは明らかである。次に■の反射面間隔を
変える方式については、反射屈折レンズでは、蝋も多く
採用されている方式でおる。R1又はRI”Kts及び
R1又はR,+に、は大変強いパワーを持っているので
、合焦の瞳のくり出し蓋は、惨めて少なくて析む。しか
し7次の点で問題が残る。先ず、全体〈り出しの場合で
もそうであるが、径の大きなレンズ朴を動かすことにな
るので、移動機傅が大きくなシ、操作性の面からも好ま
しくない、更に製作上の問題も有する。この方法だと、
最も1ii1i精W、を要求される反射面を動かすこと
になるので、反射面に偏心が生じ、光学性能が、大きく
劣化してしまう11能性が^い。この■の方法を採用す
る場合、この反射面の回心精度Il!:確保するために
1金物部品の精度、硝子部品の精度を相当に厳しくせね
ばならず、加工上も製作コスト上も好ましくない。加え
てパワーの強い1? を動かす場合、それ自体で収差の
変動が起る。焦点距離の長いレンズでは、無限遠に近い
状態で最良となるように収差の補正がなされるが、強い
パワーをもった絆で8焦する時には、この関係が少しの
移動で大巾にくずれる。従って、近距離の収差変動、吟
に球面収差の変動はある程度は避は得ない。
■Overall With the extended focusing method, when the subject moves from an infinity position to a closer distance, the focal position extends toward the rear of the lens, but the entire lens system is simply extended toward the sound object side by that increase. The film is then brought to the surface of the film, and wax is also widely used in general photographic lenses, not just catadioptric lenses. If this extraction is JltX', then x / is approximately x'
: Lens focal length R: @Represented by the distance between the subject and the film surface. Most catadioptric lenses have a long focal length Mf, and the longer the focal length, the larger the violet, so it is mechanically long. It requires great care and modesty, and a complex mechanical structure is required. Furthermore, the change in barrel length when focusing on a short-range molten object also becomes large, which changes the lens's dimensional balance, which is disadvantageous both in terms of operability and in terms of making the lens more compact. That is clear. Next, regarding the method (2) of changing the spacing between reflective surfaces, this method is often used with wax in catadioptric lenses. R1 or RI"Kts and R1 or R, + have very strong power, so the protruding lid of the focusing pupil is pitifully small and the focus remains. However, the seventh point remains a problem. First, As is the case even in the case of taking out the entire lens, since the large-diameter lens pin must be moved, the moving mechanism is large, which is not desirable from the viewpoint of operability, and there are also manufacturing problems. With this method,
Since the reflective surface, which requires the most precision, must be moved, the reflective surface is likely to become decentered and the optical performance will be greatly degraded. When this method (■) is adopted, the conversion accuracy of this reflecting surface Il! :In order to ensure this, the precision of the metal parts and the precision of the glass parts must be made considerably strict, which is unfavorable in terms of processing and manufacturing costs. In addition, a powerful one? When moving, the aberration itself changes. With a lens with a long focal length, aberrations are best corrected when the lens is close to infinity, but when using a lens with strong power and 8 focal lengths, this relationship can be drastically disrupted by a small amount of movement. Therefore, aberration fluctuations at short distances, especially fluctuations in spherical aberration, are unavoidable to some extent.

駁改に上記特開昭50−151143号公報に開示さt
しているに、  +)t、+R,とに、のJuJ噛倉変
える方式であるが、これは、被写体距艦の変化による、
K、  十R,+R,の焦点立直の変化分だけに、  
十R,+R,をくり出して合焦するものであるおこの方
法は、反射r用r相対的に移動させずに済むので、■の
場打より有利であるが、移動#KI  +R,+lL。
The revision was disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 50-151143.
This is a method of changing the JuJ Kamikura for +)t, +R, but this is due to changes in the subject range ship.
Due to the change in focus of K, 10R, +R,
This method, which involves focusing by moving #KI +R, +l, is more advantageous than the spot shot (①) because it does not require relative movement of r for reflection r.

の神つ燕点距虐は、上記公報にdC−され次実!M例に
見られる如く、尚々f/137程度である。
The God of Enlightenment is dC-ed in the above publication and is the next real thing! As seen in the M example, it is still around f/137.

これは■の全体くり出し式と比較すれば撮影至近距喝t
lofとしてくシ出し量はV41!廣になる。しかも実
際には、形状の大きな移動紳に、+R,+R,の方を固
定し、K、+カメプボディ一本体を一体としてくり下げ
て&焦ケ行なうので、ファインダーをのぞきながらの合
焦作条では、大変都合が悪い。
If you compare this with the whole projecting type shown in ■, the shooting distance is much shorter.
Lof and combing amount is V41! Becomes wide. Moreover, in reality, +R and +R are fixed in a large moving body, and the K and + camera bodies are lowered and focused as one unit, so when focusing while looking through the viewfinder, It's very inconvenient.

杢冗明は以上述べた諸欠点を解決し、撮影敢至近距離を
短縮し、しかも合焦移動群の形状も合焦移動量も大変小
さく、近距離性1ヒの劣化も大変少ない、コンパクトで
藺性能な反射屈折型望遠レンズを提供することを目的と
する。
The Moku Jakumei solves the above-mentioned drawbacks, shortens the close-up distance required for shooting, and is compact, with a very small shape and amount of focusing movement, and very little deterioration in close-range performance. The purpose of the present invention is to provide a catadioptric telephoto lens with excellent performance.

本発明による反射屈折!l!l望遠レンズは、光線の進
行方向より一次、反射部材を含む収斂性の第1群(Gl
 )%発散性第2レンズ解(Gt )、収斂性第3レン
ズ群(G、)の3つの抑よシ構成し、無限遠合焦状態で
縞ルンズa(Gt)と第2レンズ群(G、)とで、はぼ
7フオーカル系を形成し、より近距離の被写体へ合焦す
る除、第2レンズ胛(Gt )を像側へ移動させるもの
でおる。そして第1収斂群(G、)と絹2発散群<at
 )とで#1は7フオーカル系を形成するという条件か
ら、t=ts ” (fs /−t* ’)、・・・・
−(b)但し、fl :第1群G、の焦点距離 f、:第2第2雪G雪点距離 1、:第3軒amの焦点距離 が導かれ、各群はこの関係式1klkたさね)jなりな
い。
Catadioptric refraction according to the invention! l! A telephoto lens has a convergent first group (Gl
)% divergent second lens group (Gt), convergent third lens group (G, ), and when focused at infinity, the fringe lens a (Gt) , ) to form a 7-focal system, and in addition to focusing on a subject at a closer distance, the second lens blade (Gt) is moved toward the image side. And the first convergent group (G, ) and the silk second divergent group <at
) and #1 forms a 7-focal system, t=ts ” (fs /-t*'),...
-(b) However, fl: focal length f of the first group G,: focal length of the second snow G, snow point distance 1,: focal length of the third eave am is derived, and each group is determined by this relational expression 1 klk Sane)j It doesn't happen.

rなわち、本発明は収斂9発数、収斂の3硅傳成からな
り、2つの収斂#間の完敗群の移動により合St行なう
という点で、基本的ンcFi丑計第1050813−吋
と同一であり、これt反引屈折型レンズ系に応用し友も
のである。しかしながら上記の特許の実施例は屈υ丁水
のみからなる一a;tルンズであるのに対し、+発明で
は第1群を反射屈折系で構成する九めiC着群の構成は
全く異なり、本発明の反射屈折観望、遠レンズと[7て
は各群への)でワー配置1′こついて以下の条件を満足
しなければならない。
That is, the present invention consists of 9 convergence shots, 3 convergence experiments, and the combination St is performed by moving the complete defeat group between the two convergence #s, which is different from the basic cFi system No. 1050813-2. They are the same, and can be applied to a retrorefractive lens system. However, in the embodiment of the above patent, the structure is 1a;t, which is made up of only bending water, whereas in the + invention, the structure of the 9th iC group, in which the first group is composed of a catadioptric system, is completely different. In the catadioptric viewing system of the present invention, the distance lens and the warp arrangement 1' must satisfy the following conditions.

(1)  o、o 7 fs <l ft l <0.
18 f+(2)  0.20f  < f、  <0
.5Ofここで、f、、f、は第1群(G、)及び嬉2
群(G2 )の原点距離をそれぞれ表わし、IはtiA
c/)燕、近距離を身わす。
(1) o, o 7 fs <l ft l <0.
18 f+(2) 0.20f < f, <0
.. 5OfHere, f,,f, is the first group (G,) and the second group
Each represents the origin distance of the group (G2), and I is tiA
c/) Swallow, uses close range.

このような本発明による反射屈折型望遠レンズの構成に
おいては、flに記する実施例で具体的に示されるとお
り、所だの近鉗離物捧eこ合焦するための第2群の移動
像は、従来の合焦方式による場合よシも小さくすること
ができる。また、合焦のための町動鮮としての第2奸は
、大きな口径のレンズ及び反射面を何する第1#に比べ
てかなり小さいレンズ禾であるから、この第2#を動か
す為の力も議で≠み、機械的構造も簡単にすることがで
きる。
In the configuration of the catadioptric telephoto lens according to the present invention, as specifically shown in the embodiment described in fl, the movement of the second lens group for focusing is necessary in some places. The image can be much smaller than with conventional focusing methods. In addition, the second lens for focusing is a lens with a large aperture and a much smaller lens than the first lens, which has a reflective surface, so the power to move this second lens is also required. The mechanical structure can also be simplified.

そして、#!1紳(G1 )と縞3群(G、)との中間
に位置するレンズ群が41IwJするので、合焦の際の
レンズ全長の変化が全くなく、比幀的小さなレンズ群の
みが移動するためレンズの保持バランスが変化しない。
and,#! The lens group located between the 1st lens group (G1) and the 3rd group (G,) is 41IwJ, so there is no change in the overall length of the lens during focusing, and only the comparatively small lens group moves. The lens holding balance does not change.

更に、反射光学系の生命である反射面は合焦に際[7不
動であるから合焦による偏心も生ずることがなく、光学
性能維持の面でも大変都合がよい。
Furthermore, since the reflective surface, which is the lifeblood of a reflective optical system, does not move during focusing, eccentricity due to focusing does not occur, which is very convenient in terms of maintaining optical performance.

そして、収差的にも近距離収差変動の極めて少ない反射
屈折光学系が実現できる。
In addition, a catadioptric optical system with very little variation in short-range aberrations can be realized.

以下、上記の条件式の意義を説明する。The meaning of the above conditional expression will be explained below.

条件式(1)は収差構造上の意味だけでなく、徐@L慣
造上の意味【も持っている。反射光学系の口I励#+は
、機械構造を簡単にする為に、できるだけ像面側に寄せ
て配置したい。反射系に物欲している部分の光学系を保
持してφるm−の内側(物体貴)にこの会焦町動群が深
く配置されてしまうと、それt−動かす機械構造も暖祿
にせざるに4#ない。条件式(1)の上限會外れると第
1p(at  )に対するM2群(G、)のパワーが小
さくなり、前記(b)式を満たす為に、合焦#を反射鋭
部の内側探〈配置せねばならず、械械慣造上大変不利に
なる。
Conditional expression (1) has not only a meaning in terms of aberration structure but also a conventional meaning. In order to simplify the mechanical structure, the opening I excitation #+ of the reflective optical system should be placed as close to the image plane as possible. If this focusing movement group is placed deep inside the m- (object) that holds the optical system of the part that wants to be reflected in the reflection system, the mechanical structure that moves it will also be warm. There is no #4 in the colander. If the upper limit of conditional expression (1) is exceeded, the power of the M2 group (G,) with respect to the first p(at) becomes small. This is extremely disadvantageous in terms of mechanical engineering.

亡(2てレンズ全長も増大する方向でありレンズのコン
パクト化、操作性からも不利となる。
Second, the total length of the lens also increases, which is disadvantageous in terms of compactness and operability of the lens.

(1)式の下限を外れると逆に第1群(Gl)&C几べ
第2#F(Gl  )のパワーが強くなり、発敗紳と」
7ての纂z*(am)で発生する高次収慶が増大ブる。
If the lower limit of formula (1) is exceeded, the power of the 1st group (Gl) & C 2nd #F (Gl) will become stronger, and the result will be a failure.
The higher-order convergence that occurs at the 7th point z*(am) increases.

特に像面湾曲球面収差には^久の曲りが発生し、もれや
補正不能となシ、近距離の収差変動も大きく増大して(
−まう。
In particular, the curvature of field causes spherical aberration, which causes leakage and cannot be corrected, and aberration fluctuations at short distances greatly increase (
-Mau.

しかも第2g+(clを射出する斜光束が九−となす角
が犬きくなシこの几め後方レンズ群の口径の増大も招自
、この点からもレンズのコンパクト化、操作性の(3)
で不利である。
Moreover, the angle that the oblique light beam emitted from the 2nd g+(cl) makes with 9- is very narrow, which also leads to an increase in the aperture of the rear lens group, which also makes the lens more compact and improves operability (3).
It is disadvantageous.

そしてペッツバール1r口も大きく負になり止り向への
像面湾曲と非点隔差も着しくなる。
The Petzval 1r aperture also becomes large and negative, and the curvature of field in the direction of the stop and the astigmatism become more difficult.

条件式伐)は丑に球面収差とその近距な変動及び合)I
A群としての第28Pの移鯛蓋にIAするものである。
The conditional expression) is the spherical aberration and its short-range fluctuation, and the combination) I
This is for IA to the 28th P. transfer sea bream cover as Group A.

上Vit外れると全系のパワーに対する第−i群(cl
 )のパワーが弱くなり、合焦の為の第2群(G、)の
移動kが種卵゛する。従って、M2&i”(G1 )と
第as(as)との空気間11Nを大きくとらねばなら
ず、ft、4糸の全長は増大し、第2#(G1)で開数
された斜光束を第3群(aS )は光軸より離れ、1よ た位置で受けることになるので後方のレンズ口径が増大
[7、光学系のコンパクト化、操作t、hの面で1しく
不利となる。逆&C下@會外れると、全系のパワーに対
するmxs(Gt  )のパワーが強くなり、この群と
しての明るさが不足する。従って^次の球面収差の発生
が看しくなり、もはや十分な補正ができなくなる。父、
球面収差の近距離変動が敏しく、本発明の目的を達成し
得なくなる。
If the upper Vit is off, the -i-th group (cl
) becomes weaker, and the movement k of the second group (G, ) for focusing becomes seeded. Therefore, it is necessary to increase the air gap 11N between M2&i'' (G1) and the as (as), and the total length of the 4th thread (ft) increases, and the oblique light flux calculated by the 2nd # (G1) is changed to the The third group (aS) is far away from the optical axis and is received at a position 1 yo, so the rear lens aperture increases [7, which is disadvantageous in terms of compactness of the optical system and operations t and h. &C Bottom @ When the system is out of focus, the power of mxs (Gt) becomes stronger relative to the power of the entire system, and the brightness of this group becomes insufficient.Therefore, the occurrence of ^-order spherical aberration becomes a problem, and sufficient correction is no longer possible. I won't be able to do it.Father,
Short-range fluctuations in spherical aberration are so rapid that the object of the present invention cannot be achieved.

以上述べたように、条件式(1) 、 (2) を満足
することにより、コンパクトで、無限遠撮影から主近距
離撮影まで、すぐれた鮎儂性能を有する操作性も大変よ
い反射屈折型レンズを得ることがaT能である。ここで
史に前記条件式で決足される基本的なパワー配置を有効
にする為の各群の具体的レンズ構成について述べておく
As stated above, by satisfying conditional expressions (1) and (2), a catadioptric lens that is compact, has excellent ayu-shi performance from infinity photography to close-up photography, and is very easy to operate. Obtaining is the ability of aT. Here, we will discuss the specific lens configurations of each group in order to make effective the basic power arrangement determined by the above conditional expressions.

収斂性の嬉IN’(G、)は光−の進行方向より1誠に
ts1屈折成分(Pi  )、第1反射成分(Q+ )
 、M2反□射成分(Ql )、第2屈折成分(P、)
の矢)別して4つの群によυ構成されている。第一屈折
成分(Pl )は少なくとも一枚の正レンズを含んで構
成され、第1&峠第2反射成分(Qs  ) (Qm 
)は表面反射−を用いる場合や、屈折面を伴う裏面反射
鏡で構成される。jg1反射成分(Ql  )は光@全
中心として、一部をくり抜いて唆ったり、又は中心部の
み反射面を設けず、透過面とし、その面を共用とし友す
して使用する。
The convergent light IN' (G,) is the ts1 refraction component (Pi) and the first reflection component (Q+) from the traveling direction of the light.
, M2 reflection component (Ql), second refraction component (P, )
) It is divided into four groups. The first refractive component (Pl) is composed of at least one positive lens, and the first and second reflective component (Qs) (Qm
) is constructed using a front-surface reflection mirror or a back-reflection mirror with a refractive surface. The jg1 reflected component (Ql) is set as light@total center, and a part is hollowed out, or only the central part is provided with a transmitting surface without a reflective surface, and that surface is shared and used as a companion.

第2反射成分(Q、)としては、M1m折成分(P、)
のレンズより像−にレンズを貼り付けて反射九を設は念
り、第1屈折成分(P、)よシ物体側にレンズを貼り付
けて反射thIt設け、光路長をかせぐようにすること
ができる。
As the second reflection component (Q,), the M1m refraction component (P,)
It is possible to attach a lens closer to the image than the first refraction component (P) to provide reflection thIt, and to increase the optical path length by attaching a lens closer to the object side than the first refraction component (P). can.

第2屈折成分(P、)は通常2ン3枚のレンズで構成さ
れ嬉1反・射成分(Q、)の中心部fr第2屈折成分<
p鵞 )のレンズとして便りとともできる。
The second refractive component (P,) is usually composed of two or three lenses, and the center part of the first reflected/reflected component (Q,) is the second refractive component <
It can be used as a lens for news.

第2軒である発散群(G雪 )は大きく分けて前群(G
mt)、後群(G□)との2つの部分より構成される。
The second eaves, the divergent group (G snow), can be roughly divided into the front group (G snow).
mt) and the rear group (G□).

前群(q、)及び波鮮(G、)は少なくとも1枚の凹レ
ンズを言み、1110群の少なくとも一方は貼り合わせ
レンズか父は金棒として凹のパワーを持ち凸レンズと凹
レンズが僅かな空気間隔を隔てて相対している色消しの
要素を待つことが望ましい。この第2#(Gt)では%
に球面収差の色変化の補正をするので、前群(Gt1)
K:色消し要本を持たせる方が幼来的である。この第2
%pcついては以下の条件式を満足することが望ましい
The front group (q,) and the wave lens (G,) refer to at least one concave lens, and at least one of the 1110 groups is a laminated lens, or the father is a metal rod with concave power, and the convex and concave lenses have a slight air gap. It is desirable to wait for achromatic elements that are opposite to each other across. In this second #(Gt), %
Since the color change due to spherical aberration is corrected, the front group (Gt1)
K: It would be more childish to have a colorless key book. This second
Regarding %pc, it is desirable to satisfy the following conditional expression.

(3)  0.65<lft*l/ 1ftl<1.8
5(4) ν  −ν 〉12 a        b 但し、f□ :第2群の後群(CWt) を構成する凹
レンズの焦点距離 ν1 :第2解中の色消レンズエレメ ントの内命レンズのアツベ数 νb :M2N中の色消レンズエレメ ントの内凹レンズのアラへ数 条件式(3)はコマ収差と色収差に関するもので、下[
k外れるとg241f−の後群(G□)の負レンズのパ
ワーが彌〈なり、斜光束の内、周辺部に入射する光線に
対する発散作用が強くなり、コマ収差の非対称成分が増
大してしまう、逆に上限を外れると嬉2群の@s(cw
t)の中の負レンズ成分が相対的に強くなる為、色消し
効果が−〈なり、倍率の色収差の出角による変動が発生
してしまう0条件式(4)は球面収差の色変化に関する
もので、条件式の範囲外で硝子の選択を行なうと、色消
しタノ釆會確保する為に1色消し面の曲率半径をきりく
せねばならず、尚次の球面収差の色変化が発生してしま
う。
(3) 0.65<lft*l/ 1ftl<1.8
5(4) ν −ν 〉12 a b However, f□: Focal length ν1 of the concave lens constituting the rear group of the second group (CWt): Atsube number of the endogenous lens of the achromatic lens element in the second solution νb: Ara of the internally concave lens of the achromatic lens element in M2N Conditional expression (3) relates to comatic aberration and chromatic aberration, and the lower [
If K is off, the power of the negative lens in the rear group (G□) of g241f- becomes distorted, and the divergence effect on the rays incident on the peripheral part of the oblique light beam becomes stronger, increasing the asymmetric component of coma aberration. , on the other hand, if it falls outside the upper limit, the happy 2nd group @s (cw
Since the negative lens component in t) becomes relatively strong, the achromatic effect becomes -〈, and the chromatic aberration of magnification varies depending on the output angle. Conditional expression (4) relates to the color change of spherical aberration. However, if the glass is selected outside the range of the conditional expression, the radius of curvature of the one achromatic surface must be cut off in order to ensure an achromatic potion, and the following color change due to spherical aberration will occur. I end up.

第3群である収斂5(clは大きく分けて前群(aSS
)と後# (Gss )  との2つの部分よりm成さ
れる。両部分群とも少なくとも1枚の正レンズと少なく
とも1枚の負レンズ倉せむ2枚以上のレンズで構成され
る。、、後#は負又は正で比較的小さなパワーを待ち、
lit!(3)湾曲と倍率の色収差が主に補正される。
The third group, convergence 5 (cl, is roughly divided into the front group (aSS
) and the rear #(Gss). Both subgroups are composed of two or more lenses including at least one positive lens and at least one negative lens. ,, after # wait for a relatively small power with negative or positive,
lit! (3) Curvature and chromatic aberration of magnification are mainly corrected.

前群− については第3解中のほどんどのパワーに貝、、:1 担し、像面湾曲、非点収差の補正が主になされる。又次
の条件式t−満足することが望ましい。
The front group has most of the power in the third solution, and mainly corrects field curvature and astigmatism. It is also desirable that the following conditional expression t- be satisfied.

(5)  α75くf□/fs<1.4(6)  IN
  −Nnl  >  0.25但し、f、1:第3#
P中前群の焦点距離Np :第3#中前抑の正レンズの
d −@I/C対する屈折率 Nユ :第3鼾中前群の負レンズのd −一に対する屈折率 条件式(5)の上限倉外れると第3群中、前群のとるパ
ワーが弱くなり、第3群で発散した斜光束に対する収斂
作用が弱くなり、後玉径の増大を招き、かつ纂3群とし
ての一遠比も大きくなり、全長の増大につながり、好ま
しくない。逆圧下限を外れると前群のパワーは強くなり
、躬3群としての望遠比は小さく小型な構成となるが、
後群の負のパワーも増大し、ペッツバール和は負に増大
する。従って正の11#1fIJpII曲が祐生し、非
点隔皮も増大する。条■・ Yl一式(6)もペッツバール和に関するもので、条件
式の範囲外の屈折率の硝子で構成するとペッツバール和
は負方向に増大しやはシ正の像面湾曲が発生し、非点隔
査も増大する。
(5) α75kuf□/fs<1.4 (6) IN
-Nnl > 0.25 However, f, 1: 3rd #
Focal length Np of the P middle front group: Refractive index of the positive lens of the 3rd # middle front group with respect to d -@I/C Nyu: Refractive index of the negative lens of the 3rd middle front group with respect to d -1 If the upper limit of 5) is exceeded, the power of the front group in the third group becomes weaker, the convergence effect on the oblique light beam diverged in the third group becomes weaker, the rear lens diameter increases, and the power of the front group becomes weaker. The distance ratio also increases, leading to an increase in the total length, which is not desirable. When the lower limit of back pressure is exceeded, the power of the front group increases, and the telephoto ratio of the third group becomes small, resulting in a compact configuration.
The negative power of the rear group also increases, and the Petzval sum increases negatively. Therefore, the positive 11#1fIJpII song becomes active and the astigmatism also increases. Article ■・Yl set (6) also relates to the Petzval sum; if the glass is made of glass with a refractive index outside the range of the conditional expression, the Petzval sum will increase in the negative direction, and positive field curvature will occur, resulting in astigmatism. Spare inspections will also increase.

以下本発明による実施例について説明する。Examples according to the present invention will be described below.

いずれの実施例も35mm−嶽しフカメラ用として焦点
距−fヰ1000m、Fナンバー11t−有している。
Each of the embodiments has a focal length of 1000 m and an F number of 11t for use with a 35 mm camera.

@1実施例は嬉2図のレンズ構成図に示すごとく、第1
群(G、)はit屈折成分(P、)としての正レンズ(
L、)、gt反射成分(Q、)としての凹のlk向反射
面を有するメニスカスレンズ(Llり、負レンズと正レ
ンズとの貼合せからなりJ2反射部材(G2)として凸
の裏面反射面を有するメニスカスレンズ(Llm)から
なり、メニスカスレンズ(Lts)#iagz屈折成分
(P8 )としての機能も兼ねて−る。第zavt(a
m  )は前群(Glt)としての両凸正レンズと崗凹
負レンズとが貼合されたメニスカスレンズ(L!I)、
後#(G□)としての両凹負レンズ(Let)からなり
、H3鮮(G1 )は物体間により曲率の強い面を向け
た正レンズ(La+)ト負レンズ(Lll)とからなる
前群(G1)、及び物体−により曲率の強い面を向けた
正レンズ(L、3) と鐵−に凸面を向けた負メニスカ
スレンズ<Lsa) とからなる後#(Gs−で構成さ
れている。同、第2図中には本発明に↓る構成を理解し
易くするために、軸上無限尾物点からの鉤縁光&1!を
記入した。この第1大IRMガでqよ耐2反射成分(9
重 )及び第2屈仇成分(P8)としてのメニスカスレ
ンズ(Lts)k貼合せとすることKよって縞1群(1
;、 )としての色消しを行ない、第2群(G2 )で
は前柱に貼合せレンズ(L□)Tk収1Jて弔2 B+
とじての色消しを行ない後群に貝り早−レンズ(L□)
t−設け、簡単な構成としだ。また第3群(G、)の後
群では、物捧謁1こ止レンズ(Ll3)、像側に負レン
ズ(Lea)k設けることによりレンズ系後部の口径を
小さくできる。
In the @1 embodiment, as shown in the lens configuration diagram in Figure 2, the first
The group (G,) is a positive lens (
L, ), a meniscus lens (Ll) with a concave lk-direction reflective surface as the gt reflective component (Q,), consisting of a negative lens and a positive lens laminated together, and a convex back reflective surface as the J2 reflective member (G2) It also functions as a meniscus lens (Lts) #iagz refraction component (P8).
m) is a meniscus lens (L!I) in which a biconvex positive lens and a granite-concave negative lens are laminated together as the front group (Glt);
The front group consists of a double-concave negative lens (Let) as the rear # (G□), and the front group of the H3 lens (G1) consists of a positive lens (La+) with a surface with a stronger curvature facing the object and a negative lens (Lll). (G1), and a rear lens (Gs-) consisting of a positive lens (L, 3) with a surface with a strong curvature facing the object and a negative meniscus lens <Lsa) with a convex surface facing the iron. In the same figure, in order to make it easier to understand the configuration of the present invention, the hook-edge light &1! from the infinite tail object point on the axis is written.In this first large IRM moga, q and resistance 2 Reflection component (9
) and the meniscus lens (Lts) as the second bending component (P8).
;, ), and in the second group (G2), the lens (L□) is bonded to the front column.
Achromatization is performed at the end of the closing process, and the rear lens is quickly opened (L□).
It has a simple configuration. Further, in the rear group of the third group (G), the aperture of the rear part of the lens system can be made small by providing a stop lens (Ll3) and a negative lens (Lea) on the image side.

第2実ぬグリは第3図に2バすごとく、第1群(G、)
及び第3#(c、、)の構成は第1夷4列と同僚である
が、第2#(Gm)の前群を互いに分離され九両凸正レ
ンズ(Lll)  と両凹負レンズ(Lll)  とで
構成したものである。
The second fruit Nugri is the first group (G,) with 2 bars in Figure 3.
The configuration of the 3rd # (c, ,) is the same as the 1st 4th column, but the front group of the 2nd # (Gm) is separated from each other and consists of a nine biconvex positive lens (Lll) and a biconcave negative lens ( Lll).

5g3実施例は第4図に示すごとく、第1軒(G、)の
第1反射成分(Q、)として表面反射部材(Lsa)t
−用いた。この反@部材(I4t)はレンズ表面に急増
による反引間で形成するのみではなく、全域製の反射−
で構成することもできM、量化することがムエ庇である
As shown in FIG. 4, the 5g3 embodiment uses a surface reflective member (Lsa) t as the first reflection component (Q,) of the first eave (G,)
-Used. This anti-@ member (I4t) is not only formed on the lens surface by an anti-spa due to rapid increase, but also a reflection of the entire area.
It can also be composed of M, and quantification is Mue eaves.

そして、第1屈折成分(Pl )としての止メニスカス
レンズ(Lll)の物体側に肉凹員レンズ(Llm) 
 t、111111に正メニスカスレンズ(Lsa)k
それぞれ貼合せ、両凹負レンズ(tns)の物体側のl
fiを反射向として第2反創成分(ql)1に形成して
いる。また、第2組折成分として結合せ正し□ンズ(L
tt)  及び1 m111Jに凸ll0t向けたメニス″゛カスレンズ(
Ltt)を加えることにより$1s(cz  )として
のより良好な色mし及び諸収差の補正を達成している。
Then, on the object side of the stop meniscus lens (Lll) as the first refractive component (Pl), there is a concave lens (Llm).
t, positive meniscus lens (Lsa) k at 111111
laminated, object side l of biconcave negative lens (TNS)
The second reaction component (ql) 1 is formed with fi as the reflection direction. In addition, as the second set fold component, the combined correct □ lens (L
tt) and a meniscus lens (
By adding Ltt), better color correction and correction of various aberrations as $1s (cz) are achieved.

第2群(G、)は正レンズ(Lll)、貼合せ負レンズ
(Ltt)、中心厚がかなシ厚い負レンズ(Lo)から
なり、各レンズは嬉lt?(Gl  )のm1反反引成
としての反射部U(Ltt)の中心開口より像側に位置
している7′cK)、m(1%(G、)と第29(Gり
とycおける瘉過比が大きくな9全長がやや兼くなるが
、第2朴t−移動させる几めの慣造が簡幣であり製作上
は有利である。
The second group (G,) consists of a positive lens (Lll), a laminated negative lens (Ltt), and a thick negative lens (Lo) with a thick center. 7'cK), m (1% (G,) and 29th (G) located on the image side from the center aperture of the reflecting part U (Ltt) as m1 anti-induction of (Gl) Although the overall length of 9, which has a large diameter ratio, is somewhat long, it is advantageous in terms of manufacturing because the customary structure of moving the second block is simple.

第4夷鵬例は第5図のごとく、第1群(G、)中の第2
反創成分としてのメニスカスレンズ(Ltt)の貼合せ
tiot除き、第2屈折成分として色rA Lのための
貼合せ正メニスカスレンズ(Ln)1に設けたものであ
る。第2軒(G、)及び第3群(G、)の構成は前記の
第1実施例と同様である。
The fourth example is the second one in the first group (G,), as shown in Figure 5.
Except for the laminated meniscus lens (Ltt) as a retraction component, the laminated positive meniscus lens (Ln) 1 for color rA L is provided as a second refractive component. The configurations of the second eaves (G,) and the third group (G,) are similar to those of the first embodiment.

第5実lIa例は第6図のごとく、第2群(Gt)+1
1 中の削# (Get) t’正レンズ(L□)と貼合せ
嵐レンズ(Lll>  とで構成し、後1t’P (G
1りを貼会せ員レンズ(Lll)で構成したものであり
、これにより^次の球面収差をも良好に補正されている
。MIN(Gl )及び第2紳(Gl )の構成は#!
4実施例と同様である。
In the fifth real example IIa, as shown in Fig. 6, the second group (Gt) +1
1 Middle cut# (Get) Consists of t' positive lens (L□) and laminated storm lens (Lll>, rear 1t'P (G
1 is constructed with a laminated lens (Lll), which also satisfactorily corrects ^-order spherical aberration. The composition of MIN (Gl) and second gentleman (Gl) is #!
This is the same as in the fourth embodiment.

第6実翔例はM7図のごとく、第2爵(GlJ中の後群
1r瞬−員レンズで構成したものでろり、また第3群(
G、)の恢# (Get )  とL7て、懺備に凸面
を向は九負メニスカスレンズ(Lss)の彼方に正レン
ズ(Ln4)  を設けたものである。
The 6th actual example, as shown in figure M7, is composed of a rear group 1r instantaneous lens in the 2nd group (GlJ), and the 3rd group (
As a result of G, ) and L7, a positive lens (Ln4) is provided on the other side of a nine negative meniscus lens (Lss) with a convex surface facing the center.

第7実施例は第8図のごとく第6実施例とほぼ同様の構
成であるが、各群の屈yr力が比較的小さくなっておシ
、それだけ全米の形状が大形化するが収差補正上は有利
でろる。
The seventh embodiment has almost the same configuration as the sixth embodiment as shown in Fig. 8, but the bending force of each group is relatively small, and the overall shape becomes larger, but the aberration correction is corrected. The top is advantageous.

第8実施例は第9図のごとく、第1硅(G1)、第3群
(Gt )の構成は第6図の第5火り別と同様であるが
、−lfi2群(G1)の挾群倉率−の負レンズで構成
したものである。
In the eighth embodiment, as shown in FIG. 9, the structure of the first ring (G1) and the third group (Gt) is the same as that of the fifth frame shown in FIG. 6, but the -lfi second group (G1) is It is composed of a negative lens with a negative Gunkura ratio.

次に各実施例の諸元を示す。各表中、圓査号は物体から
入射する光線の通るi−序1&わし、屈折率n及び7ツ
ベ数νはdIw(λ=587.6%m)に対する値であ
る。
Next, the specifications of each example will be shown. In each table, the round sign is the i-order 1 & eagle through which the rays incident from the object pass, and the refractive index n and the 7-beam number ν are the values for dIw (λ=587.6%m).

第l実施例 焦点距離f口1000  Fナンバー11バックフォー
カスBj=51β3 g2実施例 焦点距離fば1000  Fナンバー11バックフォー
カスBfに75J8 第3実施例 第4実施例 焦点距pi!f=1000Fナンバー11バックフォー
カスBf=7!67 第5実施例 焦点距l@If=iooorナンバー11バックフォー
カスBf= 7123 第6実施例 焦点距離f−1000Fナンバー11 バックフォーカスB、=41jl 焦点距離f=100OFナンバー11 バックフォーカスBf = 41.10第8実施例 焦点距離f=1000  Fナンバー11バックフォー
カスBf =6凹9 )+記各実施例における前記条件式の対応厘を下♂くに
小す。
1st embodiment focal length f aperture 1000 F number 11 back focus Bj = 51β3 g2 embodiment focal length f 1000 F number 11 back focus Bf 75J8 3rd embodiment 4th embodiment focal length pi! f = 1000F number 11 back focus Bf = 7!67 5th embodiment focal length l@If = iooor number 11 back focus Bf = 7123 6th embodiment focal length f - 1000F number 11 back focus B, = 41jl focal length f = 100 OF number 11 back focus Bf = 41.10 8th embodiment focal length f = 1000 F number 11 back focus Bf = 6 concave 9 )

1・・Is!441図にボした公九例としての特開昭5
0−151143号公檜に開7トされた反射#+I t
lr 4 !−i’、 濾レンズの4几も併せて掲げて
おく。
1...Is! Unexamined Japanese Patent Application Publication No. 5, 1987 as a common nine example shown in Figure 441
0-151143 Publication No. 7 Reflection #+I t
lr4! -i', I will also list the 4 types of filter lenses.

公知例(%開昭5O−151143) 焦点距jlli f = 1000  Fナンバー10
バックフォーカスB(=51.35 上記第1−第8実施例の諸収差図を順に第1O図〜第1
7図に示す。各図の(2)は無限遠物体への合焦状態で
あC1(B)は撮影倍率β=−〇、2の至近距離物体へ
の合焦状態である。
Known example (% Kaisho 5O-151143) Focal length jlli f = 1000 F number 10
Back focus B (=51.35 The various aberration diagrams of the above-mentioned 1st to 8th embodiments are sequentially shown in Figures 1O to 1.
It is shown in Figure 7. In each figure, (2) is a state in focus on an object at infinity, and C1(B) is a state in focus on an object at a close distance with an imaging magnification β=-0 and 2.

ま九Sph  は球面収差、ムat  は非点収差、D
%−は歪曲収差f:表わす。そして、918図(4)及
び@)には比較のため前1%島昭50−151143号
公報に開示された反射屈折型望遠レンズの無限遠物体合
焦状態及び撮影倍率β= −0,2の至近距離物体への
合焦状態における祷収差図を示す。
Sph is spherical aberration, Mut is astigmatism, D
%- represents distortion aberration f:. For comparison, Figure 918 (4) and @) show the infinity object focusing state and photographing magnification β = -0,2 of the catadioptric telephoto lens disclosed in the previous 1% Shima Publication No. 151143/1983. This shows an aberration diagram when the lens is focused on a close-range object.

各収差図から、本発明による反射屈折型望造レンズは無
限遠は勿論、近距@に対しても凌れた結1象性能t−罐
持していることが明らかである。待にJ@18図(4)
(B)に示した公知例のものとの比較から、本発明によ
る反射屈折朧朦憑レンズが無限遠に対しても至近距1[
c対1 しても−I−優れていることが判る。しかも、無限遠合
焦状態から撮影倍率β−−0,2の至近距廟合焦状態オ
でに必要な&焦群の移動量は、下表の如く、特開昭50
−151145号公報のものの14以下と極めて小さい
From each aberration diagram, it is clear that the catadioptric lens according to the present invention has excellent focusing performance not only at infinity but also at close distances. Waiting for J @ Figure 18 (4)
A comparison with the known example shown in (B) shows that the catadioptric lens according to the present invention has a close range of 1 [
It can be seen that -I- is excellent even when the ratio is c to 1. Furthermore, the amount of movement of the focusing group required from the infinity focus state to the close focus state with the photographing magnification β-0.2 is as shown in the table below.
-151145, which is 14 or less, which is extremely small.

合焦群の移動量 廿「土貴のでf(−「惰宵−耐−t[−1−号t113
号 以上のように1本発明によれば合焦のためには光学系の
中の小さなレンズ群のみをわずに動かすだけでよくコン
パクトでしかも無通から近距離まで、良好な結儂性能を
持つ一反射屈折型望遠レンズが実現できる。物に一射屈
折レンズ系は、焦点距離の長い超望遠ンズに採用される
場合が、多いので、本発1は大変有効である。
Amount of movement of the focusing group ``Toki no de f(-``Nayoi-Tai-t [-1-No. t113
As mentioned above, according to the present invention, in order to focus, it is only necessary to move the small lens group in the optical system, and it is compact and has good convergence performance from non-contact to short distances. It is possible to create a catadioptric telephoto lens with a single catadioptric lens. Since single-stroke refractive lens systems are often used in super-telephoto lenses with long focal lengths, the present invention 1 is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特開昭50−151143号公報〕反号公報型
望遠レンズの構成及び軸上無限座物点からの光#I!を
示す。第2図は本発明の一41実施例を示すレンズ構成
図、jIa図は第2夾IMガのレンズ構成図、第4図は
第3実施/lJのレンズ構成図、第5図は第4実施例の
レンズ構成図、第6図は第5実施例のレンズ構曳図、第
7図は第6実施例のレンズ構成図、48図は第7実施例
のレンズ構成図、Ise図U第8実施例のレンズ構成図
、@10〜第17図に第1〜第8実施例の諸収差を示し
くA)は無限遠物体への合焦状態、Φ)は撮影倍率!=
 −0,2の至近距離物体への合焦状態、第18図は特
開昭50−151143号公報に開示され食反射屈折盟
望遠レンズのM収差図で偽)は無限遠物体への合焦状態
、(B)は撮影憎率β=−0,2の至近距離物体への合
焦状11!AJk示す。 〔1安部分の符号の説明〕 G、 第1群           2G鵞  JIz
群                    −G、 
 第3評           承□ 132− SPh          Ast B) Sph       Asi rs  r s 第11図 (△) Sph       Ast CB) Sph      Ast is is 牙72図 (△) 、5’、l)/1       Ast(8) phAsf IS rs オフ30 (A) Sph       Ast (B) spハ          八5t −(L)OL)    (7,5(/−050IQ、5
0i3 rs −2,5002,50 千/4シ (A) Sph           A5f (8) Sph       Ast is ls オフ5図 (A) 3Ph          Ast CB) iS IS ;776図 (△) S ph          A sf:(B) 3ph          As−t is IS 士17  図 (A) Sph       Ast SpHAst −u、:u   u    v、l    050 0
    θyBS IS す18図 (八) phAst CB) Sph      Ast  i s is
Figure 1 shows the configuration of a telephoto lens of the type disclosed in Japanese Patent Application Laid-Open No. 50-151143 and the light #I from an infinite axial object point! shows. Fig. 2 is a lens configuration diagram showing the 141st embodiment of the present invention, jIa is a lens configuration diagram of the second IM lens, Fig. 4 is a lens configuration diagram of the third embodiment/lJ, and Fig. 5 is a lens configuration diagram of the 41st embodiment of the present invention. FIG. 6 is a lens configuration diagram of the fifth embodiment. FIG. 7 is a lens configuration diagram of the sixth embodiment. FIG. 48 is a lens configuration diagram of the seventh embodiment. Lens configuration diagrams of the embodiments, @Figures 10 to 17 show various aberrations of the 1st to 8th embodiments. A) is the state in focus on an object at infinity, and Φ) is the photographing magnification! =
-0,2 focusing state on a close-range object, Figure 18 is an M aberration diagram of an eclipsing catadioptric telephoto lens disclosed in Japanese Patent Application Laid-open No. 50-151143 (false) is focusing on an object at infinity. State, (B) is a state of focus on a close-range object with a photographing ratio β=-0, 2! Show AJk. [Explanation of the code for the 1st part] G, 1st group 2G Goose JIz
Group-G,
3rd comment Acceptance □ 132- SPh Ast B) Sph Asir rs Fig. 11 (△) Sph Ast CB) Sph Ast is is Fang 72 Fig. (△) , 5', l)/1 Ast (8) phAsf IS rs off 30 (A) Sph Ast (B) spha 85t -(L)OL) (7,5(/-050IQ, 5
0i3 rs -2,5002,50 1,000/4shi (A) Sph A5f (8) Sph Ast is ls Off 5 figure (A) 3Ph Ast CB) iS IS ;776 figure (△) Sph A sf: (B) 3ph As-t is IS 士17 Figure (A) Sph Ast SpHAst -u, :u u v, l 050 0
θyBS IS Figure 18 (8) phAst CB) Sph Ast is is

Claims (1)

【特許請求の範囲】 光線の一行方向よシ順次、反射部材をさむ収斂性第3レ
ンズ#G1、光軸にそって移動可能な発散性第2レンズ
NG!、収斂性第3レンズ群G、の3つのレンズ群を有
し、無限遠合焦状態では前記第1121群G、と前記I
g2レンズ群G、とで、flぼアフォーカル系が形成さ
れ、前記第2レンズ群Gut像−へ移動させるととKよ
り、より近距離の物体への合焦が可能であり、以下の条
件を満是することを特徴とする反射°屈折Ij&iIi
!遠レンズ。 (1)  0.07 ft < l ft I <0.
18 f+(2) 0.2 Of < f I< 0.
5 Of但し、fl及びf、はそれぞれ第1評及び第2
群の焦点距離であり、fは全系の焦点距離である。
[Claims] A convergent third lens #G1 that sandwiches a reflective member sequentially in the direction of one line of light, and a diverging second lens that is movable along the optical axis NG! , a convergent third lens group G, and in the infinity focused state, the 1121st lens group G and the I
An afocal system is formed by the second lens group G, and by moving it to the second lens group Gut, it is possible to focus on an object at a closer distance, and the following conditions are met. Reflection ° refraction Ij & iIi characterized by satisfying
! far lens. (1) 0.07 ft < l ft I <0.
18 f+(2) 0.2 Of < f I < 0.
5 Of However, fl and f are the first and second reviews, respectively.
It is the focal length of the group, and f is the focal length of the entire system.
JP57087886A 1982-05-26 1982-05-26 Reflecting and refracting telephoto lens Granted JPS58205124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087886A JPS58205124A (en) 1982-05-26 1982-05-26 Reflecting and refracting telephoto lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087886A JPS58205124A (en) 1982-05-26 1982-05-26 Reflecting and refracting telephoto lens

Publications (2)

Publication Number Publication Date
JPS58205124A true JPS58205124A (en) 1983-11-30
JPH0318162B2 JPH0318162B2 (en) 1991-03-11

Family

ID=13927350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087886A Granted JPS58205124A (en) 1982-05-26 1982-05-26 Reflecting and refracting telephoto lens

Country Status (1)

Country Link
JP (1) JPS58205124A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333811B1 (en) 1994-07-28 2001-12-25 The B. F. Goodrich Company All-reflective zoom optical imaging system
WO2012108137A1 (en) * 2011-02-09 2012-08-16 コニカミノルタオプト株式会社 Catadioptric system
JP2014092753A (en) * 2012-11-06 2014-05-19 Tamron Co Ltd Reflex telephoto lens
JP2014092752A (en) * 2012-11-06 2014-05-19 Tamron Co Ltd Reflex telephoto lens
WO2014083956A1 (en) * 2012-11-29 2014-06-05 株式会社ニコン Reflecting photographic lens
US8767318B2 (en) 2011-07-05 2014-07-01 Sony Corporation Catadioptric lens system and imaging apparatus
US8896938B2 (en) 2011-07-05 2014-11-25 Sony Corporation Catadioptric lens system and imaging apparatus
US9110286B2 (en) 2012-04-05 2015-08-18 Olympus Imaging Corp. Reflecting telescope optical system, optical unit, and image pickup apparatus using the same
CN105759410A (en) * 2016-04-19 2016-07-13 中国科学院国家天文台南京天文光学技术研究所 Refraction and reflection type large aperture and large field of view imaging system
US9568718B2 (en) 2012-10-04 2017-02-14 Sony Corporation Catadioptric lens system and image pickup unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136133A (en) * 1974-07-22 1976-03-26 Perkin Elmer Corp Kutsusetsuryono kogakusochi
JPS5178326A (en) * 1974-12-28 1976-07-07 Nippon Kogaku Kk Boenrenzu
JPS5376830A (en) * 1976-12-18 1978-07-07 Yashica Co Ltd Smalllsized telescopic reflection lens system
JPS5538520A (en) * 1978-09-08 1980-03-18 Tamuron:Kk Reflection-refraction type telephoto lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136133A (en) * 1974-07-22 1976-03-26 Perkin Elmer Corp Kutsusetsuryono kogakusochi
JPS5178326A (en) * 1974-12-28 1976-07-07 Nippon Kogaku Kk Boenrenzu
JPS5376830A (en) * 1976-12-18 1978-07-07 Yashica Co Ltd Smalllsized telescopic reflection lens system
JPS5538520A (en) * 1978-09-08 1980-03-18 Tamuron:Kk Reflection-refraction type telephoto lens

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333811B1 (en) 1994-07-28 2001-12-25 The B. F. Goodrich Company All-reflective zoom optical imaging system
WO2012108137A1 (en) * 2011-02-09 2012-08-16 コニカミノルタオプト株式会社 Catadioptric system
US8767318B2 (en) 2011-07-05 2014-07-01 Sony Corporation Catadioptric lens system and imaging apparatus
US8896938B2 (en) 2011-07-05 2014-11-25 Sony Corporation Catadioptric lens system and imaging apparatus
US9110286B2 (en) 2012-04-05 2015-08-18 Olympus Imaging Corp. Reflecting telescope optical system, optical unit, and image pickup apparatus using the same
US9568718B2 (en) 2012-10-04 2017-02-14 Sony Corporation Catadioptric lens system and image pickup unit
JP2014092753A (en) * 2012-11-06 2014-05-19 Tamron Co Ltd Reflex telephoto lens
JP2014092752A (en) * 2012-11-06 2014-05-19 Tamron Co Ltd Reflex telephoto lens
WO2014083956A1 (en) * 2012-11-29 2014-06-05 株式会社ニコン Reflecting photographic lens
JP2014106431A (en) * 2012-11-29 2014-06-09 Nikon Corp Reflection photographic lens
TWI609197B (en) * 2012-11-29 2017-12-21 Nikon Corp Reflection photography lens
CN105759410A (en) * 2016-04-19 2016-07-13 中国科学院国家天文台南京天文光学技术研究所 Refraction and reflection type large aperture and large field of view imaging system

Also Published As

Publication number Publication date
JPH0318162B2 (en) 1991-03-11

Similar Documents

Publication Publication Date Title
JP2682053B2 (en) Small zoom lens
US5327291A (en) Compact objective lens
JPS6049313A (en) Reflection refraction lens
JPH01126614A (en) Zoom lens
JPS58205124A (en) Reflecting and refracting telephoto lens
JPS6140969B2 (en)
JPS6155087B2 (en)
US4373786A (en) Photographic objective of reduced size
US4037935A (en) High-speed adjustable focus telephoto objective lens
JPH0412443B2 (en)
JPS5834418A (en) Lens system capable of photographing at close distance
JPS588482B2 (en) compact nazum lens
JPH0713704B2 (en) Wide-angle lens
JP2910206B2 (en) Compact zoom lens
JPS6042452B2 (en) zoom lens
JP3288768B2 (en) telescope lens
JP2518055B2 (en) Catadioptric optical system
JP2568266B2 (en) Zoom lens
JP3038974B2 (en) Small wide-angle lens
JPH0572565B2 (en)
US4952038A (en) Zoom lens system for use in compact camera
JPH02267511A (en) Zoom optical system
US3958865A (en) Retrofocus type lens system
JPS6256916A (en) Wide conversion lens
JPS6059569B2 (en) telescope lens