JP2568266B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2568266B2
JP2568266B2 JP1023090A JP2309089A JP2568266B2 JP 2568266 B2 JP2568266 B2 JP 2568266B2 JP 1023090 A JP1023090 A JP 1023090A JP 2309089 A JP2309089 A JP 2309089A JP 2568266 B2 JP2568266 B2 JP 2568266B2
Authority
JP
Japan
Prior art keywords
lens
lenses
lens group
zoom
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1023090A
Other languages
Japanese (ja)
Other versions
JPH02203314A (en
Inventor
常文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1023090A priority Critical patent/JP2568266B2/en
Publication of JPH02203314A publication Critical patent/JPH02203314A/en
Application granted granted Critical
Publication of JP2568266B2 publication Critical patent/JP2568266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はズームレンズに関し、特に一眼レフレツクカ
メラやスチルビデオ等の比較的長いバツクフオーカスを
必要とする撮影レンズに適し最も物体側に負レンズ群を
配置したズームレンズに関する。
Description: TECHNICAL FIELD The present invention relates to a zoom lens, and more particularly to a negative lens group closest to the object side, which is suitable for a photographing lens such as a single-lens reflex camera and a still video that requires a relatively long back focus. Related to the zoom lens.

<従来技術> 従来より、一眼レフレツクスカメラでは、撮影レンズ
後方に回転式の反射鏡を設け、撮影レンズからの光束を
反射させてフアインダー系へ導光させている。
<Prior Art> Conventionally, in a single-lens reflex camera, a rotary reflecting mirror is provided in the rear of the taking lens to reflect the light flux from the taking lens and guide it to a finder system.

このため一眼レフレツクスカメラに用いられる撮影レ
ンズは上述した反射鏡を配置する程度の長いバツクフオ
ーカスが容易に得られ、しかも高い光学性能を維持させ
ながら高変倍比を備えたズームレンズが要求されてい
る。又、カメラ本体の小型化に伴い、撮影レンズ自体の
小型・軽量化が望まれている。
Therefore, the taking lens used in a single-lens reflex camera can easily obtain a back focus that is long enough to arrange the above-mentioned reflecting mirror, and a zoom lens having a high zoom ratio while maintaining high optical performance is required. ing. Further, along with the downsizing of the camera body, downsizing and weight saving of the taking lens itself are desired.

従来より比較的小型であって一眼レフレツクスカメラ
に適したズームレンズとして物体側より順に負の屈折
力、正の屈折力を有する2群構成のズームレンズが例え
ば、特開昭49−2545号公報をはじめとして特開昭52−26
236号公報や特開昭59−64811号公報等で提案されてい
る。
As a zoom lens which is comparatively smaller than the conventional one and is suitable for a single-lens reflex camera, a zoom lens having a two-group structure having a negative refractive power and a positive refractive power in order from the object side is disclosed in, for example, Japanese Patent Laid-Open No. 49-2545. Japanese Patent Publication No. 52-26
It is proposed in Japanese Patent Laid-Open No. 236 and Japanese Patent Laid-Open No. 59-64811.

そして更に上述した2群構成のズームレンズをより小
型化を促進するための発展型として像側に固定の負レン
ズを配置したズームレンズが特開昭58−111013号公報あ
るいは特開昭61−183613号公報、特開昭62−112115号公
報で提案されている。この特開昭61−183613号公報、特
開昭62−112115号公報では、一部のレンズ群に非球面を
使用し小型化を図ったズームレンズを開示している。
Further, a zoom lens in which a fixed negative lens is arranged on the image side is a developed type of the above-mentioned two-group zoom lens for promoting further miniaturization, which is disclosed in JP-A-58-111013 or JP-A-61-183613. Japanese Patent Laid-Open No. 62-112115. Japanese Patent Laid-Open Nos. 61-183613 and 62-112115 disclose zoom lenses in which aspherical surfaces are used in some lens groups to achieve miniaturization.

<本発明が解決しようとする問題点> 上記のズームレンズは逆望遠タイプの広角レンズを基
本型としており、広角側の焦点距離をカバーするズーム
レンズに向いている。
<Problems to be Solved by the Present Invention> The zoom lens described above is basically a reverse-telescopic wide-angle lens, and is suitable for a zoom lens that covers the focal length on the wide-angle side.

ところで、商品としては一般に35mm〜70mmの標準ズー
ムとして広く使用されている。一方で、最近このような
標準ズームの望遠側への焦点距離の拡大が望まれ、例え
ば特開昭58−75108号公報等で28mm〜85mm、特公昭55−1
4403号公報等で35mm〜140mmと高倍率のズームレンズが
提案されているが、構成するレンズ枚数が多くしかも移
動するレンズ群数が多くなっている。従って鏡筒構造の
複雑化を招く一方高価であり、又、レンズ全長も大きく
なって、常時使用する標準ズームとしては十分とはいえ
なかった。
By the way, as a product, it is widely used as a standard zoom of 35 mm to 70 mm. On the other hand, recently, it has been desired to increase the focal length of the standard zoom lens on the telephoto side. For example, JP-A-58-75108 discloses 28 mm to 85 mm and JP-B-55-1.
Although a zoom lens having a high magnification of 35 mm to 140 mm is proposed in Japanese Patent No. 4403, etc., the number of lenses to be configured is large and the number of moving lens groups is also large. Therefore, the structure of the lens barrel is complicated, but it is expensive, and the total length of the lens is large, so that it cannot be said to be sufficient as a standard zoom that is always used.

本発明は光学性能を維持しながら、前述した標準ズー
ムの2つの課題であるコンパクトさと低価格化をさらに
実現しつつ、しかも望遠側の焦点距離拡大したズームレ
ンズの提供を目的としている。
It is an object of the present invention to provide a zoom lens in which the focal length on the telephoto side is expanded while realizing the two problems of the standard zoom described above, that is, compactness and cost reduction, while maintaining the optical performance.

<問題点を解決するための手段及び構成> 物体側から順に、負の屈折力を有しズーミング時に光
軸に沿って移動する第1レンズ群、正の屈折力を有して
ズーミング時に光軸に沿って移動する第2レンズ群、負
の屈折力を有しズーミング時に固定の第3レンズ群から
成り、前記第1レンズ群は順に負の屈折力を有し像側に
強い凹面を有する11レンズ、正の屈折力を有するととも
に非球面を有し物体側に凸面を向けたメニスカス形状の
12レンズを有し、前記第2レンズ群は順に正の屈折力を
有する21レンズ、正の屈折力を有する22レンズ、両凹面
の23レンズ、両凸の24レンズを有し、前記第3レンズ群
は像側に凹面を向けたメニスカス形状の31レンズを有
し、以下の条件を満足させたことにある。
<Means and Structure for Solving Problems> First object group having negative refracting power and moving along the optical axis during zooming in order from the object side, optical axis having positive refracting power during zooming A second lens unit that moves along with a third lens unit that has a negative refracting power and is fixed during zooming, and the first lens unit has a negative refracting power and a strong concave surface on the image side. A lens that has a positive refracting power and an aspherical surface with a meniscus shape with a convex surface facing the object side.
The third lens group includes 12 lenses, the second lens group includes 21 lenses having positive refracting power, 22 lenses having positive refracting power, 23 lenses having biconcave surfaces, and 24 lenses having biconvex lenses in order. The group has 31 meniscus lenses each having a concave surface facing the image side, and satisfies the following conditions.

つまり、 (1)−0.65<f1/fT<−0.45 (2)0.43<r2/r3<0.63 (3)r9/r10<−15 (4)n5>1.8 である。 That, (1) -0.65 <f 1 / f T <-0.45 (2) 0.43 <r 2 / r 3 <0.63 (3) r 9 / r 10 <-15 (4) n 5> 1.8.

但し、 r2;前記11レンズの像側の曲率半径、 r3;前記12レンズの物体側の曲率半径、 r9;前記23レンズの物体側の曲率半径、 r10;前記23レンズの像側の曲率半径、 f1;前記第1レンズ群の焦点距離、 fT;望遠端に於ける全系の焦点距離、 n5;前記23レンズのフランホーファーd−線の屈折率で
ある。
Where r 2 ; the radius of curvature of the 11 lens on the image side, r 3 ; the radius of curvature of the 12 lens on the object side, r 9 ; the radius of curvature of the 23 lens on the object side, r 10 ; the image side of the 23 lens Radius of curvature, f 1 ; focal length of the first lens group, f T ; focal length of the entire system at the telephoto end, n 5 ; refractive index of the Franhofer d-line of the 23 lenses.

<実施例> 第2図、第4図、第6図、第8図は本発明に関する数
値実施例1,2,3,4のレンズ断面図である。Iは負の屈折
力を有し望遠端から広角端へのズーミングの時に矢印で
示す軌跡の通りに移動する第1レンズ群は、Πは正の屈
折を有しズーミングの時に矢印で示す軌跡の通りに移動
する第2レンズ群、IIIは負の屈折力を有しズーミング
に際しては固定の第3レンズ群である。尚フオーカシン
グを第1レンズ群を光軸に沿って移動させて行ってい
る。
<Embodiment> FIGS. 2, 4, 6, and 8 are lens cross-sectional views of Numerical Embodiments 1, 2, 3, and 4 relating to the present invention. The first lens group I has a negative refracting power and moves along the locus indicated by the arrow during zooming from the telephoto end to the wide-angle end, and Π has positive refraction and has a locus indicated by the arrow during zooming. The second lens group III moves in the same way, and the third lens group III has a negative refractive power and is fixed during zooming. The focusing is performed by moving the first lens group along the optical axis.

ところでズーム比を大きくするには、一つに第1レン
ズ群と第2レンズ群の移動量を大きくするのが一般的で
あるが、広角端での第1レンズ群と第2レンズ群の間隔
及び望遠端での第2レンズ群から像面までの間隔が大と
なり、レンズ全長が長くなる。一方で、レンズ全長を比
較的短くしながら所望のズーム比を得るにはレンズ各群
の屈折力を強めなければならないが、2群構成の場合に
は解がほぼ一意的に決まってしまい結果として広角側の
レンズ全長が長く、しかもフオーカシング繰出し量が増
大するという不都合が生じてくる。従って、前述した特
開昭58−111013号公報に記されているように3群構成の
ズームタイプを採用することが得策となってくる。
By the way, in order to increase the zoom ratio, it is general to increase the amount of movement of the first lens group and the second lens group, but the distance between the first lens group and the second lens group at the wide-angle end is large. Also, the distance from the second lens group to the image plane at the telephoto end becomes large, and the total lens length becomes long. On the other hand, in order to obtain a desired zoom ratio while making the total lens length relatively short, it is necessary to strengthen the refractive power of each lens group, but in the case of the two-group configuration, the solution is almost uniquely determined and as a result There is a disadvantage that the total lens length on the wide-angle side is long and the amount of focusing movement is increased. Therefore, it is advisable to adopt a zoom type having a three-group structure as described in Japanese Patent Laid-Open No. 58-111013.

そして本発明に於いては更なる改良を加えて各レンズ
群の屈折力配置及びレンズ形状を前述した通りに定める
ことにより前述した目的を達成している。
Further, in the present invention, the above-mentioned object is achieved by further improving the refractive power arrangement and lens shape of each lens unit as described above.

次に各条件式の数値範囲の意義について説明する。 Next, the significance of the numerical range of each conditional expression will be described.

条件式(1)式の下限を越えて第1レンズ群の屈折力
を弱くすると広角側のレンズ全長が伸び、又フオーカシ
ングの繰出し量が大となって鏡筒全長が伸びる一方、至
近側での周辺光量を確保する為にレンズ外径が大とな
り、好ましくない。上限を越えて屈折力を強くすると歪
曲収差及び非点収差が特に広角側で大きく発生し、非球
面を使用しても補正の限度を越える。
If the lower limit of conditional expression (1) is exceeded and the refractive power of the first lens group is weakened, the lens length on the wide-angle side will increase, and the amount of focusing movement will increase to increase the lens barrel overall length. The outer diameter of the lens becomes large in order to secure the peripheral light amount, which is not preferable. If the refracting power is increased beyond the upper limit, distortion and astigmatism will occur particularly on the wide angle side, and the correction limit will be exceeded even if an aspherical surface is used.

条件式(2)式は第1レンズ群の屈折力を強めること
によって発生する球面収差とコマ収差を良好に補正する
為の条件である。参考のために示す表1は数値実施例1
の各面のザイデル収差値である。表で分かるようにr2
びr3で発生する球面収差は望遠側で著しく増大し、望遠
端の焦点距離を拡大すると増加量も著しくなる。一方コ
マ収差は広角側と望遠側で符号が逆転する変化となり、
条件式(2)式の上限を越えても下限を越えても球面収
差とコマ収差を同時に補正できなくなる。
Conditional expression (2) is a condition for satisfactorily correcting spherical aberration and coma generated by increasing the refractive power of the first lens group. Table 1 shown for reference is Numerical Example 1
Is the Seidel aberration value of each surface. As can be seen from the table, the spherical aberrations generated at r 2 and r 3 increase remarkably on the telephoto side, and when the focal length at the telephoto end is enlarged, the amount of increase also increases. On the other hand, the coma aberration has a sign that the signs are reversed between the wide-angle side and the telephoto side,
If the upper limit or the lower limit of conditional expression (2) is exceeded, spherical aberration and coma cannot be corrected simultaneously.

条件式(3)式は23レンズの両面の屈折力分担に関す
る式である。条件式(1)式に従って第1レンズ群の屈
折力を強める際、同時に第2レンズ群の屈折力も強める
ことによってレンズ全長が短縮されるが、強い正屈折力
の群内収差を補正する為に負レンズ面が必要であり、少
ない構成枚数で実現するには1枚の両凹レンズの適切な
形状が要求される。r9側を強めると高次収差が発生し、
r10側を強めると軸外収差が悪化する条件式(4)式の
ように高屈折率硝材を使用し、しかも条件式(3)式の
ようにr10側により強い曲率を与え、しかも第3レンズ
群の31レンズを像側に強い凹面を有する負メニスカスレ
ンズとすることで良好な収差補正を可能にしている。表
1で分かるように31レンズは広角側で非点収差をオーバ
ー側へ補正し、望遠側でアンダー側に補正する効果を有
している。
Conditional expression (3) is an expression regarding the sharing of the refractive powers of the two surfaces of the 23 lenses. When the refractive power of the first lens group is strengthened according to the conditional expression (1), the total lens length is shortened by strengthening the refractive power of the second lens group at the same time. However, in order to correct the intra-group aberration of strong positive refractive power, A negative lens surface is required, and an appropriate shape of one biconcave lens is required to realize with a small number of constituents. higher-order aberration occurs and strengthen the r 9 side,
Off-axis aberrations worsen when the r 10 side is strengthened. A high refractive index glass material is used as in conditional expression (4), and a stronger curvature is given to the r 10 side as in conditional expression (3). By using a negative meniscus lens having a strong concave surface on the image side for the 31 lenses of the 3 lens groups, good aberration correction is possible. As can be seen from Table 1, the 31 lens has the effect of correcting astigmatism to the over side on the wide angle side and to the under side on the telephoto side.

さらに好ましくは12レンズの像側の面を非球面化し、
周辺にいくに従って曲率が弱くなるように、すなわち周
辺で負の屈折力を弱くするように形状を与えることによ
り、良好な収差補正が可能となる。一般に広角系のズー
ムレンズでは非点収差と歪曲収差を補正することに着目
すれば第1レンズ群のどの面を非球面化しても効果に大
差はないが、条件式(2)式で説明したように望遠側へ
ズーム領域を拡大した場合は事情が異なり、(2)式の
条件に加えて12レンズの像側を非球面化することが好ま
しい。さらに条件式(2)式に従って第1レンズ群の屈
折力を強め、しかも第1レンズ群中で最も絞りに近い面
すなわち収差論で言うが低い面では非球面の量を大き
くし形状としては極所的な曲率半径が周辺部で逆転する
ように形状、つまり曲率半径はレンズ中心部で正であ
り、周辺部で負となるように与える必要がある。第1図
は非球面形状をデフオルメして表現した図であり、周辺
では凸面となる形状である。
More preferably, the image side surface of 12 lenses is made aspherical,
By giving the shape such that the curvature becomes weaker toward the periphery, that is, the negative refractive power is weakened at the periphery, excellent aberration correction can be performed. Generally speaking, in a wide-angle zoom lens, focusing on correcting astigmatism and distortion, there is no great difference in effect even if any surface of the first lens group is made aspherical. However, it is explained by the conditional expression (2). As described above, the situation is different when the zoom area is expanded to the telephoto side, and it is preferable to make the image side of the 12 lenses aspherical in addition to the condition of Expression (2). Further, the refracting power of the first lens group is strengthened according to the conditional expression (2), and moreover, on the surface closest to the stop in the first lens group, that is, the surface which is low in aberration theory, the amount of aspherical surface is increased and the shape is extremely small. It is necessary to give a shape such that the local radius of curvature is reversed in the peripheral portion, that is, the radius of curvature is positive in the lens central portion and negative in the peripheral portion. FIG. 1 is a diagram in which an aspherical shape is expressed by default and has a convex shape in the periphery.

本発明に於いて、さらに好ましくは31レンズのアツベ
数が50より大きい(ν>50)低分散硝材を使用すること
が望ましい。最小の構成は単レンズであり、全長短縮化
の為に屈折力を強めると倍率色収差のズーム変動及び望
遠側での色のコマ、非点収差が発生する為、低分散化す
る必要がある。
In the present invention, it is more preferable to use a low-dispersion glass material having 31 lenses with an Abbe number of more than 50 (ν> 50). The minimum configuration is a single lens, and if the refracting power is increased in order to shorten the overall length, zoom fluctuation of lateral chromatic aberration, color coma on the telephoto side, and astigmatism occur. Therefore, it is necessary to reduce the dispersion.

また、前述したように31レンズは非点収差のズーム変
動を補正しているが、球面系では限度があり、非球面化
することでさらに広角側の非点収差の改善に効果があ
る。
Further, as described above, the 31 lens corrects the zoom fluctuation of astigmatism, but there is a limit in the spherical system, and making it aspherical is effective in further improving the astigmatism on the wide angle side.

ところでズームレンズのレンズ全長の表現は広角端か
望遠端か、あるいは第1レンズ群が往復移動する場合に
は中間ズーム位置というように収納時の最短全長で表現
すると、カタログの上では有利であろう。しかし、衝撃
に弱い欠点がある。例えば肩からカメラをぶら下げて観
光バスに乗り込む際、うっかり手すりの鉄パイプにレン
ズ先端をぶつけて壊したという話を聞く。こうしてうっ
かりミスにも強い構造として、ズーミングで最長しかも
フオーカスの繰出しで物体側へ移動する最長部よりもさ
らに物体側に強い固定鏡筒を設ければ良い。このように
レンズ全長としては不利な条件下でしかも十分コンパク
トさを確保する為には広角端と望遠端のレンズ全長がほ
ぼ等しくするような前述した屈折力分担とするのが好ま
しい。
By the way, it is advantageous in terms of the catalog to express the total lens length of the zoom lens at the wide-angle end or the telephoto end, or at the intermediate zoom position when the first lens group reciprocates, such as the shortest total length at the time of storage. Let's do it. However, it has the drawback of being susceptible to shock. For example, I heard that when I hung a camera from my shoulder and boarded a sightseeing bus, I accidentally hit the tip of a lens against an iron pipe on a railing and broke it. In this way, as a structure that is resistant to inadvertent mistakes, a fixed lens barrel that is longest in zooming and stronger on the object side than the longest part that moves to the object side when the focus is extended may be provided. As described above, in order to ensure compactness under the disadvantageous condition of the total lens length, it is preferable that the above-mentioned refractive power is shared so that the total lens lengths at the wide-angle end and the telephoto end are substantially equal.

次に本発明の数値実施例を示す。数値実施例において
Riは物体側より順に第i番目のレンズ面の曲率半径、Di
は物体側より第i番目のレンズ厚及び空気間隔、Niとν
iは各々物体側より順に第i番目のレンズのガラスの屈
折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In the numerical example
Ri is the radius of curvature of the i-th lens surface in order from the object side, Di
Is the i-th lens thickness and air gap from the object side, Ni and ν
i is the refractive index and the Abbe number of the glass of the i-th lens in order from the object side.

尚、非球面形状は光軸方向にx軸、光軸と垂直方向に
H軸、光の進行方向を正とし、Rを近軸曲率半径、A,B,
C,D,E,…,A′,B′,C′,D′,…を各々非球面係数とした
とき なる式で表わしている。
The aspherical shape has an x-axis in the direction of the optical axis, an H-axis in the direction perpendicular to the optical axis, a positive traveling direction of light, and R is a paraxial radius of curvature, A, B,
When C, D, E, ..., A ', B', C ', D', ... are aspherical coefficients respectively It is expressed by

数値実施例1 数値実施例2 数値実施例3 数値実施例4 〔発明の効果〕 以上説明したように、本発明の構成を採用することに
より35〜70mmクラスの標準ズームレンズを望遠側へズー
ムレンジを拡大したにもかかわらずレンズ全長、特に最
長ズーム位置でのレンズ全長を短縮する効果がある。
Numerical Example 1 Numerical Example 2 Numerical Example 3 Numerical Example 4 [Effects of the Invention] As described above, even if the zoom range of the standard zoom lens of the 35 to 70 mm class is expanded to the telephoto side by adopting the configuration of the present invention, the total lens length, especially at the longest zoom position It has the effect of shortening the overall lens length.

さらには非球面を効果的に使用することによってレン
ズ枚数及び鏡筒構造の簡略化が達成でき、安価に提供す
ることが可能となった。尚現在、高温下で軟化した硝子
を非球面の型で成形する技術が完成され、非球面レンズ
は以前のように高価な素子ではなくなっている。
Furthermore, by effectively using the aspherical surface, the number of lenses and the lens barrel structure can be simplified, and the lens can be provided at low cost. At present, a technique for molding glass softened at a high temperature with an aspherical mold has been completed, and an aspherical lens is no longer an expensive element as before.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に関する非球面の状態を示す図。 第2図、第4図、第6図、第8図は各々本発明の数値実
施例1,2,3,4のレンズ断面図。第3図、第5図、第7
図、第9図は各々本発明の数値実施例1,2,3,4の諸収差
図。
FIG. 1 is a diagram showing a state of an aspherical surface according to the present invention. 2, FIG. 4, FIG. 6 and FIG. 8 are lens cross-sectional views of Numerical Embodiments 1, 2, 3, and 4 of the present invention, respectively. 3, 5 and 7
FIG. 9 and FIG. 9 are various aberration diagrams of Numerical Examples 1, 2, 3, and 4 of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に、負の屈折力を有しズーミ
ング時に光軸に沿って移動する第1レンズ群、正の屈折
力を有し、ズーミング時に光軸に沿って移動する第2レ
ンズ群、負の屈折力を有しズーミング時に固定の第3レ
ンズ群から成り、前記第1レンズ群は順に負の屈折力を
有し像側に強い凹面を有する11レンズ、正の屈折力を有
するとともに非球面を有し物体側に凸面を向けたメニス
カス形状の12レンズを有し、前記第2レンズ群は順に正
の屈折力を有する21レンズ、正の屈折力を有する22レン
ズ、両凹面の23レンズ、両凸の24レンズを有し、前記第
3レンズ群は像面側に凹面を向けたメニスカス形状の31
レンズを有し、以下の条件を満足することを特徴とする
ズームレンズ。 (1)−0.65<f1/fT<−0.45 (2)0.43<r2/r3<0.63 (3)r9/r10<−15 (4)n5>1.8 但し、 r2;前記11レンズ群の像側の曲率半径、 r3;前記12レンズ群の物体側の曲率半径、 r9;前記23レンズ群の物体側の曲率半径、 r10;前記23レンズ群の像側の曲率半径、 f1;前記第1レンズ群の焦点距離、 fT;望遠端に於ける焦点距離、 n5;前記23レンズのフランホーファ−d−線の屈折率で
ある。
1. A first lens group having a negative refracting power and moving along the optical axis during zooming, and a second lens group having a positive refracting power and moving along the optical axis during zooming in order from the object side. The first lens group has, in order, a negative lens having a negative refractive power and a third lens group having a negative refractive power and fixed during zooming. The first lens group has a strong concave surface on the image side. And 12 lenses having a meniscus shape having an aspherical surface and having a convex surface directed toward the object side, and the second lens group sequentially has 21 lenses having positive refractive power, 22 lenses having positive refractive power, and biconcave surface 23 lenses and 24 biconvex lenses, and the third lens group is a meniscus-shaped 31 lens with the concave surface facing the image side.
A zoom lens having a lens and satisfying the following conditions. (1) −0.65 <f1 / f T <−0.45 (2) 0.43 <r2 / r3 <0.63 (3) r9 / r10 <−15 (4) n5> 1.8 However, r2; on the image side of the 11th lens group. Radius of curvature, r3; object-side radius of curvature of the 12 lens groups, r9; object-side radius of curvature of the 23 lens groups, r10; image-side radius of curvature of the 23 lens groups, f1; of the first lens group Focal length, f T ; Focal length at telephoto end, n5: Refractive index of Franhofer d-line of the 23 lenses.
【請求項2】前記31レンズのアッベ数をνとする時 ν>50 なる条件式を満足することを特徴とする特許請求の範囲
第1項記載のズームレンズ。
2. The zoom lens according to claim 1, wherein the conditional expression satisfies ν 3 > 50 when the Abbe number of the 31 lenses is ν 3 .
【請求項3】前記31レンズは非球面レンズであることを
特徴とする特許請求の範囲第1項記載のズームレンズ。
3. The zoom lens according to claim 1, wherein the 31 lens is an aspherical lens.
【請求項4】広画端と望遠端でのレンズ全長がほぼ等し
いことを特徴とする特許請求の範囲第1項記載のズーム
レンズ。
4. The zoom lens according to claim 1, wherein the total lens lengths at the wide-angle end and the telephoto end are substantially the same.
JP1023090A 1989-01-31 1989-01-31 Zoom lens Expired - Fee Related JP2568266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023090A JP2568266B2 (en) 1989-01-31 1989-01-31 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023090A JP2568266B2 (en) 1989-01-31 1989-01-31 Zoom lens

Publications (2)

Publication Number Publication Date
JPH02203314A JPH02203314A (en) 1990-08-13
JP2568266B2 true JP2568266B2 (en) 1996-12-25

Family

ID=12100730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023090A Expired - Fee Related JP2568266B2 (en) 1989-01-31 1989-01-31 Zoom lens

Country Status (1)

Country Link
JP (1) JP2568266B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509285B2 (en) * 2000-03-16 2010-07-21 フジノン株式会社 Compact large-aperture wide-angle zoom lens
JP4257775B2 (en) * 2002-03-20 2009-04-22 株式会社リコー Zoom lens, camera using the same, and portable information terminal
JP4497106B2 (en) * 2006-02-28 2010-07-07 カシオ計算機株式会社 Zoom lens and camera
TWI570467B (en) 2012-07-06 2017-02-11 大立光電股份有限公司 Optical image capturing system
TWI449947B (en) 2012-08-13 2014-08-21 Largan Precision Co Ltd Image lens assembly system

Also Published As

Publication number Publication date
JPH02203314A (en) 1990-08-13

Similar Documents

Publication Publication Date Title
JP3769373B2 (en) Bright wide-angle lens
JPH0354324B2 (en)
JPS60201313A (en) Photographic lens
JP3725284B2 (en) Compact wide-angle lens
JP3033137B2 (en) Compact zoom lens
JPH1020193A (en) Zoom lens
JP3119403B2 (en) Small variable power lens
JPS6153696B2 (en)
JP4654506B2 (en) Zoom lens
JP4096399B2 (en) Large aperture zoom lens
JP3160846B2 (en) Telephoto zoom lens
JPH0721580B2 (en) Wide-angle photographic lens with short overall length
JP3394624B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3441958B2 (en) 3-group zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP3044757B2 (en) Zoom lens
JP2568266B2 (en) Zoom lens
JP2910206B2 (en) Compact zoom lens
JP3883142B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens
JP3415765B2 (en) Zoom lens
JP4444416B2 (en) Zoom lens
JPH07253561A (en) Optical system for compensating image position
JP2924153B2 (en) Compact zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees