WO2014083956A1 - Reflecting photographic lens - Google Patents

Reflecting photographic lens Download PDF

Info

Publication number
WO2014083956A1
WO2014083956A1 PCT/JP2013/078081 JP2013078081W WO2014083956A1 WO 2014083956 A1 WO2014083956 A1 WO 2014083956A1 JP 2013078081 W JP2013078081 W JP 2013078081W WO 2014083956 A1 WO2014083956 A1 WO 2014083956A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting mirror
plane
reflecting
photographic lens
respect
Prior art date
Application number
PCT/JP2013/078081
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 喜和
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014083956A1 publication Critical patent/WO2014083956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems

Definitions

  • the present invention relates to a reflection photographic lens.
  • a conventional reflective photographic lens includes a concave reflecting mirror and a convex reflecting mirror arranged along a single optical axis extending linearly, and is an optical system that is rotationally symmetric with respect to the optical axis (for example, see Patent Document 1). reference).
  • the central part of the light beam from the object (subject) is blocked by the convex reflecting mirror, and then sequentially reflected by the concave reflecting mirror having the central opening and the convex reflecting mirror, and the opening of the concave reflecting mirror.
  • the concave reflecting mirror having the central opening and the convex reflecting mirror, and the opening of the concave reflecting mirror.
  • the central portion of the imaging light beam reaching the image plane is lacking, and ring-shaped blurring tends to occur in the object image due to defocus (focal position shift) with respect to the image plane.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a reflective photographic lens in which ring-shaped blur due to defocus does not occur.
  • the reflective photographic lens includes, in order from the object side, the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror, and the light from the object.
  • the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror are sequentially reflected by the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror, and are arranged so as to form an object image on a predetermined image plane, and the first reflecting mirror to the fourth reflecting mirror are arranged.
  • Has a rotationally asymmetric aspherical reflecting surface and is configured symmetrically with respect to a reference plane perpendicular to the image plane, including a first reference axis defined by a normal passing through the center of the image plane.
  • the mirror has a concave surface with respect to the incident direction of light, and the first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror and the fourth reflecting mirror are inclined.
  • the reflecting mirror is inclined in the direction opposite to the first reflecting mirror with respect to the orthogonal plane, and the second reflecting mirror and the third reflecting mirror are within the reference plane. It is eccentrically arranged on the same side with respect to the reflector.
  • the center curvature of the intersection curve between the reflecting surface of the first reflecting mirror and the reference surface is A11, and the center of the reflecting surface of the first reflecting mirror is set.
  • the center curvature of the intersection curve between the surface perpendicular to the reference plane including the normal line passing through and the reflection surface of the first reflector is A12
  • the center curvature of the intersection curve between the reflection surface of the second reflector and the reference surface is A12.
  • A21 is the center curvature of the intersection curve between the plane perpendicular to the reference plane and including the normal passing through the center of the reflecting surface of the second reflecting mirror
  • the reflecting surface of the second reflecting mirror is A22
  • (A12-A11 ) ⁇ (A22-A21)> ⁇ 0.00000005 (1) is preferably satisfied.
  • the rotationally asymmetric aspheric surface of the first reflecting mirror has the normal direction at the origin of the tangential plane of the aspheric surface as the z direction,
  • the direction of the intersection line between the tangent plane and the reference plane is the y direction
  • the direction perpendicular to the y direction in the tangential plane is the x direction
  • the sag amount of the aspherical surface in the z direction is s
  • m and n include 0.
  • the rotationally asymmetric aspherical surface of the second reflecting mirror has a normal direction at the origin of the tangential plane of the aspherical surface as z.
  • a focusing optical system having at least one movable lens and for focusing an object on the image plane.
  • the focusing optical system is disposed in an optical path between the fourth reflecting mirror and the image plane.
  • the focusing optical system has a plurality of lenses that can move integrally along a direction parallel to the first reference axis. It is preferable.
  • the first reflecting mirror to the fourth reflecting mirror are optically conjugate with the image plane at the position of the object. It is preferable that the object surface to be defined is arranged so as to be parallel to the image plane.
  • the first reflecting mirror to the fourth reflecting mirror are first with respect to the center of the reflecting surface of the first reflecting mirror. It is preferable that the light incident parallel to the reference axis is arranged so as to be perpendicularly incident on the center of the image plane through the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror.
  • a solid cross-section light beam that does not lack a central portion forms an object image, so that a clear object image can be obtained without ring-shaped blurring due to defocusing.
  • the present invention is a reflective photographic lens having high-definition imaging performance without distortion, in which chromatic aberration is well corrected over the wavelength range of g-line (435.83 nm) to C-line (656.27 nm) in the visible range. Has proposed.
  • the object image is reflected on a predetermined image plane after sequentially reflecting light from the object by the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror.
  • the first to fourth reflecting mirrors have a rotationally asymmetric aspherical reflecting surface and include a first reference axis defined by a normal passing through the center of the image surface and a reference surface perpendicular to the image surface Is configured symmetrically.
  • the first reflecting mirror has a concave surface with respect to the light incident direction.
  • the first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror and the fourth reflecting mirror are opposite to the first reflecting mirror with respect to the orthogonal plane. Tilt in the direction.
  • the second reflecting mirror and the third reflecting mirror are arranged eccentrically on the same side with respect to the first reflecting mirror in the reference plane.
  • the four reflecting mirrors are arranged eccentrically so as not to shield the imaging light beam. Then, in order to correct the decentration aberration caused by the eccentric arrangement of the reflecting mirrors, the reflecting surfaces of the four reflecting mirrors are formed in a rotationally asymmetric aspheric shape.
  • the four reflecting mirrors having the rotationally asymmetric aspherical reflecting surfaces are used to obtain a good object image.
  • the reason why the reflection photographic lens is constituted by four reflecting mirrors in the present invention will be described.
  • the reflection photographic lens of the present invention is preferentially used as a camera lens. In this case, it is necessary to form an inverted image as in a normal refractive optical system. Focusing on the formation of an inverted image, the number of reflecting mirrors constituting the reflective photographing lens is limited to an even number. That is, in the case of a plurality of reflecting mirrors, the minimum number of reflecting mirrors is two, and the next smallest required number is four.
  • the focal length of the optical system becomes longer and the aperture becomes larger. Therefore, in the present invention, the first reflecting mirror disposed closest to the object side has a concave surface directed toward the incident direction of light. That is, the first reflecting mirror has a positive power. In this way, by applying positive power to the first reflecting mirror on which the light from the object first enters, the light flux that has passed through the first reflecting mirror can be reduced, and the three following the first reflecting mirror can be reduced. The aperture of the reflecting mirror can be kept small, and the weight of the optical system can be reduced.
  • the reflection photographing lens of the present invention four reflecting mirrors are arranged eccentrically in order to avoid the central shielding of the imaging light beam, which is a drawback of the coaxial reflecting optical system.
  • the first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror
  • the fourth reflecting mirror is inclined in the opposite direction to the first reflecting mirror with respect to the orthogonal plane
  • the second reflecting mirror and the third reflecting mirror are eccentrically arranged on the same side with respect to the first reflecting mirror in the reference plane.
  • the vicinity of the center of the reflecting surface of the first reflecting mirror and the second reflecting mirror is a so-called toric surface (a surface having a different radius of curvature in two orthogonal directions). It is preferable to form. Specifically, in order to satisfactorily correct astigmatism due to the eccentric arrangement, it is preferable that the first reflecting mirror and the second reflecting mirror satisfy the following conditional expression (1). (A12-A11) ⁇ (A22-A21)> ⁇ 0.00000005 (1)
  • A11 is the central curvature of the intersection curve between the reflecting surface of the first reflecting mirror and the reference surface
  • A21 is the center curvature of the intersection curve between the reflecting surface of the second reflecting mirror and the reference surface
  • A12 is the central curvature of the intersection curve of the surface perpendicular to the reference surface including the normal passing through the center of the reflecting surface of the first reflecting mirror and the reflecting surface of the first reflecting mirror
  • A22 is the second reflecting mirror. This is the center curvature of the intersection curve of the surface perpendicular to the reference surface including the normal passing through the center of the reflecting surface and the reflecting surface of the second reflecting mirror.
  • (A12-A11) is a difference in curvature in two directions orthogonal to each other at the center of the first reflecting mirror
  • (A22-A21) is a difference in curvature in two directions orthogonal to each other at the center of the second reflecting mirror.
  • Satisfying conditional expression (1) means that the difference in curvature at the center of the first reflecting mirror and the difference in curvature at the center of the second reflecting mirror have the same sign or almost no difference in curvature. Since the incident directions of light are opposite in the first reflecting mirror and the second reflecting mirror, when the signs of the curvature differences are the same, they exert positive and negative powers, respectively.
  • conditional expression (1) indicates a condition in which the first reflection mirror and the second reflection mirror cancel each other out or do not strengthen each other. In other words, it is indicated that if the reflection component of the first reflecting mirror and the reflecting surface of the second reflecting mirror mutually intensify each other, it becomes difficult to correct aberrations in the entire optical system.
  • conditional expression (1) represents a condition necessary for the plurality of reflecting mirrors to correct aberrations while canceling each other. In order to sufficiently exhibit the above-described effect, it is preferable to set the lower limit value of conditional expression (1) to ⁇ 0.00000003.
  • the rotationally asymmetric aspherical surface of the first reflecting mirror is defined by the following expression (2) and satisfies the following conditional expression (3).
  • equation (2) the normal direction at the origin of the rotationally asymmetric aspheric tangent plane of the first reflecting mirror is the z direction
  • the direction of the intersection of the tangential plane and the reference plane is the y direction
  • the sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, the coefficients of the monomial x m ⁇ y n C 1 (m, n) as Yes.
  • conditional expression (3) If the lower limit of conditional expression (3) is not reached, there is a tendency for significant distortion to occur, which is not preferable. On the other hand, when the value exceeds the upper limit value of conditional expression (3), the tendency of asymmetrical aberrations to occur greatly becomes significant, which is not preferable. In order to sufficiently exhibit the above-described effect, it is preferable to set the lower limit value of conditional expression (3) to ⁇ 0.002. Moreover, in order to fully demonstrate the above-mentioned effect, it is preferable to set the upper limit of conditional expression (3) to 0.000173.
  • the rotationally asymmetric aspherical surface of the second reflecting mirror is defined by the following expression (4) and satisfies the following conditional expression (5). preferable.
  • the normal direction at the origin of the rotationally asymmetric aspheric tangent plane of the second reflecting mirror is defined as the z direction
  • the direction of the intersection between the tangential plane and the reference plane is defined as the y direction
  • within the tangential plane is defined as the tangential plane.
  • the sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, the coefficients of the monomial x m ⁇ y n C 2 (m, n) as Yes.
  • conditional expression (3) if the value falls below the lower limit value of conditional expression (5), the tendency for large distortion to occur is not preferable.
  • the value exceeds the upper limit value of conditional expression (5) the tendency of a large amount of asymmetric aberration to occur becomes significant.
  • FIG. 1 is a diagram schematically illustrating a basic configuration of a reflection photographing lens according to each example of the embodiment.
  • the reflective photographic lens according to each embodiment is a photographic lens used in, for example, a camera.
  • a first reflective mirror CM1 in order of light incidence from the object side, a first reflective mirror CM1, a second reflective mirror CM2, It has a third reflecting mirror CM3 and a fourth reflecting mirror CM4.
  • a focusing optical system is attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM (see FIGS. 27, 37, etc.).
  • the reference axis AXa is a straight line connecting the center of an object at infinity and the center of the first reflecting mirror CM1 (the origin of the reflecting surface).
  • the reference axis AXb is a straight line connecting the center of the first reflecting mirror CM1 and the center of the second reflecting mirror CM2 (the origin of the reflecting surface).
  • the reference axis AXc is a straight line connecting the center of the second reflecting mirror CM2 and the center of the third reflecting mirror CM3 (the origin of the reflecting surface).
  • the reference axis AXd is a straight line that connects the center of the third reflecting mirror CM3 and the center of the fourth reflecting mirror CM4 (the origin of the reflecting surface).
  • the reference axis AXe is a first reference axis defined by a normal line passing through the center of the image plane IM, and is a straight line connecting the center of the fourth reflecting mirror CM4 and the center of the image plane IM.
  • the X axis in the direction perpendicular to the paper surface of FIG. 1 the Y axis in the vertical direction along the paper surface of FIG. 1, and the paper surface of FIG.
  • the Z axis is set in the horizontal direction.
  • the reference axes AXa, AXc, and AXe extend in the horizontal direction along the Z axis. All the reference axes AXa to AXe extend linearly along the paper surface (YZ plane) in FIG. That is, the reference axes AXa to AXe are zigzag in the cross-sectional configuration along the YZ plane, but appear to overlap one straight line in the cross-sectional configuration along the XZ plane.
  • the image plane IM is a plane parallel to the XY plane, and the object plane and the image plane IM are parallel.
  • a plane including the reference axes AXa to AXe (a plane including the first reference axis AXe and perpendicular to the image plane IM), that is, a YZ plane is defined as a reference plane.
  • local coordinate systems (x, y, z) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4 are set.
  • the x axis is set parallel to the X axis
  • the yz plane is set to coincide with the YZ plane
  • the y axis rotates the Y axis clockwise by an angle ⁇ 01. It is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the first reflecting mirror CM1 and the Y-axis of the global coordinate system is ⁇ 01.
  • the x axis is set parallel to the X axis
  • the yz plane is set to coincide with the YZ plane
  • the y axis rotates the Y axis clockwise by an angle ⁇ 02. It is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the second reflecting mirror CM2 and the Y-axis of the global coordinate system is ⁇ 02.
  • the x axis is set parallel to the X axis
  • the yz plane is set to coincide with the YZ plane
  • the y axis rotates the Y axis counterclockwise by an angle ⁇ 03.
  • the magnitude of the angle between the y-axis of the local coordinate system of the third reflecting mirror CM3 and the Y-axis of the global coordinate system is ⁇ 03.
  • the x axis is set parallel to the X axis
  • the yz plane is set to coincide with the YZ plane
  • the y axis rotates the Y axis counterclockwise by an angle ⁇ 04. Is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the fourth reflecting mirror CM4 and the Y-axis of the global coordinate system is ⁇ 04.
  • the angle magnitudes ⁇ 01, ⁇ 02, ⁇ 03, and ⁇ 04 are the same (or substantially the same).
  • the reflecting surface of the first reflecting mirror CM1 is a rotationally asymmetric aspheric surface, and has a shape that is concave on the object side in the reference plane and in the xz plane perpendicular to the reference plane.
  • the reflecting surface of the second reflecting mirror CM2, the reflecting surface of the third reflecting mirror CM3, and the reflecting surface of the fourth reflecting mirror CM4 are rotationally asymmetric aspheric surfaces.
  • the light beam of the solid cross section without the central portion is finally formed so that the central portion of the light beam from the object reaches the image surface IM without being blocked.
  • the rotationally asymmetric aspheric surfaces (that is, free-form surfaces) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4 are defined by the following equation (a).
  • s is the sag of the z direction of the aspherical surface (unit: mm)
  • m and n are natural numbers including 0,
  • C (m, n) is the coefficient of the monomial x m ⁇ y n It is.
  • the reflective photographic lens according to each example of the present embodiment not only the correction of aberrations and the miniaturization can be achieved at the same time, but a solid cross-section light beam that does not lack a central portion forms an object image. To do. As a result, a natural object image can be obtained without ring-shaped blurring due to defocusing.
  • FIG. 2 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the first example.
  • FIG. 3 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the first example.
  • an aperture stop can be disposed at the position of the reflection surface of the first reflecting mirror CM1. 2 and the corresponding FIG. 7, FIG. 11, FIG. 15, FIG. 19, FIG. 23, FIG. 27, FIG. 29, FIG.
  • An aperture stop arranged in an optical path of light virtually transmitted through one reflecting mirror CM1 is shown.
  • a plane parallel plate as a protective glass can be disposed at a position indicated by the reference symbol IP on the object side of the first reflecting mirror CM1.
  • Table (1) values of specifications of the reflection photographing lens according to the first example are listed.
  • the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, and the fifth surface is the image plane IM.
  • the inclination angle ⁇ is a positive value when the y-axis is coincident with the direction in which the Y-axis is rotated counterclockwise in the corresponding page, and the Y-axis is rotated clockwise by an acute angle. A negative value is assumed when the direction and the y-axis coincide.
  • the inclination angle ⁇ of the local coordinate system (x, y, z) on the reflecting surface of the first reflecting mirror CM1, which is the first surface, is ⁇ 01 and takes a negative value.
  • the inclination angle ⁇ of the local coordinate system (x, y, z) on the reflecting surface of the second reflecting mirror CM2, which is the second surface, is ⁇ 02 and takes a negative value.
  • the inclination angle ⁇ of the local coordinate system (x, y, z) on the reflecting surface of the third reflecting mirror CM3 that is the third surface is ⁇ 03 and takes a positive value.
  • the inclination angle ⁇ of the local coordinate system (x, y, z) on the reflecting surface of the fourth reflecting mirror CM4, which is the fourth surface, is ⁇ 04 and takes a positive value.
  • the column of aspherical data in Table (1) shows each parameter of equation (a) that defines rotationally asymmetric aspherical surfaces (free curved surfaces) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4.
  • the notation in Table (1) is the same in the following Tables (2) to (8).
  • FIG. 4 is a diagram showing the distortion aberration of the first example.
  • FIG. 5 is a diagram showing the aberration with respect to the e-line of the first embodiment in a spot diagram.
  • FIG. 6 is a diagram showing the positions of nine image points in the spot diagram of each example.
  • spots at nine image points (viewpoints) S1 to S9 in a rectangular image plane IM of 36 mm ⁇ 24 mm were calculated.
  • the notation of FIG. 5 is the same in the corresponding FIGS. 10, 14, 18, 18, 22, 26, 31 to 36, and 41 to 46.
  • the e-line (546.07 nm) is a reference wavelength in the present embodiment, the g-line is generally the shortest wavelength when considering a visible optical system, and the C-line is generally the longest wavelength when considering a visible optical system. It is.
  • the distortion is corrected well.
  • the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected.
  • the e-line aberration is shown in the first embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
  • FIG. 7 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the second example.
  • FIG. 8 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the second example.
  • table (2) values of specifications of the reflection photographing lens according to the second example are listed.
  • FIG. 9 is a diagram showing distortion aberration of the second example.
  • FIG. 10 is a diagram showing the aberration with respect to the e-line of the second embodiment in a spot diagram.
  • the distortion aberration of the second example is larger than the distortion aberration of the first example of FIG.
  • Focusing on conditional expression (3) and conditional expression (5), the values corresponding to the conditional expressions in the second embodiment are compared with the values corresponding to the conditional expressions in the first embodiment. It turns out that it is near the limit value of the range of (5). That is, it can be seen that conditional expression (3) and conditional expression (5) shown in the present invention are conditions that give good optical performance. Referring to FIG.
  • the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM.
  • the spot size is also inferior to that of the first embodiment.
  • FIG. 11 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the third example.
  • FIG. 12 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the third example.
  • Table (3) lists the values of the specifications of the reflective photographic lens according to the third example.
  • FIG. 13 is a diagram showing distortion aberration of the third example.
  • FIG. 14 is a diagram showing the aberration with respect to the e-line of the third embodiment in a spot diagram. Referring to FIG. 13, it can be seen that in the third embodiment, the distortion is corrected well. Referring to FIG. 14, in the third example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected.
  • FIG. 15 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the fourth example.
  • FIG. 16 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the fourth example.
  • the following table (4) lists values of specifications of the reflective photographic lens according to the fourth example.
  • FIG. 17 is a diagram showing distortion aberration of the fourth example.
  • FIG. 18 is a diagram showing the aberration with respect to the e-line of the fourth embodiment in a spot diagram.
  • the distortion aberration of the fourth embodiment is corrected relatively well, but is still larger than the distortion aberration of the first embodiment (FIG. 4).
  • the values corresponding to the conditional expressions (3) and (5) are in the range of the conditional expressions (3) and (5) as compared to the first embodiment. This is thought to be due to the fact that it is close to the limit value. Referring to FIG.
  • the spot size is sufficiently small at each of image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM.
  • the e-line aberration is shown in the fourth embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
  • FIG. 19 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the fifth example.
  • FIG. 20 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the fifth example. Table 5 below lists values of specifications of the reflective photographic lens according to the fifth example.
  • FIG. 21 is a diagram showing distortion aberration of the fifth example.
  • FIG. 22 is a diagram showing the aberration with respect to the e-line of the fifth embodiment in a spot diagram. Referring to FIG. 21, it can be seen that the fifth embodiment corrects the distortion aberration well. Referring to FIG. 22, in the fifth example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected.
  • FIG. 23 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the sixth example.
  • FIG. 24 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the sixth example. Table 6 below lists values of specifications of the reflective photographic lens according to the sixth example.
  • FIG. 25 is a diagram showing distortion aberration of the sixth example.
  • FIG. 26 is a diagram showing the aberration with respect to the e-line of the sixth embodiment in a spot diagram. Referring to FIG. 25, it can be seen that in the sixth example, the distortion is corrected well. Referring to FIG. 26, it can be seen that in the sixth example, the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected.
  • FIG. 27 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane in the infinitely focused state of the reflective photographing lens according to the seventh example.
  • FIG. 28 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane in the infinitely focused state of the reflective photographing lens according to the seventh example.
  • a focusing optical system FS for focusing an object with respect to the image plane IM is attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM.
  • the focusing optical system FS includes three lenses L1, L2, and L3 that can move integrally along the Z direction parallel to the first reference axis AXe.
  • the lens L1 is a meniscus lens having a convex surface R11 facing the fourth reflecting mirror CM4 and a concave surface R12 facing the image surface IM.
  • the lenses L2 and L3 are meniscus lenses having convex surfaces R21 and R31 facing the fourth reflecting mirror CM4 and concave surfaces R22 and R32 facing the image surface IM.
  • Lenses L1, L2, and L3 are formed of different optical materials.
  • nC represents the refractive index of the optical material with respect to the C line (wavelength: 656.27 nm)
  • nd represents the refractive index of the optical material with respect to the d line (wavelength: 587.56 nm)
  • ne Is the refractive index of the optical material for the e-line (reference wavelength: 546.07 nm)
  • nF is the refractive index of the optical material for the F-line (wavelength: 486.13 nm)
  • ng is for the g-line (wavelength: 435.83 nm).
  • the refractive index of the optical material is shown.
  • a plane parallel plate as a protective glass can be disposed at a required position on the object side of the first reflecting mirror CM1.
  • the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, the fifth surface is the entrance surface R11 of the lens L1, the sixth surface is the exit surface R12 of the lens L1, and the seventh surface is the entrance surface R21 of the lens L2.
  • the eighth surface is the exit surface R22 of the lens L2, the ninth surface is the entrance surface R31 of the lens L3, the tenth surface is the exit surface R32 of the lens L3, and the eleventh surface is the image plane IM.
  • the infinite focusing of the focusing optical system FS in the first distance focusing state is based on the position of the focusing optical system FS in the infinite focusing state.
  • a movement amount ⁇ D1 (unit: mm) from the in-focus state and a movement amount ⁇ D2 (unit: mm) from the infinitely focused state of the focusing optical system FS in the second distance in-focus state are shown.
  • the values of the movement amounts ⁇ D1 and ⁇ D2 are positive values when moving toward the image plane IM.
  • Table 7 below lists values of specifications of the reflective photographic lens according to the seventh example. The notation in Table (7) is the same in Table (8).
  • FIG. 31 is a diagram showing the aberration with respect to the e-line in an infinitely focused state according to the seventh embodiment in a spot diagram.
  • FIG. 32 is a diagram showing aberrations with respect to the e-line in the first distance in-focus state according to the seventh embodiment in a spot diagram.
  • FIG. 33 is a diagram showing the aberration with respect to the e-line in the second distance in-focus state in the seventh embodiment in a spot diagram.
  • FIG. 34 is a diagram showing the aberration with respect to g-line in the infinite focus state in the seventh embodiment in a spot diagram.
  • FIG. 35 is a diagram showing aberrations with respect to g-line in the first distance in-focus state according to the seventh embodiment in a spot diagram.
  • FIG. 36 is a spot diagram showing aberrations with respect to g-line in the second distance in-focus state in the seventh embodiment.
  • the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Further, the e-line and the g-line show almost the same aberration, and it can be seen that almost no chromatic aberration occurs.
  • FIG. 37 is a drawing schematically showing a cross-sectional configuration along the YZ plane in the infinitely focused state of the reflective photographing lens according to the eighth example.
  • FIG. 38 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane in the infinitely focused state of the reflective photographing lens according to the eighth example.
  • a focusing optical system FS and a lens L4 for focusing an object on the image plane IM are attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM.
  • the focusing optical system FS includes three lenses L1, L2, and L3 that can move integrally along the Z direction parallel to the first reference axis AXe.
  • the lens L1 is a meniscus lens having a convex surface R11 facing the fourth reflecting mirror CM4 and a concave surface R12 facing the image surface IM.
  • the lenses L2, L3, and L4 are meniscus lenses having convex surfaces R21, R31, and R41 facing the fourth reflecting mirror CM4 and concave surfaces R22, R32, and R42 facing the image surface IM.
  • Lenses L1, L2, and L3 are formed of different optical materials.
  • the lenses L2 and L4 are made of the same optical material.
  • a plane parallel plate as a protective glass can be disposed at a required position on the object side of the first reflecting mirror CM1.
  • the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, the fifth surface is the entrance surface R11 of the lens L1, the sixth surface is the exit surface R12 of the lens L1, and the seventh surface is the entrance surface R21 of the lens L2.
  • the eighth surface is the exit surface R22 of the lens L2
  • the ninth surface is the entrance surface R31 of the lens L3
  • the tenth surface is the exit surface R32 of the lens L3
  • the eleventh surface is the entrance surface R41 of the lens L4.
  • the twelfth surface is the exit surface R42 of the lens L4
  • the thirteenth surface is the image surface IM. Table 8 below lists values of specifications of the reflective photographic lens according to the eighth example.
  • FIG. 41 is a diagram showing the aberration with respect to the e-line in the infinite focus state in the eighth embodiment in a spot diagram.
  • FIG. 42 is a diagram showing the aberration with respect to the e-line in the first distance focusing state according to the eighth embodiment in a spot diagram.
  • FIG. 43 is a diagram showing the aberration with respect to the e-line in the second distance in-focus state in the eighth embodiment in a spot diagram.
  • FIG. 44 is a spot diagram showing aberrations with respect to g-line in the infinitely focused state according to the eighth embodiment.
  • FIG. 45 is a diagram showing the aberration with respect to g-line in the first distance in-focus state according to the eighth embodiment in a spot diagram.
  • FIG. 46 is a spot diagram showing aberrations with respect to g-line in the second distance in-focus state in the eighth embodiment.
  • the spot size is sufficiently small at each image point S1 to S9, and the aberration is uniform and good over the entire image plane IM. You can see that it has been corrected. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Further, the e-line and the g-line show almost the same aberration, and it can be seen that almost no chromatic aberration occurs.
  • the occurrence of asymmetric aberration is satisfactorily suppressed despite the fact that it is a rotationally asymmetric optical system called a decentered optical system.
  • an optical system is realized in which chromatic aberration is sufficiently reduced over a relatively wide image plane of 36 mm ⁇ 24 mm with respect to light in the visible wavelength band.
  • weight reduction can be achieved by forming a reflecting mirror and a refractive member (lens etc.) with resin.
  • the telephoto lens is generally very large, and there is a merit of downsizing even in the case of transportation and storage.
  • the space between the reflecting mirrors is larger than that of the refractive optical system.
  • the second reflecting mirror CM2 in FIG. A structure that can be divided from the third reflecting mirror CM3, or a structure that can be bent, and a structure that can be further reduced in size during transportation and storage are also possible.
  • the present invention is applied to, for example, a reflective photographic lens used in a camera.
  • the present invention is not limited to this, and the present invention can be similarly applied to other appropriate image devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A reflecting photographic lens comprises, in order from the object side, a first reflecting mirror, a second reflecting mirror, a third reflecting mirror, and a fourth reflecting mirror, positioned such that light from the object forms an object image in a prescribed image plane after being reflected in order by the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror. The first through fourth reflecting mirrors have reflecting surfaces of rotationally asymmetrical astigmatic surface shapes, and are configured being symmetric with relation to a reference plane which is perpendicular to the image plane, including a first reference axis which is defined by a normal which passes through the center of the image plane. The first reflecting mirror has a concave surface facing the direction of entry of light. The first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to an orthogonal plane which is orthogonal to the first reference axis. The third reflecting mirror and the fourth reflecting mirror are inclined in the opposite direction to the first reflecting mirror with respect to the orthogonal plane. The second reflecting mirror and the third reflecting mirror are eccentrically positioned on the same side within the reference plane with respect to the first reference mirror.

Description

反射撮影レンズReflective lens
 本発明は、反射撮影レンズに関する。 The present invention relates to a reflection photographic lens.
 例えばカメラに用いられる反射撮影レンズとして、色収差の良好な補正と小型化との両立を図るのに有利な反射撮影レンズが知られている。従来の反射撮影レンズは、直線状に延びる単一の光軸に沿って配置された凹面反射鏡と凸面反射鏡とを含み、光軸に関して回転対称な光学系である(例えば、特許文献1を参照)。 For example, as a reflective photographing lens used for a camera, a reflective photographing lens that is advantageous for achieving both good correction of chromatic aberration and miniaturization is known. A conventional reflective photographic lens includes a concave reflecting mirror and a convex reflecting mirror arranged along a single optical axis extending linearly, and is an optical system that is rotationally symmetric with respect to the optical axis (for example, see Patent Document 1). reference).
日本国特開平11-212132号公報Japanese Patent Laid-Open No. 11-212132
 従来の反射撮影レンズでは、物体(被写体)からの光束の中央部分が凸面反射鏡により遮られた後、中央開口部を有する凹面反射鏡および凸面反射鏡で順次反射され、凹面反射鏡の開口部を介して像面に達する。その結果、像面に達する結像光束の中央部分は欠如しており、像面に対するデフォーカス(焦点位置ずれ)に起因して物体像にリング状のボケが発生し易い。 In the conventional reflection photographing lens, the central part of the light beam from the object (subject) is blocked by the convex reflecting mirror, and then sequentially reflected by the concave reflecting mirror having the central opening and the convex reflecting mirror, and the opening of the concave reflecting mirror. To reach the image plane. As a result, the central portion of the imaging light beam reaching the image plane is lacking, and ring-shaped blurring tends to occur in the object image due to defocus (focal position shift) with respect to the image plane.
 本発明は、前述の課題に鑑みてなされたものであり、デフォーカスに起因するリング状のボケが発生することのない反射撮影レンズを提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a reflective photographic lens in which ring-shaped blur due to defocus does not occur.
 本発明の第1の態様によると、反射撮影レンズは、物体側から順に、第一反射鏡と、第二反射鏡と、第三反射鏡と、第四反射鏡とを備え、物体からの光が第一反射鏡、第二反射鏡、第三反射鏡および第四反射鏡により順次反射された後に所定の像面に物体像を形成するように配置され、第一反射鏡乃至第四反射鏡は、回転非対称な非球面形状の反射面を有し、像面の中心を通る法線により規定される第一基準軸を含んで像面に垂直な基準面に関して対称に構成され、第一反射鏡は、光の入射方向に対して凹面を向けており、第一反射鏡および第二反射鏡は第一基準軸と直交する直交面に対して同じ方向に傾き、第三反射鏡および第四反射鏡は直交面に対して第一反射鏡と逆の方向に傾いており、第二反射鏡および第三反射鏡は、基準面内で第一反射鏡に対して同じ側に偏心配置されている。
 本発明の第2の態様によると、第1の態様の反射撮影レンズにおいて、第一反射鏡の反射面と基準面との交差曲線の中心曲率をA11とし、第一反射鏡の反射面の中心を通る法線を含んで基準面と直交する面と第一反射鏡の反射面との交差曲線の中心曲率をA12とし、第二反射鏡の反射面と基準面との交差曲線の中心曲率をA21とし、第二反射鏡の反射面の中心を通る法線を含んで基準面と直交する面と第二反射鏡の反射面との交差曲線の中心曲率をA22とするとき、(A12-A11)×(A22-A21)>-0.00000005(1)の条件を満足することが好ましい。
 本発明の第3の態様によると、第1または2の態様の反射撮影レンズにおいて、第一反射鏡の回転非対称な非球面は、該非球面の接平面の原点における法線方向をz方向とし、接平面と基準面との交線の方向をy方向とし、接平面内でy方向と直交する方向をx方向とし、非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC1(m,n)とするとき、次の式(2)により規定され、且つ次の条件式(3)を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000003
 
 本発明の第4の態様によると、第1乃至3のいずれか1態様の反射撮影レンズにおいて、第二反射鏡の回転非対称な非球面は、該非球面の接平面の原点における法線方向をz方向とし、接平面と基準面との交線の方向をy方向とし、接平面内でy方向と直交する方向をx方向とし、非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC2(m,n)とするとき、次の式(4)により規定され、且つ次の条件式(5)を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000004
 
 本発明の第5の態様によると、第1乃至4のいずれか1態様の反射撮影レンズにおいて、少なくとも1つの可動レンズを有し且つ像面に対する物体の合焦を行うための合焦光学系をさらに備えていることが好ましい。
 本発明の第6の態様によると、第5の態様の反射撮影レンズにおいて、合焦光学系は、第四反射鏡と像面との間の光路中に配置されていることが好ましい。
 本発明の第7の態様によると、第5または6の態様の反射撮影レンズにおいて、合焦光学系は、第一基準軸と平行な方向に沿って一体的に移動可能な複数のレンズを有することが好ましい。
 本発明の第8の態様によると、第1乃至7のいずれか1態様の反射撮影レンズにおいて、第一反射鏡乃至第四反射鏡は、物体の位置において像面と光学的に共役な面として定義される物体面が像面と平行になるように配置されていることが好ましい。
 本発明の第9の態様によると、第1乃至8のいずれか1態様の反射撮影レンズにおいて、第一反射鏡乃至第四反射鏡は、第一反射鏡の反射面の中心に対して第一基準軸と平行に入射した光が、第二反射鏡、第三反射鏡および第四反射鏡を経て像面の中心に垂直入射するように配置されていることが好ましい。
According to the first aspect of the present invention, the reflective photographic lens includes, in order from the object side, the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror, and the light from the object. Are sequentially reflected by the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror, and are arranged so as to form an object image on a predetermined image plane, and the first reflecting mirror to the fourth reflecting mirror are arranged. Has a rotationally asymmetric aspherical reflecting surface, and is configured symmetrically with respect to a reference plane perpendicular to the image plane, including a first reference axis defined by a normal passing through the center of the image plane. The mirror has a concave surface with respect to the incident direction of light, and the first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror and the fourth reflecting mirror are inclined. The reflecting mirror is inclined in the direction opposite to the first reflecting mirror with respect to the orthogonal plane, and the second reflecting mirror and the third reflecting mirror are within the reference plane. It is eccentrically arranged on the same side with respect to the reflector.
According to the second aspect of the present invention, in the reflective photographic lens of the first aspect, the center curvature of the intersection curve between the reflecting surface of the first reflecting mirror and the reference surface is A11, and the center of the reflecting surface of the first reflecting mirror is set. The center curvature of the intersection curve between the surface perpendicular to the reference plane including the normal line passing through and the reflection surface of the first reflector is A12, and the center curvature of the intersection curve between the reflection surface of the second reflector and the reference surface is A12. Assuming that A21 is the center curvature of the intersection curve between the plane perpendicular to the reference plane and including the normal passing through the center of the reflecting surface of the second reflecting mirror, and the reflecting surface of the second reflecting mirror is A22, (A12-A11 ) × (A22-A21)> − 0.00000005 (1) is preferably satisfied.
According to the third aspect of the present invention, in the reflective photographic lens of the first or second aspect, the rotationally asymmetric aspheric surface of the first reflecting mirror has the normal direction at the origin of the tangential plane of the aspheric surface as the z direction, The direction of the intersection line between the tangent plane and the reference plane is the y direction, the direction perpendicular to the y direction in the tangential plane is the x direction, the sag amount of the aspherical surface in the z direction is s, and m and n include 0. When a natural number is used and the coefficient of the monomial xm · yn is C1 (m, n), it is preferably defined by the following equation (2) and satisfying the following conditional equation (3).
Figure JPOXMLDOC01-appb-M000003

According to the fourth aspect of the present invention, in the reflective photographic lens of any one of the first to third aspects, the rotationally asymmetric aspherical surface of the second reflecting mirror has a normal direction at the origin of the tangential plane of the aspherical surface as z. Direction, the direction of the line of intersection between the tangent plane and the reference plane is the y direction, the direction orthogonal to the y direction within the tangential plane is the x direction, the sag amount of the aspherical surface in the z direction is s, and m and n are When a natural number including 0 is used and the coefficient of the monomial xm · yn is C2 (m, n), it is preferably defined by the following expression (4) and satisfying the following conditional expression (5).
Figure JPOXMLDOC01-appb-M000004

According to the fifth aspect of the present invention, in the reflective photographic lens of any one of the first to fourth aspects, there is provided a focusing optical system having at least one movable lens and for focusing an object on the image plane. Furthermore, it is preferable to provide.
According to the sixth aspect of the present invention, in the reflective photographic lens according to the fifth aspect, it is preferable that the focusing optical system is disposed in an optical path between the fourth reflecting mirror and the image plane.
According to the seventh aspect of the present invention, in the reflective photographic lens according to the fifth or sixth aspect, the focusing optical system has a plurality of lenses that can move integrally along a direction parallel to the first reference axis. It is preferable.
According to the eighth aspect of the present invention, in the reflective photographic lens according to any one of the first to seventh aspects, the first reflecting mirror to the fourth reflecting mirror are optically conjugate with the image plane at the position of the object. It is preferable that the object surface to be defined is arranged so as to be parallel to the image plane.
According to the ninth aspect of the present invention, in the reflective photographic lens according to any one of the first to eighth aspects, the first reflecting mirror to the fourth reflecting mirror are first with respect to the center of the reflecting surface of the first reflecting mirror. It is preferable that the light incident parallel to the reference axis is arranged so as to be perpendicularly incident on the center of the image plane through the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror.
 本発明の反射撮影レンズでは、中央部分の欠如していない中実断面の光束が物体像を形成するので、デフォーカスに起因するリング状のボケが発生することなく、鮮明な物体像が得られる。 In the reflective photographic lens of the present invention, a solid cross-section light beam that does not lack a central portion forms an object image, so that a clear object image can be obtained without ring-shaped blurring due to defocusing. .
実施形態の各実施例にかかる反射撮影レンズの基本構成を概略的に示す図である。It is a figure which shows schematically the basic composition of the reflective photographic lens concerning each Example of embodiment. 第1実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane of the reflective photographic lens concerning 1st Example. 第1実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows roughly the cross-sectional structure along XZ plane of the reflective photographic lens concerning 1st Example. 第1実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 1st Example. 第1実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 1st Example by a spot diagram. 各実施例のスポットダイアグラムにおける9つの像点の位置を示す図である。It is a figure which shows the position of nine image points in the spot diagram of each Example. 第2実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane of the reflective photographic lens concerning 2nd Example. 第2実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane of the reflective photographic lens concerning 2nd Example. 第2実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 2nd Example. 第2実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 2nd Example by a spot diagram. 第3実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane of the reflective photographic lens concerning 3rd Example. 第3実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane of the reflective photographic lens concerning 3rd Example. 第3実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 3rd Example. 第3実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 3rd Example by a spot diagram. 第4実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane of the reflective photographic lens concerning 4th Example. 第4実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane of the reflective photographic lens concerning 4th Example. 第4実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 4th Example. 第4実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 4th Example by a spot diagram. 第5実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane of the reflective photographic lens concerning 5th Example. 第5実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane of the reflective photographic lens concerning 5th Example. 第5実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 5th Example. 第5実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 5th Example by a spot diagram. 第6実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows roughly the cross-sectional structure along YZ plane of the reflective photographic lens concerning 6th Example. 第6実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane of the reflective photographic lens concerning 6th Example. 第6実施例の歪曲収差を示す図である。It is a figure which shows the distortion aberration of 6th Example. 第6実施例のe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line of 6th Example by a spot diagram. 第7実施例にかかる反射撮影レンズの無限遠合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the infinite point focusing state of the reflective photographic lens concerning 7th Example. 第7実施例にかかる反射撮影レンズの無限遠合焦状態におけるXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane in the infinite point focusing state of the reflective photographic lens concerning 7th Example. 第7実施例にかかる反射撮影レンズの第1距離合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the 1st distance focusing state of the reflective photographic lens concerning 7th Example. 第7実施例にかかる反射撮影レンズの第2距離合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the 2nd distance focusing state of the reflective photographic lens concerning 7th Example. 第7実施例の無限遠合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the infinite point focusing state of 7th Example by a spot diagram. 第7実施例の第1距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the 1st distance focusing state of 7th Example by a spot diagram. 第7実施例の第2距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the 2nd distance focusing state of 7th Example by a spot diagram. 第7実施例の無限遠合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the infinite point focusing state of 7th Example by a spot diagram. 第7実施例の第1距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the 1st distance focusing state of 7th Example by a spot diagram. 第7実施例の第2距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the 2nd distance focusing state of 7th Example by a spot diagram. 第8実施例にかかる反射撮影レンズの無限遠合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the infinite point focusing state of the reflective photographic lens concerning 8th Example. 第8実施例にかかる反射撮影レンズの無限遠合焦状態におけるXZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along XZ plane in the infinite point focusing state of the reflective photographic lens concerning 8th Example. 第8実施例にかかる反射撮影レンズの第1距離合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the 1st distance focusing state of the reflective photographic lens concerning 8th Example. 第8実施例にかかる反射撮影レンズの第2距離合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。It is a figure which shows schematically the cross-sectional structure along YZ plane in the 2nd distance focusing state of the reflective photographic lens concerning 8th Example. 第8実施例の無限遠合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the infinite point focusing state of 8th Example by a spot diagram. 第8実施例の第1距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the 1st distance focusing state of 8th Example by a spot diagram. 第8実施例の第2距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to e line in the 2nd distance focusing state of 8th Example by a spot diagram. 第8実施例の無限遠合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the infinite point focusing state of 8th Example by a spot diagram. 第8実施例の第1距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the 1st distance focusing state of 8th Example by a spot diagram. 第8実施例の第2距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。It is a figure which shows the aberration with respect to g line in the 2nd distance focusing state of 8th Example by a spot diagram.
 実施形態における各実施例の具体的な説明に先立ち、本発明にかかる反射撮影レンズの基本的な構成について説明する。本発明は、可視域におけるg線(435.83nm)~C線(656.27nm)の波長範囲に亘って色収差が良好に補正された、歪みのない高精細な結像性能を有する反射撮影レンズを提案している。 Prior to specific description of each example in the embodiment, a basic configuration of the reflection photographing lens according to the present invention will be described. The present invention is a reflective photographic lens having high-definition imaging performance without distortion, in which chromatic aberration is well corrected over the wavelength range of g-line (435.83 nm) to C-line (656.27 nm) in the visible range. Has proposed.
 具体的に、本発明の反射撮影レンズでは、物体からの光を、第一反射鏡、第二反射鏡、第三反射鏡および第四反射鏡により順次反射した後に、所定の像面に物体像を形成する。第一反射鏡乃至第四反射鏡は、回転非対称な非球面形状の反射面を有し、像面の中心を通る法線により規定される第一基準軸を含んで像面に垂直な基準面に関して対称に構成されている。第一反射鏡は、光の入射方向に対して凹面を向けている。第一反射鏡および第二反射鏡は第一基準軸と直交する直交面に対して同じ方向に傾き、第三反射鏡および第四反射鏡は上記直交面に対して第一反射鏡と逆の方向に傾いている。第二反射鏡および第三反射鏡は、基準面内で第一反射鏡に対して同じ側に偏心配置されている。 Specifically, in the reflective photographing lens of the present invention, the object image is reflected on a predetermined image plane after sequentially reflecting light from the object by the first reflecting mirror, the second reflecting mirror, the third reflecting mirror, and the fourth reflecting mirror. Form. The first to fourth reflecting mirrors have a rotationally asymmetric aspherical reflecting surface and include a first reference axis defined by a normal passing through the center of the image surface and a reference surface perpendicular to the image surface Is configured symmetrically. The first reflecting mirror has a concave surface with respect to the light incident direction. The first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror and the fourth reflecting mirror are opposite to the first reflecting mirror with respect to the orthogonal plane. Tilt in the direction. The second reflecting mirror and the third reflecting mirror are arranged eccentrically on the same side with respect to the first reflecting mirror in the reference plane.
 本発明では、結像光束の遮蔽が生じないように、4つの反射鏡を偏心配置している。そして、反射鏡の偏心配置に起因して発生する偏心収差を補正するために、4つの反射鏡の反射面を回転非対称な非球面形状にしている。ここで、回転非対称な非球面形状の反射面を有する4つの反射鏡を用いているのは、良好な物体像を得るためである。以下、本発明において4つの反射鏡により反射撮影レンズを構成している理由を説明する。 In the present invention, the four reflecting mirrors are arranged eccentrically so as not to shield the imaging light beam. Then, in order to correct the decentration aberration caused by the eccentric arrangement of the reflecting mirrors, the reflecting surfaces of the four reflecting mirrors are formed in a rotationally asymmetric aspheric shape. Here, the four reflecting mirrors having the rotationally asymmetric aspherical reflecting surfaces are used to obtain a good object image. Hereinafter, the reason why the reflection photographic lens is constituted by four reflecting mirrors in the present invention will be described.
 本発明の反射撮影レンズでは、カメラレンズとしての用途を優先的に考えている。この場合、通常の屈折光学系と同様に倒立像を形成する必要がある。倒立像の形成に着目すると、反射撮影レンズを構成する反射鏡の枚数は偶数枚に限られる。つまり、複数の反射鏡により構成する場合、反射鏡の最小枚数は2枚であり、次いで少ない所要枚数は4枚である。 The reflection photographic lens of the present invention is preferentially used as a camera lens. In this case, it is necessary to form an inverted image as in a normal refractive optical system. Focusing on the formation of an inverted image, the number of reflecting mirrors constituting the reflective photographing lens is limited to an even number. That is, in the case of a plurality of reflecting mirrors, the minimum number of reflecting mirrors is two, and the next smallest required number is four.
 一方、反射撮影レンズにおける収差補正、とりわけ球面収差の補正だけに着目すると、非球面形状の反射面を有する1つの反射鏡でも可能である。しかしながら、カメラレンズの場合には、比較的広い視野が求められる。像面湾曲の補正を良好に行うには、所謂ペッツバール和を抑えるために、少なくとも1つの凸面鏡および少なくとも1つの凹面鏡が必要になる。さらに、広い視野に亘ってコマ収差を良好に補正するには、反射撮影レンズを構成する反射鏡の枚数は2枚では足りない。そこで、本発明では、4つの反射鏡を用いることにより、広い視野に亘って諸収差(非点収差、コマ収差など)の良好な補正を実現している。 On the other hand, if attention is paid only to the correction of aberrations in the reflective photographic lens, especially correction of spherical aberration, a single reflecting mirror having an aspherical reflecting surface is also possible. However, in the case of a camera lens, a relatively wide field of view is required. In order to satisfactorily correct the field curvature, at least one convex mirror and at least one concave mirror are required to suppress the so-called Petzval sum. Furthermore, in order to satisfactorily correct coma over a wide field of view, it is not sufficient to use two reflecting mirrors constituting the reflective photographic lens. Therefore, in the present invention, by using four reflecting mirrors, good correction of various aberrations (such as astigmatism and coma) is realized over a wide field of view.
 本発明では、色収差の補正が困難な望遠レンズを想定しているため、光学系の焦点距離は長くなり、口径も大きくなる。そこで、本発明では、最も物体側に配置された第一反射鏡が光の入射方向に対して凹面を向けている。すなわち、第一反射鏡は、正のパワーを有する。このように、物体からの光が最初に入射する第一反射鏡に正のパワーを付与することにより、第一反射鏡を経た光束を細くすることができ、第一反射鏡に後続する3つの反射鏡の口径を小さく抑えることができ、ひいては光学系の軽量化を図ることができる。 In the present invention, since a telephoto lens in which correction of chromatic aberration is difficult is assumed, the focal length of the optical system becomes longer and the aperture becomes larger. Therefore, in the present invention, the first reflecting mirror disposed closest to the object side has a concave surface directed toward the incident direction of light. That is, the first reflecting mirror has a positive power. In this way, by applying positive power to the first reflecting mirror on which the light from the object first enters, the light flux that has passed through the first reflecting mirror can be reduced, and the three following the first reflecting mirror can be reduced. The aperture of the reflecting mirror can be kept small, and the weight of the optical system can be reduced.
 本発明の反射撮影レンズでは、共軸の反射光学系の欠点である結像光束の中心遮蔽を回避するため、4つの反射鏡を偏心配置している。具体的に、本発明では、コマ収差の補正に有利な偏心配置として、第一反射鏡および第二反射鏡が第一基準軸と直交する直交面に対して同じ方向に傾き、第三反射鏡および第四反射鏡が上記直交面に対して第一反射鏡と逆の方向に傾き、第二反射鏡および第三反射鏡が基準面内で第一反射鏡に対して同じ側に偏心配置された構成を採用している。 In the reflection photographing lens of the present invention, four reflecting mirrors are arranged eccentrically in order to avoid the central shielding of the imaging light beam, which is a drawback of the coaxial reflecting optical system. Specifically, in the present invention, as a decentration arrangement advantageous for correcting coma aberration, the first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to the orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror And the fourth reflecting mirror is inclined in the opposite direction to the first reflecting mirror with respect to the orthogonal plane, and the second reflecting mirror and the third reflecting mirror are eccentrically arranged on the same side with respect to the first reflecting mirror in the reference plane. Adopted.
 複数の反射鏡を偏心配置する構成では、最も低次の非対称収差である非点収差が発生する。本発明では、非点収差の良好な補正のために、第一反射鏡および第二反射鏡の反射面の中心付近を、いわゆるトーリック面(直交する二方向で曲率半径が異なるような面)に形成することが好ましい。具体的には、偏心配置による非点収差の良好な補正のために、第一反射鏡および第二反射鏡は、次の条件式(1)を満足することが好ましい。
(A12-A11)×(A22-A21)>-0.00000005   (1)
In the configuration in which a plurality of reflecting mirrors are arranged eccentrically, astigmatism that is the lowest-order asymmetrical aberration occurs. In the present invention, in order to satisfactorily correct astigmatism, the vicinity of the center of the reflecting surface of the first reflecting mirror and the second reflecting mirror is a so-called toric surface (a surface having a different radius of curvature in two orthogonal directions). It is preferable to form. Specifically, in order to satisfactorily correct astigmatism due to the eccentric arrangement, it is preferable that the first reflecting mirror and the second reflecting mirror satisfy the following conditional expression (1).
(A12-A11) × (A22-A21)> − 0.00000005 (1)
 条件式(1)において、A11は第一反射鏡の反射面と基準面との交差曲線の中心曲率であり、A21は第二反射鏡の反射面と基準面との交差曲線の中心曲率である。また、A12は第一反射鏡の反射面の中心を通る法線を含んで基準面と直交する面と第一反射鏡の反射面との交差曲線の中心曲率であり、A22は第二反射鏡の反射面の中心を通る法線を含んで基準面と直交する面と第二反射鏡の反射面との交差曲線の中心曲率である。 In conditional expression (1), A11 is the central curvature of the intersection curve between the reflecting surface of the first reflecting mirror and the reference surface, and A21 is the center curvature of the intersection curve between the reflecting surface of the second reflecting mirror and the reference surface. . A12 is the central curvature of the intersection curve of the surface perpendicular to the reference surface including the normal passing through the center of the reflecting surface of the first reflecting mirror and the reflecting surface of the first reflecting mirror, and A22 is the second reflecting mirror. This is the center curvature of the intersection curve of the surface perpendicular to the reference surface including the normal passing through the center of the reflecting surface and the reflecting surface of the second reflecting mirror.
 すなわち、(A12-A11)は第一反射鏡の中心において互いに直交する二方向の曲率の差であり、(A22-A21)第二反射鏡の中心において互いに直交する二方向の曲率の差である。条件式(1)を満たすことは、第一反射鏡の中心における曲率差と第二反射鏡の中心における曲率差とが互いに同じ符号を持つか、曲率差がほとんどないことを意味している。第一反射鏡と第二反射鏡とでは光の入射方向が反対になるので、曲率差の符号が互いに同じ場合には、それぞれ正負で反対のパワーを及ぼす。従って、条件式(1)は、第一反射鏡と第二反射鏡とでアス成分を互いに相殺するか、もしくは、強め合わない条件を示している。言い方を変えると、第一反射鏡の反射面と第二反射鏡の反射面とで、互いにアス成分を強め合ってしまうと光学系全体で収差の補正が困難になることを示している。 That is, (A12-A11) is a difference in curvature in two directions orthogonal to each other at the center of the first reflecting mirror, and (A22-A21) is a difference in curvature in two directions orthogonal to each other at the center of the second reflecting mirror. . Satisfying conditional expression (1) means that the difference in curvature at the center of the first reflecting mirror and the difference in curvature at the center of the second reflecting mirror have the same sign or almost no difference in curvature. Since the incident directions of light are opposite in the first reflecting mirror and the second reflecting mirror, when the signs of the curvature differences are the same, they exert positive and negative powers, respectively. Therefore, the conditional expression (1) indicates a condition in which the first reflection mirror and the second reflection mirror cancel each other out or do not strengthen each other. In other words, it is indicated that if the reflection component of the first reflecting mirror and the reflecting surface of the second reflecting mirror mutually intensify each other, it becomes difficult to correct aberrations in the entire optical system.
 例えば、第一反射鏡および第二反射鏡が共に物体側に凹面を向ける場合、第一反射鏡は正のパワーを有し、第二反射鏡は負のパワーを有することになる。従って、条件式(1)を満足することにより、第一反射鏡と第二反射鏡とで互いに打ち消し合う方向で偏心の非点収差を補正することができる。光学系には様々な視野からの光が入射し、偏心による非点収差の発生量も視野によって異なる。条件式(1)は、複数の反射鏡が収差を互いに相殺しながら補正するのに必要な条件を表している。なお、上述の効果を十分に発揮するには、条件式(1)の下限値を-0.00000003とすることが好ましい。 For example, when the first reflecting mirror and the second reflecting mirror both have a concave surface facing the object side, the first reflecting mirror has a positive power and the second reflecting mirror has a negative power. Therefore, by satisfying conditional expression (1), it is possible to correct decentration astigmatism in a direction in which the first reflecting mirror and the second reflecting mirror cancel each other. Light from various fields of incidence enters the optical system, and the amount of astigmatism due to decentration varies depending on the field of view. Conditional expression (1) represents a condition necessary for the plurality of reflecting mirrors to correct aberrations while canceling each other. In order to sufficiently exhibit the above-described effect, it is preferable to set the lower limit value of conditional expression (1) to −0.00000003.
 本発明では、収差の良好な補正のために、第一反射鏡の回転非対称な非球面が次の式(2)により規定され、且つ次の条件式(3)を満足することが好ましい。式(2)では、第一反射鏡の回転非対称な非球面の接平面の原点における法線方向をz方向とし、接平面と基準面との交線の方向をy方向とし、接平面内でy方向と直交する方向をx方向とし、非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC1(m,n)としている。 In the present invention, in order to satisfactorily correct aberrations, it is preferable that the rotationally asymmetric aspherical surface of the first reflecting mirror is defined by the following expression (2) and satisfies the following conditional expression (3). In equation (2), the normal direction at the origin of the rotationally asymmetric aspheric tangent plane of the first reflecting mirror is the z direction, the direction of the intersection of the tangential plane and the reference plane is the y direction, and within the tangential plane and a direction perpendicular to the y direction and x direction, the sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, the coefficients of the monomial x m · y n C 1 (m, n) as Yes.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 条件式(3)の下限値を下回ると、歪曲収差が大きく発生する傾向が顕著になるため好ましくない。一方、条件式(3)の上限値を上回ると、非対称収差が大きく発生する傾向が顕著になるため好ましくない。なお、上述の効果を十分に発揮するには、条件式(3)の下限値を-0.002とすることが好ましい。また、上述の効果を十分に発揮するには、条件式(3)の上限値を0.000173とすることが好ましい。 If the lower limit of conditional expression (3) is not reached, there is a tendency for significant distortion to occur, which is not preferable. On the other hand, when the value exceeds the upper limit value of conditional expression (3), the tendency of asymmetrical aberrations to occur greatly becomes significant, which is not preferable. In order to sufficiently exhibit the above-described effect, it is preferable to set the lower limit value of conditional expression (3) to −0.002. Moreover, in order to fully demonstrate the above-mentioned effect, it is preferable to set the upper limit of conditional expression (3) to 0.000173.
 同様に、本発明では、収差の良好な補正のために、第二反射鏡の回転非対称な非球面が次の式(4)により規定され、且つ次の条件式(5)を満足することが好ましい。式(4)では、第二反射鏡の回転非対称な非球面の接平面の原点における法線方向をz方向とし、接平面と基準面との交線の方向をy方向とし、接平面内でy方向と直交する方向をx方向とし、非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC2(m,n)としている。 Similarly, in the present invention, in order to satisfactorily correct the aberration, the rotationally asymmetric aspherical surface of the second reflecting mirror is defined by the following expression (4) and satisfies the following conditional expression (5). preferable. In Equation (4), the normal direction at the origin of the rotationally asymmetric aspheric tangent plane of the second reflecting mirror is defined as the z direction, the direction of the intersection between the tangential plane and the reference plane is defined as the y direction, and within the tangential plane. and a direction perpendicular to the y direction and x direction, the sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, the coefficients of the monomial x m · y n C 2 (m, n) as Yes.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 条件式(3)の場合と同様に、条件式(5)の下限値を下回ると、歪曲収差が大きく発生する傾向が顕著になるため好ましくない。一方、条件式(5)の上限値を上回ると、非対称収差が大きく発生する傾向が顕著になるため好ましくない。なお、上述の効果を十分に発揮するには、条件式(5)の下限値を-0.005とすることが好ましい。また、上述の効果を十分に発揮するには、条件式(5)の上限値を0.004とすることが好ましい。 As in the case of conditional expression (3), if the value falls below the lower limit value of conditional expression (5), the tendency for large distortion to occur is not preferable. On the other hand, if the value exceeds the upper limit value of conditional expression (5), the tendency of a large amount of asymmetric aberration to occur becomes significant. In order to sufficiently exhibit the above-described effect, it is preferable to set the lower limit value of conditional expression (5) to −0.005. Moreover, in order to fully demonstrate the above-mentioned effect, it is preferable to set the upper limit of conditional expression (5) to 0.004.
 以下、実施形態を、添付図面に基づいて説明する。図1は、実施形態の各実施例にかかる反射撮影レンズの基本構成を概略的に示す図である。各実施例にかかる反射撮影レンズは、例えばカメラに用いられる撮影レンズであって、図1に示すように、物体側から光の入射順に、第一反射鏡CM1と、第二反射鏡CM2と、第三反射鏡CM3と、第四反射鏡CM4とを有する。ただし、第7実施例および第8実施例では、第四反射鏡CM4と像面IMとの間の光路中に合焦光学系が付設されている(図27、37等参照)。 Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically illustrating a basic configuration of a reflection photographing lens according to each example of the embodiment. The reflective photographic lens according to each embodiment is a photographic lens used in, for example, a camera. As shown in FIG. 1, in order of light incidence from the object side, a first reflective mirror CM1, a second reflective mirror CM2, It has a third reflecting mirror CM3 and a fourth reflecting mirror CM4. However, in the seventh and eighth embodiments, a focusing optical system is attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM (see FIGS. 27, 37, etc.).
 図1において、基準軸AXaは、無限遠にある物体の中心と第一反射鏡CM1の中心(反射面の原点)とを結ぶ直線である。基準軸AXbは、第一反射鏡CM1の中心と第二反射鏡CM2の中心(反射面の原点)とを結ぶ直線である。基準軸AXcは、第二反射鏡CM2の中心と第三反射鏡CM3の中心(反射面の原点)とを結ぶ直線である。基準軸AXdは、第三反射鏡CM3の中心と第四反射鏡CM4の中心(反射面の原点)とを結ぶ直線である。基準軸AXeは、像面IMの中心を通る法線により規定される第一基準軸であって、第四反射鏡CM4の中心と像面IMの中心とを結ぶ直線である。 In FIG. 1, the reference axis AXa is a straight line connecting the center of an object at infinity and the center of the first reflecting mirror CM1 (the origin of the reflecting surface). The reference axis AXb is a straight line connecting the center of the first reflecting mirror CM1 and the center of the second reflecting mirror CM2 (the origin of the reflecting surface). The reference axis AXc is a straight line connecting the center of the second reflecting mirror CM2 and the center of the third reflecting mirror CM3 (the origin of the reflecting surface). The reference axis AXd is a straight line that connects the center of the third reflecting mirror CM3 and the center of the fourth reflecting mirror CM4 (the origin of the reflecting surface). The reference axis AXe is a first reference axis defined by a normal line passing through the center of the image plane IM, and is a straight line connecting the center of the fourth reflecting mirror CM4 and the center of the image plane IM.
 図1では、全体座標系(X,Y,Z)として、図1の紙面に垂直な方向にX軸を、図1の紙面に沿って鉛直方向にY軸を、図1の紙面に沿って水平方向にZ軸を設定している。各実施例において、基準軸AXa,AXc,AXeは、Z軸に沿って水平方向に延びている。すべての基準軸AXa~AXeは、図1の紙面(YZ平面)に沿ってそれぞれ直線状に延びている。すなわち、基準軸AXa~AXeは、YZ平面に沿った断面構成ではジグザグ状であるが、XZ平面に沿った断面構成では1本の直線に重なって見える。像面IMはXY面に平行な平面であり、物体面と像面IMとは平行である。以下、基準軸AXa~AXeを含む平面(第一基準軸AXeを含んで像面IMに垂直な平面)すなわちYZ平面を基準面とする。 In FIG. 1, as the global coordinate system (X, Y, Z), the X axis in the direction perpendicular to the paper surface of FIG. 1, the Y axis in the vertical direction along the paper surface of FIG. 1, and the paper surface of FIG. The Z axis is set in the horizontal direction. In each embodiment, the reference axes AXa, AXc, and AXe extend in the horizontal direction along the Z axis. All the reference axes AXa to AXe extend linearly along the paper surface (YZ plane) in FIG. That is, the reference axes AXa to AXe are zigzag in the cross-sectional configuration along the YZ plane, but appear to overlap one straight line in the cross-sectional configuration along the XZ plane. The image plane IM is a plane parallel to the XY plane, and the object plane and the image plane IM are parallel. Hereinafter, a plane including the reference axes AXa to AXe (a plane including the first reference axis AXe and perpendicular to the image plane IM), that is, a YZ plane is defined as a reference plane.
 図1では、第一反射鏡CM1~第四反射鏡CM4における局所座標系(x,y,z)をそれぞれ設定している。第一反射鏡CM1の局所座標系において、x軸はX軸と平行に設定され、yz平面はYZ平面と一致するように設定され、y軸はY軸を時計廻りに角度θ01だけ回転させて得られる方向と一致している。すなわち、第一反射鏡CM1の局所座標系のy軸が全体座標系のY軸となす角度の大きさはθ01である。第二反射鏡CM2の局所座標系において、x軸はX軸と平行に設定され、yz平面はYZ平面と一致するように設定され、y軸はY軸を時計廻りに角度θ02だけ回転させて得られる方向と一致している。すなわち、第二反射鏡CM2の局所座標系のy軸が全体座標系のY軸となす角度の大きさはθ02である。 In FIG. 1, local coordinate systems (x, y, z) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4 are set. In the local coordinate system of the first reflecting mirror CM1, the x axis is set parallel to the X axis, the yz plane is set to coincide with the YZ plane, and the y axis rotates the Y axis clockwise by an angle θ01. It is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the first reflecting mirror CM1 and the Y-axis of the global coordinate system is θ01. In the local coordinate system of the second reflecting mirror CM2, the x axis is set parallel to the X axis, the yz plane is set to coincide with the YZ plane, and the y axis rotates the Y axis clockwise by an angle θ02. It is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the second reflecting mirror CM2 and the Y-axis of the global coordinate system is θ02.
 第三反射鏡CM3の局所座標系において、x軸はX軸と平行に設定され、yz平面はYZ平面と一致するように設定され、y軸はY軸を反時計廻りに角度θ03だけ回転させて得られる方向と一致している。すなわち、第三反射鏡CM3の局所座標系のy軸が全体座標系のY軸となす角度の大きさはθ03である。第四反射鏡CM4の局所座標系において、x軸はX軸と平行に設定され、yz平面はYZ平面と一致するように設定され、y軸はY軸を反時計廻りに角度θ04だけ回転させて得られる方向と一致している。すなわち、第四反射鏡CM4の局所座標系のy軸が全体座標系のY軸となす角度の大きさはθ04である。 In the local coordinate system of the third reflector CM3, the x axis is set parallel to the X axis, the yz plane is set to coincide with the YZ plane, and the y axis rotates the Y axis counterclockwise by an angle θ03. Is consistent with the direction obtained. That is, the magnitude of the angle between the y-axis of the local coordinate system of the third reflecting mirror CM3 and the Y-axis of the global coordinate system is θ03. In the local coordinate system of the fourth reflector CM4, the x axis is set parallel to the X axis, the yz plane is set to coincide with the YZ plane, and the y axis rotates the Y axis counterclockwise by an angle θ04. Is consistent with the direction obtained. That is, the magnitude of the angle formed by the y-axis of the local coordinate system of the fourth reflecting mirror CM4 and the Y-axis of the global coordinate system is θ04.
 各実施例において、角度の大きさθ01とθ02とθ03とθ04とは互いに同じ(あるいは互いにほぼ同じ)である。第一反射鏡CM1の反射面は回転非対称な非球面であって、基準面内及び基準面に垂直なxz平面内で物体側に凹面である形状を有する。第二反射鏡CM2の反射面、第三反射鏡CM3の反射面、および第四反射鏡CM4の反射面は、回転非対称な非球面である。 In each embodiment, the angle magnitudes θ01, θ02, θ03, and θ04 are the same (or substantially the same). The reflecting surface of the first reflecting mirror CM1 is a rotationally asymmetric aspheric surface, and has a shape that is concave on the object side in the reference plane and in the xz plane perpendicular to the reference plane. The reflecting surface of the second reflecting mirror CM2, the reflecting surface of the third reflecting mirror CM3, and the reflecting surface of the fourth reflecting mirror CM4 are rotationally asymmetric aspheric surfaces.
 第一反射鏡CM1~第四反射鏡CM4は、物体からの光束の中央部分が遮られることなく像面IMに達するように、ひいては中央部分の欠如していない中実断面の光束が像面IMに物体像を形成するように偏心配置されている。第一反射鏡CM1~第四反射鏡CM4における回転非対称な非球面(すなわち自由曲面)は、次の式(a)により規定されている。式(a)において、sは非球面のz方向のサグ量(単位:mm)であり、mおよびnは0を含む自然数であり、C(m,n)は単項式xm・ynの係数である。 In the first reflecting mirror CM1 to the fourth reflecting mirror CM4, the light beam of the solid cross section without the central portion is finally formed so that the central portion of the light beam from the object reaches the image surface IM without being blocked. Are arranged eccentrically so as to form an object image. The rotationally asymmetric aspheric surfaces (that is, free-form surfaces) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4 are defined by the following equation (a). In formula (a), s is the sag of the z direction of the aspherical surface (unit: mm), m and n are natural numbers including 0, C (m, n) is the coefficient of the monomial x m · y n It is.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 本実施形態の各実施例にかかる反射撮影レンズでは、収差の良好な補正と小型化との両立を図ることができるだけでなく、中央部分の欠如していない中実断面の光束が物体像を形成する。その結果、デフォーカスに起因するリング状のボケが発生することなく、自然な物体像が得られる。 In the reflective photographic lens according to each example of the present embodiment, not only the correction of aberrations and the miniaturization can be achieved at the same time, but a solid cross-section light beam that does not lack a central portion forms an object image. To do. As a result, a natural object image can be obtained without ring-shaped blurring due to defocusing.
[第1実施例]
 図2は、第1実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図3は、第1実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。第1実施例を含む各実施例では、第一反射鏡CM1の反射面の位置に開口絞りを配置することができる。図2およびこれに対応する図7,図11,図15,図19,図23,図27,図29,図30,図37,図39,図40では、図面の明瞭化のために、第一反射鏡CM1を仮想的に透過した光の光路中に配置された開口絞りを示している。
[First embodiment]
FIG. 2 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the first example. FIG. 3 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the first example. In each embodiment including the first embodiment, an aperture stop can be disposed at the position of the reflection surface of the first reflecting mirror CM1. 2 and the corresponding FIG. 7, FIG. 11, FIG. 15, FIG. 19, FIG. 23, FIG. 27, FIG. 29, FIG. An aperture stop arranged in an optical path of light virtually transmitted through one reflecting mirror CM1 is shown.
 第1実施例~第6実施例では、第一反射鏡CM1よりも物体側において参照符号IPで示す位置に、保護ガラスとしての平行平面板を配置することができる。次の表(1)に、第1実施例にかかる反射撮影レンズの諸元の値を掲げる。表(1)の光学部材諸元の欄において、面番号は無限遠にある物体から像面IMへの光の進行する経路に沿った物体側からの面の順序を示している。すなわち、第1面は第一反射鏡CM1の反射面であり、第2面は第二反射鏡CM2の反射面であり、第3面は第三反射鏡CM3の反射面であり、第4面は第四反射鏡CM4の反射面であり、第5面は像面IMである。 In the first to sixth embodiments, a plane parallel plate as a protective glass can be disposed at a position indicated by the reference symbol IP on the object side of the first reflecting mirror CM1. In the following table (1), values of specifications of the reflection photographing lens according to the first example are listed. In the column of the optical member specifications in Table (1), the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, and the fifth surface is the image plane IM.
 また、表(1)の光学部材諸元の欄には、各面における局所座標系(x,y,z)の原点のX座標(単位:mm)、Y座標(単位:mm)、Z座標(単位:mm)、およびy軸のY軸に対する傾き角δ(単位:度)を示している。傾き角δは、対応する図の紙面においてY軸を反時計廻りに鋭角だけ回転させた方向とy軸とが一致する場合には正の値を、Y軸を時計廻りに鋭角だけ回転させた方向とy軸とが一致する場合には負の値をとるものとする。 In the column of the optical member specifications in Table (1), the X coordinate (unit: mm), Y coordinate (unit: mm), Z coordinate of the origin of the local coordinate system (x, y, z) on each surface (Unit: mm) and the inclination angle δ (unit: degree) of the y-axis with respect to the Y-axis. The inclination angle δ is a positive value when the y-axis is coincident with the direction in which the Y-axis is rotated counterclockwise in the corresponding page, and the Y-axis is rotated clockwise by an acute angle. A negative value is assumed when the direction and the y-axis coincide.
 したがって、図1および図2を参照すると、第1面である第一反射鏡CM1の反射面における局所座標系(x,y,z)の傾き角δは、θ01であり、負の値をとる。第2面である第二反射鏡CM2の反射面における局所座標系(x,y,z)の傾き角δは、θ02であり、負の値をとる。第3面である第三反射鏡CM3の反射面における局所座標系(x,y,z)の傾き角δは、θ03であり、正の値をとる。第4面である第四反射鏡CM4の反射面における局所座標系(x,y,z)の傾き角δは、θ04であり、正の値をとる。 Therefore, referring to FIG. 1 and FIG. 2, the inclination angle δ of the local coordinate system (x, y, z) on the reflecting surface of the first reflecting mirror CM1, which is the first surface, is θ01 and takes a negative value. . The inclination angle δ of the local coordinate system (x, y, z) on the reflecting surface of the second reflecting mirror CM2, which is the second surface, is θ02 and takes a negative value. The inclination angle δ of the local coordinate system (x, y, z) on the reflecting surface of the third reflecting mirror CM3 that is the third surface is θ03 and takes a positive value. The inclination angle δ of the local coordinate system (x, y, z) on the reflecting surface of the fourth reflecting mirror CM4, which is the fourth surface, is θ04 and takes a positive value.
 表(1)の非球面データの欄は、第一反射鏡CM1~第四反射鏡CM4における回転非対称な非球面(自由曲面)を規定する式(a)の各パラメータを示している。なお、表(1)における表記は、以降の表(2)~表(8)においても同様である。 The column of aspherical data in Table (1) shows each parameter of equation (a) that defines rotationally asymmetric aspherical surfaces (free curved surfaces) in the first reflecting mirror CM1 to the fourth reflecting mirror CM4. The notation in Table (1) is the same in the following Tables (2) to (8).
               表(1)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -34.889     (CM1)
2      0     96.075   -35.238   -34.889     (CM2)
3      0     96.067   95.212   34.889     (CM3)
4      0      0.006   60.018   34.889     (CM4)
5      0      0.000   150.000    0.000     (IM)
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.00111196   -0.00127119    -0.00125218    -0.00174605
C(1,1)   0        0         0        0
C(0,2)  -0.000480694   0.000174116    0.000618903    0.000153427
C(3,0)   0        0         0        0
C(1,2)  -0.000002    -0.000004     -0.000003     -3.70426E-07
C(2,1)   0        0         0        0
C(0,3)  -2.24695E-07   0.000002     0.000007     0.000003
C(4,0)   8.17556E-10   6.32012E-09   -3.68341E-09   -1.03485E-07
C(3,1)   0        0         0        0
C(2,2)  -6.5826E-10    3.66535E-09   -4.387E-08    -1.16499E-07
C(1,3)   0        0         0        0
C(0,4)   5.59211E-09   2.95256E-08    1.08619E-07    7.09422E-08
C(5,0)   0        0         0        0
C(4,1)   3.68759E-12   6.78161E-11    6.37777E-11    3.22938E-10
C(3,2)   0        0         0        0
C(2,3)   1.0378E-11    1.94033E-10   -4.46774E-10    6.30174E-10
C(1,4)   0        0         0        0
C(0,5)   2.1576E-11    1.67307E-10    6.03942E-10   -1.72657E-09
C(6,0)   9.30004E-15   5.60321E-14   -2.14873E-13   -1.13739E-11
C(5,1)   0        0         0        0
C(4,2)   4.02132E-14   6.05657E-13    8.25947E-13   -1.56772E-11
C(3,3)   0        0         0        0
C(2,4)   8.07025E-14   1.16582E-12   -5.41036E-12    2.53656E-13
C(1,5)   0        0         0        0
C(0,6)   5.95145E-14   2.83865E-14   -1.29953E-12   -4.34571E-11
C(7,0)   0        0         0        0
C(6,1)   1.51564E-15   3.96279E-14    9.38923E-14    3.09796E-12
C(5,2)   0        0         0        0
C(4,3)   4.26289E-16   3.26447E-16   -4.08818E-14   -1.62462E-12
C(3,4)   0        0         0        0
C(2,5)   5.68713E-17   -3.80918E-15   -6.82503E-14   -3.21826E-13
C(1,6)   0        0         0        0
C(0,7)   2.19776E-16   -3.18348E-15    5.42582E-14    1.18377E-12
 
<条件対応値>
A11=-0.000480694
A12=-0.00111196
A21=0.000174116
A22=-0.00127119
条件式(1)(A12-A11)×(A22-A21)=9.12373E-07
条件式(3)C1(2,0)-C1(0,2)=-0.00063
条件式(5)C2(2,0)-C2(0,2)=-0.00145
Table (1)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -34.889 (CM1)
2 0 96.075 -35.238 -34.889 (CM2)
3 0 96.067 95.212 34.889 (CM3)
4 0 0.006 60.018 34.889 (CM4)
5 0 0.000 150.000 0.000 (IM)
<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.00111196 -0.00127119 -0.00125218 -0.00174605
C (1,1) 0 0 0 0
C (0,2) -0.000480694 0.000174116 0.000618903 0.000153427
C (3,0) 0 0 0 0
C (1,2) -0.000002 -0.000004 -0.000003 -3.70426E-07
C (2,1) 0 0 0 0
C (0,3) -2.24695E-07 0.000002 0.000007 0.000003
C (4,0) 8.17556E-10 6.32012E-09 -3.68341E-09 -1.03485E-07
C (3,1) 0 0 0 0
C (2,2) -6.5826E-10 3.66535E-09 -4.387E-08 -1.16499E-07
C (1,3) 0 0 0 0
C (0,4) 5.59211E-09 2.95256E-08 1.08619E-07 7.09422E-08
C (5,0) 0 0 0 0
C (4,1) 3.68759E-12 6.78161E-11 6.37777E-11 3.22938E-10
C (3,2) 0 0 0 0
C (2,3) 1.0378E-11 1.94033E-10 -4.46774E-10 6.30174E-10
C (1,4) 0 0 0 0
C (0,5) 2.1576E-11 1.67307E-10 6.03942E-10 -1.72657E-09
C (6,0) 9.30004E-15 5.60321E-14 -2.14873E-13 -1.13739E-11
C (5,1) 0 0 0 0
C (4,2) 4.02132E-14 6.05657E-13 8.25947E-13 -1.56772E-11
C (3,3) 0 0 0 0
C (2,4) 8.07025E-14 1.16582E-12 -5.41036E-12 2.53656E-13
C (1,5) 0 0 0 0
C (0,6) 5.95145E-14 2.83865E-14 -1.29953E-12 -4.34571E-11
C (7,0) 0 0 0 0
C (6,1) 1.51564E-15 3.96279E-14 9.38923E-14 3.09796E-12
C (5,2) 0 0 0 0
C (4,3) 4.26289E-16 3.26447E-16 -4.08818E-14 -1.62462E-12
C (3,4) 0 0 0 0
C (2,5) 5.68713E-17 -3.80918E-15 -6.82503E-14 -3.21826E-13
C (1,6) 0 0 0 0
C (0,7) 2.19776E-16 -3.18348E-15 5.42582E-14 1.18377E-12

<Conditional values>
A11 = −0.000480694
A12 = −0.00111196
A21 = 0.000174116
A22 = −0.00127119
Conditional expression (1) (A12-A11) × (A22-A21) = 9.1373E-07
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 0.00063
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 0.00145
 図4は、第1実施例の歪曲収差を示す図である。図5は、第1実施例のe線に対する収差をスポットダイアグラムで示す図である。図6は、各実施例のスポットダイアグラムにおける9つの像点の位置を示す図である。各実施例では、FXフォーマットのデジタルカメラを想定し、図6に示すように、36mm×24mmの矩形状の像面IM内での9つの像点(視点)S1~S9でのスポットを計算した。図5における単位スケールの長さは、0.1mm=100μmである。図5の表記は、対応する図10,図14,図18,図22,図26,図31~図36,図41~図46においても同様である。e線(546.07nm)は本実施形態における基準波長であり、g線は一般に可視光学系を検討する際の最も短い波長であり、C線は一般に可視光学系を検討する際の最も長い波長である。 FIG. 4 is a diagram showing the distortion aberration of the first example. FIG. 5 is a diagram showing the aberration with respect to the e-line of the first embodiment in a spot diagram. FIG. 6 is a diagram showing the positions of nine image points in the spot diagram of each example. In each example, assuming an FX format digital camera, as shown in FIG. 6, spots at nine image points (viewpoints) S1 to S9 in a rectangular image plane IM of 36 mm × 24 mm were calculated. . The length of the unit scale in FIG. 5 is 0.1 mm = 100 μm. The notation of FIG. 5 is the same in the corresponding FIGS. 10, 14, 18, 18, 22, 26, 31 to 36, and 41 to 46. The e-line (546.07 nm) is a reference wavelength in the present embodiment, the g-line is generally the shortest wavelength when considering a visible optical system, and the C-line is generally the longest wavelength when considering a visible optical system. It is.
 図4を参照すると、第1実施例では歪曲収差が良好に補正されていることが分かる。図5を参照すると、第1実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。なお、第1実施例について、e線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 Referring to FIG. 4, it can be seen that in the first embodiment, the distortion is corrected well. Referring to FIG. 5, it can be seen that in the first embodiment, the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Although only the e-line aberration is shown in the first embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第2実施例]
 図7は、第2実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図8は、第2実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。次の表(2)に、第2実施例にかかる反射撮影レンズの諸元の値を掲げる。
[Second Embodiment]
FIG. 7 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the second example. FIG. 8 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the second example. In the following table (2), values of specifications of the reflection photographing lens according to the second example are listed.
               表(2)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -35.099     (CM1)
2      0     95.909   -34.713   -35.099     (CM2)
3      0     95.953   94.851   35.099     (CM3)
4      0      0.078   60.249   35.099     (CM4)
5      0      0.000   150.000    0.000     (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.00164987   -0.00327485    -0.000987512    0.000388435
C(1,1)   0        0         0        0
C(0,2)   0.00005     0.000755856   -0.000021     -0.00152649
C(3,0)   0        0         0        0
C(2,1)  -0.000001    -0.000004     -0.000015     -0.000044
C(1,2)   0        0         0        0
C(0,3)   0.000001     0.000003     0.000008     0.000011
C(4,0)   5.937E-10    3.31171E-08    1.15318E-08   -6.40427E-08
C(3,1)   0        0         0        0
C(2,2)   8.75011E-09   6.0866E-08    3.60206E-10    1.22692E-07
C(1,3)   0        0         0        0
C(0,4)   1.08945E-08   1.98768E-08    5.29289E-08   -9.07935E-08
C(5,0)   0        0         0        0
C(4,1)   2.28753E-11   3.65088E-10   -5.0743E-12    -9.04166E-10
C(3,2)   0        0         0        0
C(2,3)   8.17038E-11   4.94301E-10   -3.52291E-10   -1.23492E-09
C(1,4)   0        0         0        0
C(0,5)   4.96918E-11   8.35365E-11    4.49451E-10    2.86075E-10
C(6,0)   1.82278E-14   -7.48314E-13   -5.81015E-13    -5.65052E-12
C(5,1)   0        0         0        0
C(4,2)   3.48485E-13   3.23228E-12    2.65138E-12   -1.76242E-11
C(3,3)   0        0         0        0
C(2,4)   6.44134E-13   1.66026E-12    9.29621E-13    1.78315E-11
C(1,5)   0        0         0        0
C(0,6)   5.98521E-13   6.81299E-13    7.83144E-12    4.06735E-11
C(7,0)   0        0         0        0
C(6,1)   3.47916E-16   -1.37135E-14   -1.7864E-14    -3.56175E-13
C(5,2)   0        0         0        0
C(4,3)   3.01841E-15   1.26051E-14    6.09128E-15    1.84398E-13
C(3,4)   0        0         0        0
C(2,5)   4.31301E-15   -1.09441E-15   -1.90044E-14   -2.93239E-13
C(1,6)   0        0         0        0
C(0,7)   4.04483E-15   4.12554E-15    7.8407E-14    -1.37302E-12
 
<条件対応値>
A11=0.00005
A12=-0.00164987
A21=0.000755856
A22=-0.00327485
条件式(1)(A12-A11)×(A22-A21)=6.85168E-06
条件式(3)C1(2,0)-C1(0,2)=-0.00170
条件式(5)C2(2,0)-C2(0,2)=-0.00403
Table (2)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -35.099 (CM1)
2 0 95.909 -34.713 -35.099 (CM2)
3 0 95.953 94.851 35.099 (CM3)
4 0 0.078 60.249 35.099 (CM4)
5 0 0.000 150.000 0.000 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.00164987 -0.00327485 -0.000987512 0.000388435
C (1,1) 0 0 0 0
C (0,2) 0.00005 0.000755856 -0.000021 -0.00152649
C (3,0) 0 0 0 0
C (2,1) -0.000001 -0.000004 -0.000015 -0.000044
C (1,2) 0 0 0 0
C (0,3) 0.000001 0.000003 0.000008 0.000011
C (4,0) 5.937E-10 3.31171E-08 1.15318E-08 -6.40427E-08
C (3,1) 0 0 0 0
C (2,2) 8.75011E-09 6.0866E-08 3.60206E-10 1.22692E-07
C (1,3) 0 0 0 0
C (0,4) 1.08945E-08 1.98768E-08 5.29289E-08 -9.07935E-08
C (5,0) 0 0 0 0
C (4,1) 2.28753E-11 3.65088E-10 -5.0743E-12 -9.04166E-10
C (3,2) 0 0 0 0
C (2,3) 8.17038E-11 4.94301E-10 -3.52291E-10 -1.23492E-09
C (1,4) 0 0 0 0
C (0,5) 4.96918E-11 8.35365E-11 4.49451E-10 2.86075E-10
C (6,0) 1.82278E-14 -7.48314E-13 -5.81015E-13 -5.65052E-12
C (5,1) 0 0 0 0
C (4,2) 3.48485E-13 3.23228E-12 2.65138E-12 -1.76242E-11
C (3,3) 0 0 0 0
C (2,4) 6.44134E-13 1.66026E-12 9.29621E-13 1.78315E-11
C (1,5) 0 0 0 0
C (0,6) 5.98521E-13 6.81299E-13 7.83144E-12 4.06735E-11
C (7,0) 0 0 0 0
C (6,1) 3.47916E-16 -1.37135E-14 -1.7864E-14 -3.56175E-13
C (5,2) 0 0 0 0
C (4,3) 3.01841E-15 1.26051E-14 6.09128E-15 1.84398E-13
C (3,4) 0 0 0 0
C (2,5) 4.31301E-15 -1.09441E-15 -1.90044E-14 -2.93239E-13
C (1,6) 0 0 0 0
C (0,7) 4.04483E-15 4.12554E-15 7.8407E-14 -1.37302E-12

<Conditional values>
A11 = 0.00005
A12 = −0.00164987
A21 = 0.000755856
A22 = −0.00327485
Conditional expression (1) (A12-A11) × (A22-A21) = 6.85168E-06
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 0.00170
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 0.00403
 図9は、第2実施例の歪曲収差を示す図である。図10は、第2実施例のe線に対する収差をスポットダイアグラムで示す図である。図9を参照すると、第2実施例の歪曲収差は図4の第1実施例の歪曲収差よりも大きいことが分かる。条件式(3)および条件式(5)に着目すると、第2実施例の各条件式対応値は、第1実施例における各条件式対応値に比して、条件式(3)および条件式(5)の範囲の限界値近くにあることが分かる。つまり、本発明が示す条件式(3)および条件式(5)が良好な光学性能を与える条件であることが分かる。図10を参照すると、第2実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。ただし、第2実施例では、スポットサイズも第1実施例に比して劣ることが分かる。なお、第2実施例についてもe線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 FIG. 9 is a diagram showing distortion aberration of the second example. FIG. 10 is a diagram showing the aberration with respect to the e-line of the second embodiment in a spot diagram. Referring to FIG. 9, it can be seen that the distortion aberration of the second example is larger than the distortion aberration of the first example of FIG. Focusing on conditional expression (3) and conditional expression (5), the values corresponding to the conditional expressions in the second embodiment are compared with the values corresponding to the conditional expressions in the first embodiment. It turns out that it is near the limit value of the range of (5). That is, it can be seen that conditional expression (3) and conditional expression (5) shown in the present invention are conditions that give good optical performance. Referring to FIG. 10, in the second example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. However, in the second embodiment, it can be seen that the spot size is also inferior to that of the first embodiment. Although only the e-line aberration is shown in the second embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第3実施例]
 図11は、第3実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図12は、第3実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。次の表(3)に、第3実施例にかかる反射撮影レンズの諸元の値を掲げる。
[Third embodiment]
FIG. 11 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the third example. FIG. 12 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the third example. The following table (3) lists the values of the specifications of the reflective photographic lens according to the third example.
               表(3)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -35.006     (CM1)
2      0     95.983   -34.947   -35.006     (CM2)
3      0     95.956   94.861   35.006     (CM3)
4      0     -0.044   59.859   35.006     (CM4)
5      0      0.000   150.000    0.000     (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.0011707    -0.0014343    -0.00120246    -0.0012942
C(1,1)   0        0         0        0
C(0,2)  -0.00120324   -0.00259378    -0.000204714    0.00103217
C(3,0)   0        0         0        0
C(2,1)  -0.000002    -0.00001      0.000007     0.000026
C(1,2)   0        0         0        0
C(0,3)  -0.000002    -0.000012     0.000007     0.000006
C(4,0)  1.4038E-10    1.28146E-09   -7.72694E-09   -1.43306E-07
C(3,1)   0        0         0        0
C(2,2)  -5.31467E-09   -3.5286E-08    3.91641E-09   -2.74444E-07
C(1,3)   0        0         0        0
C(0,4) -2.95034E-09 2.43526E-08 9.11247E-08 2.3799E-08
C(5,0)   0        0         0        0
C(4,1)  -2.55017E-12   1.30791E-10    7.95753E-11    3.51119E-09
C(3,2)   0        0         0        0
C(2,3)  -9.36814E-12   6.07955E-10    3.987E-10     2.51964E-09
C(1,4)   0        0         0        0
C(0,5)   3.18353E-12   1.60101E-09    1.63349E-09    1.05336E-09
C(6,0)  -4.8482E-15   -1.01114E-13   -2.58568E-13   -1.84073E-11
C(5,1)   0        0         0        0
C(4,2)  -3.58513E-15   2.98906E-12   -4.70375E-13   -5.99341E-11
C(3,3)   0        0         0        0
C(2,4)   1.64494E-14   1.54416E-11    1.97836E-12   -4.91561E-11
C(1,5)   0        0         0        0
C(0,6)   5.40651E-14   1.80643E-11    1.14802E-11   -3.28741E-11
C(7,0)   0        0         0        0
C(6,1)   1.47029E-16   1.15768E-14    3.30961E-14    1.31027E-12
C(5,2)   0        0         0        0
C(4,3)  -2.28175E-16   -6.37977E-15   -1.19453E-13   -3.5323E-13
C(3,4)   0        0         0        0
C(2,5)  1.90901E-16    1.13312E-13   -6.04779E-15    9.1323E-13
C(1,6)   0        0         0        0
C(0,7)  2.63936E-16    4.97123E-14    1.41463E-14    4.14852E-14
 
<条件対応値>
A11=-0.00120324
A12=-0.0011707
A21=-0.00259378
A22=-0.00327485
条件式(1)(A12-A11)×(A22-A21)=-2.2162E-08
条件式(3)C1(2,0)-C1(0,2)=3.2540E-05
条件式(5)C2(2,0)-C2(0,2)=-6.8107E-04
Table (3)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -35.006 (CM1)
2 0 95.983 -34.947 -35.006 (CM2)
3 0 95.956 94.861 35.006 (CM3)
4 0 -0.044 59.859 35.006 (CM4)
5 0 0.000 150.000 0.000 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.0011707 -0.0014343 -0.00120246 -0.0012942
C (1,1) 0 0 0 0
C (0,2) -0.00120324 -0.00259378 -0.000204714 0.00103217
C (3,0) 0 0 0 0
C (2,1) -0.000002 -0.00001 0.000007 0.000026
C (1,2) 0 0 0 0
C (0,3) -0.000002 -0.000012 0.000007 0.000006
C (4,0) 1.4038E-10 1.28146E-09 -7.72694E-09 -1.43306E-07
C (3,1) 0 0 0 0
C (2,2) -5.31467E-09 -3.5286E-08 3.91641E-09 -2.74444E-07
C (1,3) 0 0 0 0
C (0,4) -2.95034E-09 2.43526E-08 9.11247E-08 2.3799E-08
C (5,0) 0 0 0 0
C (4,1) -2.55017E-12 1.30791E-10 7.95753E-11 3.51119E-09
C (3,2) 0 0 0 0
C (2,3) -9.36814E-12 6.07955E-10 3.987E-10 2.51964E-09
C (1,4) 0 0 0 0
C (0,5) 3.18353E-12 1.60101E-09 1.63349E-09 1.05336E-09
C (6,0) -4.8482E-15 -1.01114E-13 -2.58568E-13 -1.84073E-11
C (5,1) 0 0 0 0
C (4,2) -3.58513E-15 2.98906E-12 -4.70375E-13 -5.99341E-11
C (3,3) 0 0 0 0
C (2,4) 1.64494E-14 1.54416E-11 1.97836E-12 -4.91561E-11
C (1,5) 0 0 0 0
C (0,6) 5.40651E-14 1.80643E-11 1.14802E-11 -3.28741E-11
C (7,0) 0 0 0 0
C (6,1) 1.47029E-16 1.15768E-14 3.30961E-14 1.31027E-12
C (5,2) 0 0 0 0
C (4,3) -2.28175E-16 -6.37977E-15 -1.19453E-13 -3.5323E-13
C (3,4) 0 0 0 0
C (2,5) 1.90901E-16 1.13312E-13 -6.04779E-15 9.1323E-13
C (1,6) 0 0 0 0
C (0,7) 2.63936E-16 4.97123E-14 1.41463E-14 4.14852E-14

<Conditional values>
A11 = −0.00120324
A12 = −0.0011707
A21 = −0.00259378
A22 = −0.00327485
Conditional expression (1) (A12-A11) × (A22-A21) = − 2.2162E-08
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = 3.2540E-05
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 6.8107E-04
 図13は、第3実施例の歪曲収差を示す図である。図14は、第3実施例のe線に対する収差をスポットダイアグラムで示す図である。図13を参照すると、第3実施例では歪曲収差が良好に補正されていることが分かる。図14を参照すると、第3実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。なお、第3実施例についてもe線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 FIG. 13 is a diagram showing distortion aberration of the third example. FIG. 14 is a diagram showing the aberration with respect to the e-line of the third embodiment in a spot diagram. Referring to FIG. 13, it can be seen that in the third embodiment, the distortion is corrected well. Referring to FIG. 14, in the third example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Although only the e-line aberration is shown in the third embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第4実施例]
 図15は、第4実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図16は、第4実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。次の表(4)に、第4実施例にかかる反射撮影レンズの諸元の値を掲げる。
[Fourth embodiment]
FIG. 15 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the fourth example. FIG. 16 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the fourth example. The following table (4) lists values of specifications of the reflective photographic lens according to the fourth example.
               表(4)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -35.306     (CM1)
2      0     95.741   -34.188   -35.306     (CM2)
3      0     95.825   94.450   35.306     (CM3)
4      0      0.111   60.350   35.306     (CM4)
5      0      0.000   150.000    0.000     (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.00180778   -0.00414062    -0.000734668    0.001069
C(1,1)   0        0         0        0
C(0,2)  -0.000245633   0.000505802    0.000430981   -0.00042515
C(3,0)   0        0         0        0
C(2,1)  -0.000002    -0.000013     -0.000024     -0.000042
C(1,2)   0        0         0        0
C(0,3)   1.94065E-07   0.000002     0.000006     0.000004
C(4,0)  -5.97205E-10   3.6242E-08    3.24732E-08   -4.06083E-08
C(3,1)   0        0         0        0
C(2,2)   4.06067E-10   2.88507E-08   -1.19099E-08    8.33902E-08
C(1,3)   0        0         0        0
C(0,4)  9.06598E-09    2.68536E-08    9.68667E-08    7.51517E-08
C(5,0)   0        0         0        0
C(4,1)  8.79733E-12    5.82158E-10    2.53997E-10   -5.0684E-11
C(3,2)   0        0         0        0
C(2,3)  3.64733E-11    7.1795E-10    -1.18784E-09   -2.31129E-10
C(1,4)   0        0         0        0
C(0,5)   3.55401E-11   1.46624E-10    6.73584E-10   -2.11633E-09
C(6,0)   9.58321E-15   -8.79973E-13   -1.04094E-12   -4.12621E-12
C(5,1)   0        0         0        0
C(4,2)   1.8504E-13    7.82866E-12    1.06987E-11   -1.42008E-12
C(3,3)   0        0         0        0
C(2,4)   2.5809E-13    4.26948E-12   -8.19613E-12    1.1516E-12
C(1,5)   0        0         0        0
C(0,6)   1.8672E-13    3.41701E-13    3.30594E-12   -5.00837E-11
C(7,0)   0        0         0        0
C(6,1)  -3.73942E-17   -9.3625E-14    -1.12091E-13   -5.07602E-13
C(5,2)   0        0         0        0
C(4,3)   1.22107E-15   4.9016E-14    2.52999E-14   -3.09476E-14
C(3,4)   0        0         0        0
C(2,5)   1.81649E-15   8.73054E-15   -1.02161E-16    4.62751E-13
C(1,6)   0        0         0        0
C(0,7)   1.22301E-15   7.61707E-16    1.3265E-13    2.12789E-12
 
<条件対応値>
A11=-0.00024563
A12=-0.00180778
A21=0.000505802
A22=-0.00414062
条件式(1)(A12-A11)×(A22-A21)=7.2584E-06
条件式(3)C1(2,0)-C1(0,2)=-0.00156
条件式(5)C2(2,0)-C2(0,2)=-0.00465
Table (4)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -35.306 (CM1)
2 0 95.741 -34.188 -35.306 (CM2)
3 0 95.825 94.450 35.306 (CM3)
4 0 0.111 60.350 35.306 (CM4)
5 0 0.000 150.000 0.000 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.00180778 -0.00414062 -0.000734668 0.001069
C (1,1) 0 0 0 0
C (0,2) -0.000245633 0.000505802 0.000430981 -0.00042515
C (3,0) 0 0 0 0
C (2,1) -0.000002 -0.000013 -0.000024 -0.000042
C (1,2) 0 0 0 0
C (0,3) 1.94065E-07 0.000002 0.000006 0.000004
C (4,0) -5.97205E-10 3.6242E-08 3.24732E-08 -4.06083E-08
C (3,1) 0 0 0 0
C (2,2) 4.06067E-10 2.88507E-08 -1.19099E-08 8.33902E-08
C (1,3) 0 0 0 0
C (0,4) 9.06598E-09 2.68536E-08 9.68667E-08 7.51517E-08
C (5,0) 0 0 0 0
C (4,1) 8.79733E-12 5.82158E-10 2.53997E-10 -5.0684E-11
C (3,2) 0 0 0 0
C (2,3) 3.64733E-11 7.1795E-10 -1.18784E-09 -2.31129E-10
C (1,4) 0 0 0 0
C (0,5) 3.55401E-11 1.46624E-10 6.73584E-10 -2.11633E-09
C (6,0) 9.58321E-15 -8.79973E-13 -1.04094E-12 -4.12621E-12
C (5,1) 0 0 0 0
C (4,2) 1.8504E-13 7.82866E-12 1.06987E-11 -1.42008E-12
C (3,3) 0 0 0 0
C (2,4) 2.5809E-13 4.26948E-12 -8.19613E-12 1.1516E-12
C (1,5) 0 0 0 0
C (0,6) 1.8672E-13 3.41701E-13 3.30594E-12 -5.00837E-11
C (7,0) 0 0 0 0
C (6,1) -3.73942E-17 -9.3625E-14 -1.12091E-13 -5.07602E-13
C (5,2) 0 0 0 0
C (4,3) 1.22107E-15 4.9016E-14 2.52999E-14 -3.09476E-14
C (3,4) 0 0 0 0
C (2,5) 1.81649E-15 8.73054E-15 -1.02161E-16 4.62751E-13
C (1,6) 0 0 0 0
C (0,7) 1.22301E-15 7.61707E-16 1.3265E-13 2.12789E-12

<Conditional values>
A11 = −0.00024563
A12 = −0.00180778
A21 = 0.000505802
A22 = −0.00414062
Conditional expression (1) (A12-A11) × (A22-A21) = 7.2584E-06
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 0.00156
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 0.00465
 図17は、第4実施例の歪曲収差を示す図である。図18は、第4実施例のe線に対する収差をスポットダイアグラムで示す図である。図17を参照すると、第4実施例の歪曲収差は比較的良く補正されているが、やはり、第1実施例の歪曲収差(図4)よりも大きい。これは、第4実施例においても、条件式(3)および条件式(5)の条件式対応値が、第1実施例に比して条件式(3)および条件式(5)の範囲の限界値に近いことによるものと考えられる。図18を参照すると、第4実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。なお、第4実施例についてもe線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 FIG. 17 is a diagram showing distortion aberration of the fourth example. FIG. 18 is a diagram showing the aberration with respect to the e-line of the fourth embodiment in a spot diagram. Referring to FIG. 17, the distortion aberration of the fourth embodiment is corrected relatively well, but is still larger than the distortion aberration of the first embodiment (FIG. 4). Even in the fourth embodiment, the values corresponding to the conditional expressions (3) and (5) are in the range of the conditional expressions (3) and (5) as compared to the first embodiment. This is thought to be due to the fact that it is close to the limit value. Referring to FIG. 18, it can be seen that in the fourth example, the spot size is sufficiently small at each of image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Although only the e-line aberration is shown in the fourth embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第5実施例]
 図19は、第5実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図20は、第5実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。次の表(5)に、第5実施例にかかる反射撮影レンズの諸元の値を掲げる。
[Fifth embodiment]
FIG. 19 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the fifth example. FIG. 20 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the fifth example. Table 5 below lists values of specifications of the reflective photographic lens according to the fifth example.
               表(5)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -35.004     (CM1)
2      0     95.985   -34.951   -35.004     (CM2)
3      0     95.932   94.784   35.004     (CM3)
4      0     -0.059   59.812   35.004     (CM4)
5      0      0.000   150.000    0.000     (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.00127362   -0.00182229    -0.00132999    -0.00120444
C(1,1)   0        0         0        0
C(0,2)  -0.00144573   -0.00540615    -0.00103442    0.000836174
C(3,0)   0        0         0        0
C(2,1)  -0.000003    -0.000017     0.000011     0.000037
C(1,2)   0        0         0        0
C(0,3)  -0.000003    -0.000033     0.000005     0.000009
C(4,0)  -2.80591E-10   -2.58974E-09   -8.91126E-09   -1.8627E-07
C(3,1)   0        0         0        0
C(2,2)  -6.97191E-09   -8.92492E-08    1.89796E-08   -4.08741E-07
C(1,3)   0        0         0        0
C(0,4)  -6.37061E-09   -1.36782E-07    4.18658E-08   -5.04794E-08
C(5,0)   0        0         0        0
C(4,1)  -3.5712E-12    2.35514E-10    1.36294E-10    5.41726E-09
C(3,2)   0        0         0        0
C(2,3)  -1.70892E-11   1.08873E-09    6.61535E-10    5.41695E-09
C(1,4)   0        0         0        0
C(0,5)  -1.05145E-11   3.65758E-09    1.03609E-09    2.67397E-09
C(6,0)  -7.04872E-15   -1.7055E-13    -3.43195E-13   -2.45502E-11
C(5,1)   0        0         0        0
C(4,2)  -1.14998E-14   6.83177E-12   -4.27555E-13   -1.16339E-10
C(3,3)   0        0         0        0
C(2,4)  -3.35864E-14   4.69618E-11    4.89101E-12   -1.25273E-10
C(1,5)   0        0         0        0
C(0,6)   9.97669E-15   1.05103E-10    1.06193E-11   -5.0543E-11
C(7,0)   0        0         0        0
C(6,1)  -3.14649E-16   -2.88214E-14    4.20082E-15    1.03447E-12
C(5,2)   0        0         0        0
C(4,3)  -5.54554E-16   -1.54481E-13   -7.0014E-14    8.16617E-13
C(3,4)   0        0         0        0
C(2,5)  -2.65536E-16   1.62381E-13    1.33449E-14    1.65347E-12
C(1,6)   0        0         0        0
C(0,7)   1.63322E-16   1.24837E-12    5.77041E-14    1.99324E-13
 
<条件対応値>
A11=-0.0014457
A12=-0.0012736
A21=-0.0054062
A22=-0.0018223
条件式(1)(A12-A11)×(A22-A21)=6.1682E-07
条件式(3)C1(2,0)-C1(0,2)=0.00017
条件式(5)C2(2,0)-C2(0,2)=0.00358
Table (5)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -35.004 (CM1)
2 0 95.985 -34.951 -35.004 (CM2)
3 0 95.932 94.784 35.004 (CM3)
4 0 -0.059 59.812 35.004 (CM4)
5 0 0.000 150.000 0.000 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.00127362 -0.00182229 -0.00132999 -0.00120444
C (1,1) 0 0 0 0
C (0,2) -0.00144573 -0.00540615 -0.00103442 0.000836174
C (3,0) 0 0 0 0
C (2,1) -0.000003 -0.000017 0.000011 0.000037
C (1,2) 0 0 0 0
C (0,3) -0.000003 -0.000033 0.000005 0.000009
C (4,0) -2.80591E-10 -2.58974E-09 -8.91126E-09 -1.8627E-07
C (3,1) 0 0 0 0
C (2,2) -6.97191E-09 -8.92492E-08 1.89796E-08 -4.08741E-07
C (1,3) 0 0 0 0
C (0,4) -6.37061E-09 -1.36782E-07 4.18658E-08 -5.04794E-08
C (5,0) 0 0 0 0
C (4,1) -3.5712E-12 2.35514E-10 1.36294E-10 5.41726E-09
C (3,2) 0 0 0 0
C (2,3) -1.70892E-11 1.08873E-09 6.61535E-10 5.41695E-09
C (1,4) 0 0 0 0
C (0,5) -1.05145E-11 3.65758E-09 1.03609E-09 2.67397E-09
C (6,0) -7.04872E-15 -1.7055E-13 -3.43195E-13 -2.45502E-11
C (5,1) 0 0 0 0
C (4,2) -1.14998E-14 6.83177E-12 -4.27555E-13 -1.16339E-10
C (3,3) 0 0 0 0
C (2,4) -3.35864E-14 4.69618E-11 4.89101E-12 -1.25273E-10
C (1,5) 0 0 0 0
C (0,6) 9.97669E-15 1.05103E-10 1.06193E-11 -5.0543E-11
C (7,0) 0 0 0 0
C (6,1) -3.14649E-16 -2.88214E-14 4.20082E-15 1.03447E-12
C (5,2) 0 0 0 0
C (4,3) -5.54554E-16 -1.54481E-13 -7.0014E-14 8.16617E-13
C (3,4) 0 0 0 0
C (2,5) -2.65536E-16 1.62381E-13 1.33449E-14 1.65347E-12
C (1,6) 0 0 0 0
C (0,7) 1.63322E-16 1.24837E-12 5.77041E-14 1.99324E-13

<Conditional values>
A11 = −0.0014457
A12 = −0.0012736
A21 = −0.0054062
A22 = −0.0018223
Conditional expression (1) (A12-A11) × (A22-A21) = 6.1682E-07
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = 0.00017
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = 0.00358
 図21は、第5実施例の歪曲収差を示す図である。図22は、第5実施例のe線に対する収差をスポットダイアグラムで示す図である。図21を参照すると、第5実施例では歪曲収差が良好に補正されていることが分かる。図22を参照すると、第5実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。なお、第5実施例についてもe線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 FIG. 21 is a diagram showing distortion aberration of the fifth example. FIG. 22 is a diagram showing the aberration with respect to the e-line of the fifth embodiment in a spot diagram. Referring to FIG. 21, it can be seen that the fifth embodiment corrects the distortion aberration well. Referring to FIG. 22, in the fifth example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Although only the e-line aberration is shown in the fifth embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第6実施例]
 図23は、第6実施例にかかる反射撮影レンズのYZ平面に沿った断面構成を概略的に示す図である。図24は、第6実施例にかかる反射撮影レンズのXZ平面に沿った断面構成を概略的に示す図である。次の表(6)に、第6実施例にかかる反射撮影レンズの諸元の値を掲げる。
[Sixth embodiment]
FIG. 23 is a drawing schematically showing a cross-sectional configuration along the YZ plane of the reflective photographing lens according to the sixth example. FIG. 24 is a drawing schematically showing a cross-sectional configuration along the XZ plane of the reflective photographing lens according to the sixth example. Table 6 below lists values of specifications of the reflective photographic lens according to the sixth example.
               表(6)
<光学部材諸元>
面番号  X座標    Y座標   Z座標   傾き角δ
1      0      0.000    0.000   -35.004     (CM1)
2      0     95.985   -34.951   -35.004     (CM2)
3      0     95.932   94.784   35.004     (CM3)
4      0     -0.059   59.812   35.004     (CM4)
5      0      0.000   150.000    0.000     (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -0.000776879   -0.000730729   -0.000882748   -0.000773974
C(1,1)   0        0         0        0
C(2,0)  -0.000508897   -0.000239765   -0.000340017   -0.000222311
C(3,0)   0        0         0        0
C(2,1)  -0.000001    -0.000002     2.38109E-07    0.000003
C(1,2)   0        0         0        0
C(0,3)  -0.000001    -0.000001     0.000001     0.000003
C(4,0)   6.28502E-10   3.32246E-09   -1.9622E-09    -3.55263E-08
C(3,1)   0        0         0        0
C(2,2)   1.03722E-09   5.01325E-09    1.30491E-09   -3.10011E-08
C(1,3)   0        0         0        0
C(0,4)   4.52142E-09   2.11261E-08    4.65079E-08    1.4864E-07
C(5,0)   0        0         0        0
C(4,1)   2.09849E-12   3.15038E-11    1.14905E-11    1.41191E-10
C(3,2)   0        0         0        0
C(2,3)   8.27181E-12   1.18652E-10    2.08145E-11    1.51379E-10
C(1,4)   0        0         0        0
C(0,5)   1.0314E-11    1.27697E-10    4.29179E-11   -1.74454E-09
C(6,0)   8.02544E-16   -2.16317E-14   -6.41101E-14   -2.41539E-12
C(5,1)   0        0         0        0
C(4,2)   1.87548E-14   2.32439E-13   -5.58573E-14   -3.54202E-12
C(3,3)   0        0         0        0
C(2,4)   6.58928E-14   6.61561E-13    4.92869E-13    2.0133E-12
C(1,5)   0        0         0        0
C(0,6)   3.48619E-14   -1.14263E-13   -2.85204E-14   -4.50035E-11
C(7,0)   0        0         0        0
C(6,1)   3.85956E-16   6.45361E-15    1.91907E-14    7.17817E-13
C(5,2)   0        0         0        0
C(4,3)   4.13214E-17   -1.0478E-15    -1.65583E-14   -5.85761E-13
C(3,4)   0        0         0        0
C(2,5)   1.07595E-16   -2.22434E-15   -3.00808E-15   -2.72507E-14
C(1,6)   0        0         0        0
C(0,7)   1.31E-16    -3.64446E-15    1.77322E-14    1.08759E-12
 
<条件対応値>
A11=-0.0005089
A12=-0.00077688
A21=-0.00023977
A22=-0.00073073
条件式(1)(A12-A11)×(A22-A21)=1.3157E-07
条件式(3)C1(2,0)-C1(0,2)=-0.00027
条件式(5)C2(2,0)-C2(0,2)=-0.00049
Table (6)
<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.000 0.000 -35.004 (CM1)
2 0 95.985 -34.951 -35.004 (CM2)
3 0 95.932 94.784 35.004 (CM3)
4 0 -0.059 59.812 35.004 (CM4)
5 0 0.000 150.000 0.000 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -0.000776879 -0.000730729 -0.000882748 -0.000773974
C (1,1) 0 0 0 0
C (2,0) -0.000508897 -0.000239765 -0.000340017 -0.000222311
C (3,0) 0 0 0 0
C (2,1) -0.000001 -0.000002 2.38109E-07 0.000003
C (1,2) 0 0 0 0
C (0,3) -0.000001 -0.000001 0.000001 0.000003
C (4,0) 6.28502E-10 3.32246E-09 -1.9622E-09 -3.55263E-08
C (3,1) 0 0 0 0
C (2,2) 1.03722E-09 5.01325E-09 1.30491E-09 -3.10011E-08
C (1,3) 0 0 0 0
C (0,4) 4.52142E-09 2.11261E-08 4.65079E-08 1.4864E-07
C (5,0) 0 0 0 0
C (4,1) 2.09849E-12 3.15038E-11 1.14905E-11 1.41191E-10
C (3,2) 0 0 0 0
C (2,3) 8.27181E-12 1.18652E-10 2.08145E-11 1.51379E-10
C (1,4) 0 0 0 0
C (0,5) 1.0314E-11 1.27697E-10 4.29179E-11 -1.74454E-09
C (6,0) 8.02544E-16 -2.16317E-14 -6.41101E-14 -2.41539E-12
C (5,1) 0 0 0 0
C (4,2) 1.87548E-14 2.32439E-13 -5.58573E-14 -3.54202E-12
C (3,3) 0 0 0 0
C (2,4) 6.58928E-14 6.61561E-13 4.92869E-13 2.0133E-12
C (1,5) 0 0 0 0
C (0,6) 3.48619E-14 -1.14263E-13 -2.85204E-14 -4.50035E-11
C (7,0) 0 0 0 0
C (6,1) 3.85956E-16 6.45361E-15 1.91907E-14 7.17817E-13
C (5,2) 0 0 0 0
C (4,3) 4.13214E-17 -1.0478E-15 -1.65583E-14 -5.85761E-13
C (3,4) 0 0 0 0
C (2,5) 1.07595E-16 -2.22434E-15 -3.00808E-15 -2.72507E-14
C (1,6) 0 0 0 0
C (0,7) 1.31E-16 -3.64446E-15 1.77322E-14 1.08759E-12

<Conditional values>
A11 = −0.0005089
A12 = −0.00077688
A21 = −0.00023977
A22 = −0.00073073
Conditional expression (1) (A12-A11) × (A22-A21) = 1.3157E-07
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 0.00027
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 0.00049
 図25は、第6実施例の歪曲収差を示す図である。図26は、第6実施例のe線に対する収差をスポットダイアグラムで示す図である。図25を参照すると、第6実施例では歪曲収差が良好に補正されていることが分かる。図26を参照すると、第6実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。なお、第6実施例についてもe線の収差しか示していないが、光学系が反射鏡のみにより構成されているので、当然、色収差はない。他の波長についてもe線と全く同じ収差になるので、他の波長についての図示を省略した。 FIG. 25 is a diagram showing distortion aberration of the sixth example. FIG. 26 is a diagram showing the aberration with respect to the e-line of the sixth embodiment in a spot diagram. Referring to FIG. 25, it can be seen that in the sixth example, the distortion is corrected well. Referring to FIG. 26, it can be seen that in the sixth example, the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Although only the e-line aberration is shown in the sixth embodiment, naturally, there is no chromatic aberration because the optical system is constituted only by the reflecting mirror. Since other aberrations are exactly the same as those of the e-line, illustration of the other wavelengths is omitted.
[第7実施例]
 図27は、第7実施例にかかる反射撮影レンズの無限遠合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。図28は、第7実施例にかかる反射撮影レンズの無限遠合焦状態におけるXZ平面に沿った断面構成を概略的に示す図である。図29は、第7実施例にかかる反射撮影レンズの第1距離合焦状態(物体距離D=89505.0mm)におけるYZ平面に沿った断面構成を概略的に示す図である。図30は、第7実施例にかかる反射撮影レンズの第2距離合焦状態(物体距離D=28858.5mm)におけるYZ平面に沿った断面構成を概略的に示す図である。
[Seventh embodiment]
FIG. 27 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane in the infinitely focused state of the reflective photographing lens according to the seventh example. FIG. 28 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane in the infinitely focused state of the reflective photographing lens according to the seventh example. FIG. 29 is a diagram schematically showing a cross-sectional configuration along the YZ plane in the first distance focusing state (object distance D = 89505.0 mm) of the reflective photographing lens according to the seventh example. FIG. 30 is a drawing schematically showing a cross-sectional configuration along the YZ plane in the second distance focusing state (object distance D = 288858.5 mm) of the reflective photographing lens according to the seventh example.
 第7実施例では、第四反射鏡CM4と像面IMとの間の光路中に、像面IMに対する物体の合焦を行うための合焦光学系FSが付設されている。合焦光学系FSは、第一基準軸AXeと平行なZ方向に沿って一体的に移動可能な3つのレンズL1,L2,L3により構成されている。レンズL1は、第四反射鏡CM4側に凸面R11を向け且つ像面IM側に凹面R12を向けたメニスカスレンズである。同様に、レンズL2,L3は、第四反射鏡CM4側に凸面R21,R31を向け且つ像面IM側に凹面R22,R32を向けたメニスカスレンズである。 In the seventh embodiment, a focusing optical system FS for focusing an object with respect to the image plane IM is attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM. The focusing optical system FS includes three lenses L1, L2, and L3 that can move integrally along the Z direction parallel to the first reference axis AXe. The lens L1 is a meniscus lens having a convex surface R11 facing the fourth reflecting mirror CM4 and a concave surface R12 facing the image surface IM. Similarly, the lenses L2 and L3 are meniscus lenses having convex surfaces R21 and R31 facing the fourth reflecting mirror CM4 and concave surfaces R22 and R32 facing the image surface IM.
 レンズL1とL2とL3とは、互いに異なる光学材料により形成されている。表(7)の硝材データの欄において、nCはC線(波長:656.27nm)に対する光学材料の屈折率を、ndはd線(波長:587.56nm)に対する光学材料の屈折率を、neはe線(基準波長:546.07nm)に対する光学材料の屈折率を、nFはF線(波長:486.13nm)に対する光学材料の屈折率を、ngはg線(波長:435.83nm)に対する光学材料の屈折率を示している。第7実施例においても、第1実施例~第6実施例と同様に、第一反射鏡CM1よりも物体側の所要位置に、保護ガラスとしての平行平面板を配置することができる。 Lenses L1, L2, and L3 are formed of different optical materials. In the column of glass material data in Table (7), nC represents the refractive index of the optical material with respect to the C line (wavelength: 656.27 nm), nd represents the refractive index of the optical material with respect to the d line (wavelength: 587.56 nm), ne Is the refractive index of the optical material for the e-line (reference wavelength: 546.07 nm), nF is the refractive index of the optical material for the F-line (wavelength: 486.13 nm), and ng is for the g-line (wavelength: 435.83 nm). The refractive index of the optical material is shown. In the seventh embodiment, as in the first to sixth embodiments, a plane parallel plate as a protective glass can be disposed at a required position on the object side of the first reflecting mirror CM1.
 表(7)の光学部材諸元の欄において、面番号は無限遠にある物体から像面IMへの光の進行する経路に沿った物体側からの面の順序を示している。すなわち、第1面は第一反射鏡CM1の反射面であり、第2面は第二反射鏡CM2の反射面であり、第3面は第三反射鏡CM3の反射面であり、第4面は第四反射鏡CM4の反射面であり、第5面はレンズL1の入射面R11であり、第6面はレンズL1の射出面R12であり、第7面はレンズL2の入射面R21であり、第8面はレンズL2の射出面R22であり、第9面はレンズL3の入射面R31であり、第10面はレンズL3の射出面R32であり、第11面は像面IMである。 In the column of the optical member specifications in Table (7), the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, the fifth surface is the entrance surface R11 of the lens L1, the sixth surface is the exit surface R12 of the lens L1, and the seventh surface is the entrance surface R21 of the lens L2. The eighth surface is the exit surface R22 of the lens L2, the ninth surface is the entrance surface R31 of the lens L3, the tenth surface is the exit surface R32 of the lens L3, and the eleventh surface is the image plane IM.
 また、表(7)の光学部材諸元の欄には、第一反射鏡CM1~第四反射鏡CM4のデータに加えて、無限遠合焦状態におけるレンズL1~L3の各面の中心のX座標(単位:mm)、Y座標(単位:mm)、Z座標(単位:mm)、および傾き角δ(単位:度)を示している。レンズL1~L3は、傾き角δが0度であり、XY平面に対して傾くことなく通常の姿勢で配置されている。表(7)のレンズ面データの欄は、レンズL1~L3の各面の曲率半径(単位:mm)rを示している。ここで、光の入射側に凸面を向けたレンズ面の曲率半径rを正としている。 In addition, in the column of the optical member specifications in Table (7), in addition to the data of the first reflecting mirror CM1 to the fourth reflecting mirror CM4, X at the center of each surface of the lenses L1 to L3 in the infinitely focused state A coordinate (unit: mm), a Y coordinate (unit: mm), a Z coordinate (unit: mm), and an inclination angle δ (unit: degree) are shown. The lenses L1 to L3 have an inclination angle δ of 0 degrees and are arranged in a normal posture without being inclined with respect to the XY plane. The column of lens surface data in Table (7) indicates the radius of curvature (unit: mm) r of each surface of the lenses L1 to L3. Here, the radius of curvature r of the lens surface with the convex surface facing the light incident side is positive.
 表(7)の合焦光学系の移動量の欄には、無限遠合焦状態における合焦光学系FSの位置を基準として、第1距離合焦状態における合焦光学系FSの無限遠合焦状態からの移動量ΔD1(単位:mm)、および第2距離合焦状態における合焦光学系FSの無限遠合焦状態からの移動量ΔD2(単位:mm)を示している。移動量ΔD1,ΔD2の値は、像面IMに向かって移動するときに正の値をとるものとする。次の表(7)に、第7実施例にかかる反射撮影レンズの諸元の値を掲げる。なお、表(7)における表記は、表(8)においても同様である。 In the column of the amount of movement of the focusing optical system in Table (7), the infinite focusing of the focusing optical system FS in the first distance focusing state is based on the position of the focusing optical system FS in the infinite focusing state. A movement amount ΔD1 (unit: mm) from the in-focus state and a movement amount ΔD2 (unit: mm) from the infinitely focused state of the focusing optical system FS in the second distance in-focus state are shown. The values of the movement amounts ΔD1 and ΔD2 are positive values when moving toward the image plane IM. Table 7 below lists values of specifications of the reflective photographic lens according to the seventh example. The notation in Table (7) is the same in Table (8).
               表(7)
<硝材データ>
      nC     nd     ne     nF     ng
L1   1.513855   1.51633   1.518251   1.521905   1.526214
L2   1.747295   1.755199   1.761671   1.774745   1.791497
L3   1.544572   1.548141   1.550984   1.556544   1.563351
 
<光学部材諸元>
面番号  X座標   Y座標   Z座標   傾き角δ
1      0     0.00   -60.00   -37.87    (CM1)
2      0    190.00   -108.32   -37.87    (CM2)
3      0    190.00   108.32   37.87    (CM3)
4      0     0.00    60.00   37.87    (CM4)
5      0     0.00   100.00    0.00    (L1;R11)
6      0     0.00   103.00    0.00    (L1;R12)
7      0     0.00   108.42    0.00    (L2;R21)
8      0     0.00   111.42    0.00    (L2;R22)
9      0     0.00   113.42    0.00    (L3;R31)
10     0     0.00   121.42    0.00    (L3;R32)
11     0     0.00   330.00    0.00    (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -4.11103.E-04  -2.90903.E-04   -5.62264.E-04   -5.40325.E-04
C(1,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,2)  -2.67792.E-04  -2.90085.E-04   -5.06794.E-04   -5.49152.E-04
C(3,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,1)  -1.41239.E-07  -2.05955.E-07   8.05499.E-07   2.26277.E-06
C(1,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,3)   1.83465.E-07   9.89000.E-07   1.17666.E-06   3.03799.E-06
C(4,0)   3.54753.E-10   1.21553.E-09   -3.50594.E-10   -5.31580.E-09
C(3,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,2)   2.64023.E-10   1.05016.E-09   -3.52589.E-09   -2.63365.E-08
C(1,3)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,4)   1.09184.E-09   5.46395.E-09   2.56841.E-09   -1.28230.E-08
C(5,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,1)   1.08935.E-13  -1.19586.E-12   -3.19791.E-12   4.67743.E-12
C(3,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,3)   7.82206.E-13   2.07412.E-12   -8.68229.E-12   7.91363.E-11
C(1,4)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,5)   3.30595.E-12   1.78111.E-11   1.93776.E-11   5.83881.E-11
C(6,0)  -3.17881.E-15  -4.31447.E-14   -7.74547.E-14   -1.00604.E-12
C(5,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,2)  -3.05460.E-15  -6.67652.E-14   -9.51359.E-14   -1.56024.E-12
C(3,3)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,4)  -1.30062.E-15  -5.37642.E-14   -1.43180.E-13   -1.75096.E-12
C(1,5)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,6)   6.70080.E-15   1.77774.E-14   6.25179.E-14   -6.87357.E-13
C(7,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(6,1)   1.03268.E-16   1.19194.E-15   2.15616.E-15   5.33170.E-14
C(5,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,3)   9.05481.E-18  -3.04949.E-16   -4.00197.E-16   -1.23283.E-14
C(3,4)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,5)   2.68577.E-17   2.32651.E-16   -9.01643.E-17   2.74645.E-14
C(1,6)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,7)   2.34479.E-18  -1.49564.E-16   1.11004.E-16   -4.18193.E-15
 
<レンズ面データ>
レンズ面   r
R11   146.133
R12   70.138
R21   63.577
R22   59.261
R31   63.364
R32   99.301
 
<合焦光学系の移動量>
第1距離合焦状態  第2距離合焦状態
   ΔD1      ΔD2
   23.18       85.3
 
<条件対応値>
A11=-0.00026779
A12=-0.0004111
A21=-0.00029008
A22=-0.0002909
条件式(1)(A12-A11)×(A22-A21)=1.1734E-10
条件式(3)C1(2,0)-C1(0,2)=-0.00014
条件式(5)C2(2,0)-C2(0,2)=-8.1877E-07
Table (7)
<Glass data>
nC nd ne nF ng
L1 1.513855 1.51633 1.518251 1.521905 1.526214
L2 1.747295 1.755199 1.761671 1.774745 1.791497
L3 1.544572 1.548141 1.550984 1.556544 1.563351

<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.00 -60.00 -37.87 (CM1)
2 0 190.00 -108.32 -37.87 (CM2)
3 0 190.00 108.32 37.87 (CM3)
4 0 0.00 60.00 37.87 (CM4)
5 0 0.00 100.00 0.00 (L1; R11)
6 0 0.00 103.00 0.00 (L1; R12)
7 0 0.00 108.42 0.00 (L2; R21)
8 0 0.00 111.42 0.00 (L2; R22)
9 0 0.00 113.42 0.00 (L3; R31)
10 0 0.00 121.42 0.00 (L3; R32)
11 0 0.00 330.00 0.00 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -4.11103.E-04 -2.90903.E-04 -5.62264.E-04 -5.40325.E-04
C (1,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,2) -2.67792.E-04 -2.90085.E-04 -5.06794.E-04 -5.49152.E-04
C (3,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,1) -1.41239.E-07 -2.05955.E-07 8.05499.E-07 2.26277.E-06
C (1,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,3) 1.83465.E-07 9.89000.E-07 1.17666.E-06 3.03799.E-06
C (4,0) 3.54753.E-10 1.21553.E-09 -3.50594.E-10 -5.31580.E-09
C (3,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,2) 2.64023.E-10 1.05016.E-09 -3.52589.E-09 -2.63365.E-08
C (1,3) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,4) 1.09184.E-09 5.46395.E-09 2.56841.E-09 -1.28230.E-08
C (5,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,1) 1.08935.E-13 -1.19586.E-12 -3.19791.E-12 4.67743.E-12
C (3,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,3) 7.82206.E-13 2.07412.E-12 -8.68229.E-12 7.91363.E-11
C (1,4) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,5) 3.30595.E-12 1.78111.E-11 1.93776.E-11 5.83881.E-11
C (6,0) -3.17881.E-15 -4.31447.E-14 -7.74547.E-14 -1.00604.E-12
C (5,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,2) -3.05460.E-15 -6.67652.E-14 -9.51359.E-14 -1.56024.E-12
C (3,3) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,4) -1.30062.E-15 -5.37642.E-14 -1.43180.E-13 -1.75096.E-12
C (1,5) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,6) 6.70080.E-15 1.77774.E-14 6.25179.E-14 -6.87357.E-13
C (7,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (6,1) 1.03268.E-16 1.19194.E-15 2.15616.E-15 5.33170.E-14
C (5,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,3) 9.05481.E-18 -3.04949.E-16 -4.00197.E-16 -1.23283.E-14
C (3,4) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,5) 2.68577.E-17 2.32651.E-16 -9.01643.E-17 2.74645.E-14
C (1,6) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,7) 2.34479.E-18 -1.49564.E-16 1.11004.E-16 -4.18193.E-15

<Lens surface data>
Lens surface r
R11 146.133
R12 70.138
R21 63.577
R22 59.261
R31 63.364
R32 99.301

<Movement distance of focusing optical system>
First distance focus state Second distance focus state ΔD1 ΔD2
23.18 85.3

<Conditional values>
A11 = −0.00026779
A12 = −0.0004111
A21 = −0.00029008
A22 = −0.0002909
Conditional expression (1) (A12-A11) × (A22-A21) = 1.1734E-10
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 0.00014
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 8.1877E-07
 図31は、第7実施例の無限遠合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図32は、第7実施例の第1距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図33は、第7実施例の第2距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図34は、第7実施例の無限遠合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。図35は、第7実施例の第1距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。図36は第7実施例の第2距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。 FIG. 31 is a diagram showing the aberration with respect to the e-line in an infinitely focused state according to the seventh embodiment in a spot diagram. FIG. 32 is a diagram showing aberrations with respect to the e-line in the first distance in-focus state according to the seventh embodiment in a spot diagram. FIG. 33 is a diagram showing the aberration with respect to the e-line in the second distance in-focus state in the seventh embodiment in a spot diagram. FIG. 34 is a diagram showing the aberration with respect to g-line in the infinite focus state in the seventh embodiment in a spot diagram. FIG. 35 is a diagram showing aberrations with respect to g-line in the first distance in-focus state according to the seventh embodiment in a spot diagram. FIG. 36 is a spot diagram showing aberrations with respect to g-line in the second distance in-focus state in the seventh embodiment.
 図31~図36を参照すると、第7実施例では、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。また、e線とg線とでほぼ同じ収差を示しており、色収差がほとんど発生していないことが分かる。 31 to 36, in the seventh example, it can be seen that the spot size is sufficiently small at each of the image points S1 to S9, and the aberration is uniform and well corrected over the entire image plane IM. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Further, the e-line and the g-line show almost the same aberration, and it can be seen that almost no chromatic aberration occurs.
[第8実施例]
 図37は、第8実施例にかかる反射撮影レンズの無限遠合焦状態におけるYZ平面に沿った断面構成を概略的に示す図である。図38は、第8実施例にかかる反射撮影レンズの無限遠合焦状態におけるXZ平面に沿った断面構成を概略的に示す図である。図39は、第8実施例にかかる反射撮影レンズの第1距離合焦状態(物体距離D=89989.75mm)におけるYZ平面に沿った断面構成を概略的に示す図である。図40は、第8実施例にかかる反射撮影レンズの第2距離合焦状態(物体距離D=29078.91mm)におけるYZ平面に沿った断面構成を概略的に示す図である。
[Eighth embodiment]
FIG. 37 is a drawing schematically showing a cross-sectional configuration along the YZ plane in the infinitely focused state of the reflective photographing lens according to the eighth example. FIG. 38 is a diagram schematically illustrating a cross-sectional configuration along the XZ plane in the infinitely focused state of the reflective photographing lens according to the eighth example. FIG. 39 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane in the first distance focusing state (object distance D = 89989.75 mm) of the reflective photographing lens according to the eighth example. FIG. 40 is a diagram schematically illustrating a cross-sectional configuration along the YZ plane in the second distance focusing state (object distance D = 29078.91 mm) of the reflective photographing lens according to the eighth example.
 第8実施例では、第四反射鏡CM4と像面IMとの間の光路中に、像面IMに対する物体の合焦を行うための合焦光学系FSおよびレンズL4が付設されている。合焦光学系FSは、第一基準軸AXeと平行なZ方向に沿って一体的に移動可能な3つのレンズL1,L2,L3により構成されている。レンズL1は、第四反射鏡CM4側に凸面R11を向け且つ像面IM側に凹面R12を向けたメニスカスレンズである。同様に、レンズL2,L3,L4は、第四反射鏡CM4側に凸面R21,R31,R41を向け且つ像面IM側に凹面R22,R32,R42を向けたメニスカスレンズである。 In the eighth embodiment, a focusing optical system FS and a lens L4 for focusing an object on the image plane IM are attached in the optical path between the fourth reflecting mirror CM4 and the image plane IM. The focusing optical system FS includes three lenses L1, L2, and L3 that can move integrally along the Z direction parallel to the first reference axis AXe. The lens L1 is a meniscus lens having a convex surface R11 facing the fourth reflecting mirror CM4 and a concave surface R12 facing the image surface IM. Similarly, the lenses L2, L3, and L4 are meniscus lenses having convex surfaces R21, R31, and R41 facing the fourth reflecting mirror CM4 and concave surfaces R22, R32, and R42 facing the image surface IM.
 レンズL1とL2とL3とは、互いに異なる光学材料により形成されている。レンズL2とL4とは、互いに同じ光学材料により形成されている。第8実施例においても、第1実施例~第7実施例と同様に、第一反射鏡CM1よりも物体側の所要位置に、保護ガラスとしての平行平面板を配置することができる。 Lenses L1, L2, and L3 are formed of different optical materials. The lenses L2 and L4 are made of the same optical material. In the eighth embodiment, as in the first to seventh embodiments, a plane parallel plate as a protective glass can be disposed at a required position on the object side of the first reflecting mirror CM1.
 表(8)の光学部材諸元の欄において、面番号は無限遠にある物体から像面IMへの光の進行する経路に沿った物体側からの面の順序を示している。すなわち、第1面は第一反射鏡CM1の反射面であり、第2面は第二反射鏡CM2の反射面であり、第3面は第三反射鏡CM3の反射面であり、第4面は第四反射鏡CM4の反射面であり、第5面はレンズL1の入射面R11であり、第6面はレンズL1の射出面R12であり、第7面はレンズL2の入射面R21であり、第8面はレンズL2の射出面R22であり、第9面はレンズL3の入射面R31であり、第10面はレンズL3の射出面R32であり、第11面はレンズL4の入射面R41であり、第12面はレンズL4の射出面R42であり、第13面は像面IMである。次の表(8)に、第8実施例にかかる反射撮影レンズの諸元の値を掲げる。 In the column of optical member specifications in Table (8), the surface number indicates the order of the surfaces from the object side along the path of light traveling from the object at infinity to the image plane IM. That is, the first surface is the reflecting surface of the first reflecting mirror CM1, the second surface is the reflecting surface of the second reflecting mirror CM2, the third surface is the reflecting surface of the third reflecting mirror CM3, and the fourth surface. Is the reflecting surface of the fourth reflecting mirror CM4, the fifth surface is the entrance surface R11 of the lens L1, the sixth surface is the exit surface R12 of the lens L1, and the seventh surface is the entrance surface R21 of the lens L2. The eighth surface is the exit surface R22 of the lens L2, the ninth surface is the entrance surface R31 of the lens L3, the tenth surface is the exit surface R32 of the lens L3, and the eleventh surface is the entrance surface R41 of the lens L4. The twelfth surface is the exit surface R42 of the lens L4, and the thirteenth surface is the image surface IM. Table 8 below lists values of specifications of the reflective photographic lens according to the eighth example.
               表(8)
<硝材データ>
      nC     nd     ne     nF     ng
L1   1.513855   1.51633   1.518251   1.521905   1.526214
L2   1.747295   1.755199   1.761671   1.774745   1.791497
L3   1.544572   1.548141   1.550984   1.556544   1.563351
L4   1.747295   1.755199   1.761671   1.774745   1.791497
 
<光学部材諸元>
面番号  X座標   Y座標   Z座標   傾き角δ
1      0     0.00    0.00   -37.87    (CM1)
2      0    190.00   -48.32   -37.87    (CM2)
3      0    190.00   168.32   37.86    (CM3)
4      0     0.00   120.00   37.87    (CM4)
5      0     0.00   160.00    0.00    (L1;R11)
6      0     0.00   163.00    0.00    (L1;R12)
7      0     0.00   166.50    0.00    (L2;R21)
8      0     0.00   169.50    0.00    (L2;R22)
9      0     0.00   171.50    0.00    (L3;R31)
10     0     0.00   179.50    0.00    (L3;R32)
11     0     0.00   301.17    0.00    (L4;R41)
12     0     0.00   306.17    0.00    (L4;R42)
13     0     0.00   403.35    0.00    (IM)
 
<非球面データ>
面番号     1        2        3         4
C(2,0)  -4.13576.E-04  -3.02491.E-04   -5.47057.E-04   -5.12766.E-04
C(1,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,2)  -2.64338.E-04  -2.96466.E-04   -5.13891.E-04   -5.62089.E-04
C(3,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,1)  -1.44160.E-07  -2.14044.E-07   7.88214.E-07   2.15862.E-06
C(1,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,3)   1.17758.E-07   6.39684.E-07   8.97700.E-07   2.54277.E-06
C(4,0)   3.19320.E-10   1.11546.E-09   -3.29742.E-10   -4.21238.E-09
C(3,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,2)   2.79640.E-10   1.00278.E-09   -2.83353.E-09   -2.11459.E-08
C(1,3)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,4)   8.90408.E-10   4.47692.E-09   1.60168.E-09   -9.41785.E-09
C(5,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,1)   1.33095.E-13  -8.14070.E-13   -2.96567.E-12   -7.90202.E-13
C(3,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,3)   9.11951.E-13   3.21726.E-12   -5.11467.E-12   5.46120.E-11
C(1,4)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,5)   2.64402.E-12   1.57228.E-11   1.30720.E-11   3.43403.E-11
C(6,0)  -2.25370.E-15  -3.25864.E-14   -5.91165.E-14   -7.83898.E-13
C(5,1)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,2)  -3.06633.E-17  -3.15993.E-14   -5.61162.E-14   -1.11683.E-12
C(3,3)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,4)   7.98228.E-16  -3.03125.E-14   -9.31812.E-14   -1.29872.E-12
C(1,5)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,6)   4.46254.E-15   1.52575.E-14   3.14162.E-14   -6.03439.E-13
C(7,0)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(6,1)   9.13054.E-17   1.09799.E-15   1.85503.E-15   3.98272.E-14
C(5,2)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(4,3)   2.65533.E-17  -1.64895.E-17   -1.07597.E-16   -6.41046.E-15
C(3,4)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(2,5)   2.81231.E-17   1.88233.E-16   5.71596.E-17   1.87606.E-14
C(1,6)   0.0.E+00     0.0.E+00     0.0.E+00     0.0.E+00
C(0,7)  -2.24523.E-19  -1.03917.E-16   5.08692.E-17   -8.80201.E-16
 
<レンズ面データ>
レンズ面   r
R11   206.244
R12   80.941
R21   123.848
R22   109.753
R31   81.127
R32   181.925
R41   60.948
R42   56.398
 
<合焦光学系の移動量>
第1距離合焦状態  第2距離合焦状態
   ΔD1      ΔD2
   30.26       116.67
 
<条件対応値>
A11=-0.00026434
A12=-0.00041358
A21=-0.00029647
A22=-0.00030249
条件式(1)(A12-A11)×(A22-A21)=8.9921E-10
条件式(3)C1(2,0)-C1(0,2)=-1.4924E-04
条件式(5)C2(2,0)-C2(0,2)=-6.0253E-06
Table (8)
<Glass data>
nC nd ne nF ng
L1 1.513855 1.51633 1.518251 1.521905 1.526214
L2 1.747295 1.755199 1.761671 1.774745 1.791497
L3 1.544572 1.548141 1.550984 1.556544 1.563351
L4 1.747295 1.755199 1.761671 1.774745 1.791497

<Optical member specifications>
Surface number X coordinate Y coordinate Z coordinate Tilt angle δ
1 0 0.00 0.00 -37.87 (CM1)
2 0 190.00 -48.32 -37.87 (CM2)
3 0 190.00 168.32 37.86 (CM3)
4 0 0.00 120.00 37.87 (CM4)
5 0 0.00 160.00 0.00 (L1; R11)
6 0 0.00 163.00 0.00 (L1; R12)
7 0 0.00 166.50 0.00 (L2; R21)
8 0 0.00 169.50 0.00 (L2; R22)
9 0 0.00 171.50 0.00 (L3; R31)
10 0 0.00 179.50 0.00 (L3; R32)
11 0 0.00 301.17 0.00 (L4; R41)
12 0 0.00 306.17 0.00 (L4; R42)
13 0 0.00 403.35 0.00 (IM)

<Aspherical data>
Surface number 1 2 3 4
C (2,0) -4.13576.E-04 -3.02491.E-04 -5.47057.E-04 -5.12766.E-04
C (1,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,2) -2.64338.E-04 -2.96466.E-04 -5.13891.E-04 -5.62089.E-04
C (3,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,1) -1.44160.E-07 -2.14044.E-07 7.88214.E-07 2.15862.E-06
C (1,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,3) 1.17758.E-07 6.39684.E-07 8.97700.E-07 2.54277.E-06
C (4,0) 3.19320.E-10 1.11546.E-09 -3.29742.E-10 -4.21238.E-09
C (3,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,2) 2.79640.E-10 1.00278.E-09 -2.83353.E-09 -2.11459.E-08
C (1,3) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,4) 8.90408.E-10 4.47692.E-09 1.60168.E-09 -9.41785.E-09
C (5,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,1) 1.33095.E-13 -8.14070.E-13 -2.96567.E-12 -7.90202.E-13
C (3,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,3) 9.11951.E-13 3.21726.E-12 -5.11467.E-12 5.46120.E-11
C (1,4) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,5) 2.64402.E-12 1.57228.E-11 1.30720.E-11 3.43403.E-11
C (6,0) -2.25370.E-15 -3.25864.E-14 -5.91165.E-14 -7.83898.E-13
C (5,1) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,2) -3.06633.E-17 -3.15993.E-14 -5.61162.E-14 -1.11683.E-12
C (3,3) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,4) 7.98228.E-16 -3.03125.E-14 -9.31812.E-14 -1.29872.E-12
C (1,5) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,6) 4.46254.E-15 1.52575.E-14 3.14162.E-14 -6.03439.E-13
C (7,0) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (6,1) 9.13054.E-17 1.09799.E-15 1.85503.E-15 3.98272.E-14
C (5,2) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (4,3) 2.65533.E-17 -1.64895.E-17 -1.07597.E-16 -6.41046.E-15
C (3,4) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (2,5) 2.81231.E-17 1.88233.E-16 5.71596.E-17 1.87606.E-14
C (1,6) 0.0.E + 00 0.0.E + 00 0.0.E + 00 0.0.E + 00
C (0,7) -2.24523.E-19 -1.03917.E-16 5.08692.E-17 -8.80201.E-16

<Lens surface data>
Lens surface r
R11 206.244
R12 80.941
R21 123.848
R22 109.753
R31 81.127
R32 181.925
R41 60.948
R42 56.398

<Movement distance of focusing optical system>
First distance focus state Second distance focus state ΔD1 ΔD2
30.26 116.67

<Conditional values>
A11 = −0.00026434
A12 = −0.00041358
A21 = −0.00029647
A22 = −0.00030249
Conditional expression (1) (A12-A11) × (A22-A21) = 8.9921E-10
Conditional expression (3) C 1 (2,0) −C 1 (0,2) = − 1.4924E-04
Conditional expression (5) C 2 (2,0) −C 2 (0,2) = − 6.0253E-06
 図41は、第8実施例の無限遠合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図42は、第8実施例の第1距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図43は、第8実施例の第2距離合焦状態におけるe線に対する収差をスポットダイアグラムで示す図である。図44は、第8実施例の無限遠合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。図45は、第8実施例の第1距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。図46は第8実施例の第2距離合焦状態におけるg線に対する収差をスポットダイアグラムで示す図である。 FIG. 41 is a diagram showing the aberration with respect to the e-line in the infinite focus state in the eighth embodiment in a spot diagram. FIG. 42 is a diagram showing the aberration with respect to the e-line in the first distance focusing state according to the eighth embodiment in a spot diagram. FIG. 43 is a diagram showing the aberration with respect to the e-line in the second distance in-focus state in the eighth embodiment in a spot diagram. FIG. 44 is a spot diagram showing aberrations with respect to g-line in the infinitely focused state according to the eighth embodiment. FIG. 45 is a diagram showing the aberration with respect to g-line in the first distance in-focus state according to the eighth embodiment in a spot diagram. FIG. 46 is a spot diagram showing aberrations with respect to g-line in the second distance in-focus state in the eighth embodiment.
 図41~図46を参照すると、第8実施例においても第7実施例と同様に、スポットサイズが各像点S1~S9で十分小さく、像面IMの全体に亘って収差が均一で且つ良く補正されていることが分かる。さらに、各像点S1~S9でのスポットの形がほぼ対称になっており、非対称な収差が良く補正されていることが分かる。また、e線とg線とでほぼ同じ収差を示しており、色収差がほとんど発生していないことが分かる。 Referring to FIGS. 41 to 46, in the eighth embodiment, as in the seventh embodiment, the spot size is sufficiently small at each image point S1 to S9, and the aberration is uniform and good over the entire image plane IM. You can see that it has been corrected. Further, it can be seen that the shape of the spot at each of the image points S1 to S9 is almost symmetric, and the asymmetric aberration is well corrected. Further, the e-line and the g-line show almost the same aberration, and it can be seen that almost no chromatic aberration occurs.
 以上のように、本実施形態では、偏心光学系という回転非対称な光学系であるにも関わらず、非対称な収差の発生を良好に抑えている。また、本実施形態では、可視の波長帯の光に対して36mm×24mmという比較的広い像面の全体に亘って色収差が十分に低減された光学系を実現している。なお、反射鏡や屈折部材(レンズなど)を樹脂で形成することにより軽量化を図ることができる。 As described above, in the present embodiment, the occurrence of asymmetric aberration is satisfactorily suppressed despite the fact that it is a rotationally asymmetric optical system called a decentered optical system. In the present embodiment, an optical system is realized in which chromatic aberration is sufficiently reduced over a relatively wide image plane of 36 mm × 24 mm with respect to light in the visible wavelength band. In addition, weight reduction can be achieved by forming a reflecting mirror and a refractive member (lens etc.) with resin.
 なお、望遠レンズは一般的に非常に大きく、運搬の場合や収納の場合に限っても小型化のメリットはある。本発明の場合、第1実施例の光路図を示す図2からも容易に想像できるように、屈折光学系に比べ、反射鏡間のスペースが広く、例えば、図2の第二反射鏡CM2と第三反射鏡CM3との間で、分割できる構造にしたり、または、折り曲げられる構造にし、運搬時や収納時には、さらに小型化できる構造にすることも可能である。 In addition, the telephoto lens is generally very large, and there is a merit of downsizing even in the case of transportation and storage. In the case of the present invention, as can be easily imagined from FIG. 2 showing the optical path diagram of the first embodiment, the space between the reflecting mirrors is larger than that of the refractive optical system. For example, the second reflecting mirror CM2 in FIG. A structure that can be divided from the third reflecting mirror CM3, or a structure that can be bent, and a structure that can be further reduced in size during transportation and storage are also possible.
 上述の説明では、例えばカメラに用いられる反射撮影レンズに対して本発明を適用している。しかしながら、これに限定されることなく、他の適当な画像機器に対して同様に本発明を適用することができる。 In the above description, the present invention is applied to, for example, a reflective photographic lens used in a camera. However, the present invention is not limited to this, and the present invention can be similarly applied to other appropriate image devices.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2012年第260424号(2012年11月29日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2012 No. 260424 (filed on November 29, 2012)
CM1 第一反射鏡
CM2 第二反射鏡
CM3 第三反射鏡
CM4 第四反射鏡
L1,L2,L3,L4 レンズ
IM 像面
AXa,AXb,AXc,AXd,AXe 基準軸
CM1 First reflecting mirror CM2 Second reflecting mirror CM3 Third reflecting mirror CM4 Fourth reflecting mirror L1, L2, L3, L4 Lens IM Image plane AXa, AXb, AXc, AXd, AXe Reference axis

Claims (9)

  1.  反射撮影レンズであって、
     物体側から順に、第一反射鏡と、第二反射鏡と、第三反射鏡と、第四反射鏡とを備え、物体からの光が前記第一反射鏡、前記第二反射鏡、前記第三反射鏡および前記第四反射鏡により順次反射された後に所定の像面に物体像を形成するように配置され、
     前記第一反射鏡乃至前記第四反射鏡は、回転非対称な非球面形状の反射面を有し、前記像面の中心を通る法線により規定される第一基準軸を含んで前記像面に垂直な基準面に関して対称に構成され、
     前記第一反射鏡は、光の入射方向に対して凹面を向けており、
     前記第一反射鏡および前記第二反射鏡は前記第一基準軸と直交する直交面に対して同じ方向に傾き、前記第三反射鏡および前記第四反射鏡は前記直交面に対して前記第一反射鏡と逆の方向に傾いており、
     前記第二反射鏡および前記第三反射鏡は、前記基準面内で前記第一反射鏡に対して同じ側に偏心配置されている反射撮影レンズ。
    A reflective photographic lens,
    In order from the object side, a first reflecting mirror, a second reflecting mirror, a third reflecting mirror, and a fourth reflecting mirror are provided, and light from the object is reflected by the first reflecting mirror, the second reflecting mirror, and the first reflecting mirror. Arranged so as to form an object image on a predetermined image plane after being sequentially reflected by the three reflecting mirrors and the fourth reflecting mirror,
    The first to fourth reflecting mirrors have a rotationally asymmetric aspherical reflecting surface and include a first reference axis defined by a normal passing through the center of the image surface and Configured symmetrically with respect to a vertical reference plane,
    The first reflecting mirror has a concave surface with respect to the incident direction of light,
    The first reflecting mirror and the second reflecting mirror are inclined in the same direction with respect to an orthogonal plane orthogonal to the first reference axis, and the third reflecting mirror and the fourth reflecting mirror are in the first direction relative to the orthogonal plane. It is tilted in the opposite direction of one reflector,
    The reflection photographic lens, wherein the second reflecting mirror and the third reflecting mirror are arranged eccentrically on the same side with respect to the first reflecting mirror in the reference plane.
  2.  請求項1に記載の反射撮影レンズにおいて、
     前記第一反射鏡の反射面と前記基準面との交差曲線の中心曲率をA11とし、前記第一反射鏡の反射面の中心を通る法線を含んで前記基準面と直交する面と前記第一反射鏡の反射面との交差曲線の中心曲率をA12とし、前記第二反射鏡の反射面と前記基準面との交差曲線の中心曲率をA21とし、前記第二反射鏡の反射面の中心を通る法線を含んで前記基準面と直交する面と前記第二反射鏡の反射面との交差曲線の中心曲率をA22とするとき、
    (A12-A11)×(A22-A21)>-0.00000005   (1)
    の条件を満足する反射撮影レンズ。
    The reflective photographic lens according to claim 1,
    A center curvature of an intersection curve between the reflecting surface of the first reflecting mirror and the reference surface is A11, and a surface orthogonal to the reference surface including a normal passing through the center of the reflecting surface of the first reflecting mirror and the first surface The center curvature of the intersecting curve with the reflecting surface of one reflecting mirror is A12, the center curvature of the intersecting curve between the reflecting surface of the second reflecting mirror and the reference surface is A21, and the center of the reflecting surface of the second reflecting mirror is A21. When the center curvature of the intersection curve of the surface perpendicular to the reference surface including the normal passing through and the reflecting surface of the second reflecting mirror is A22,
    (A12-A11) × (A22-A21)> − 0.00000005 (1)
    Reflective lens that satisfies the above conditions.
  3.  請求項1または2に記載の反射撮影レンズにおいて、
     前記第一反射鏡の回転非対称な非球面は、該非球面の接平面の原点における法線方向をz方向とし、前記接平面と前記基準面との交線の方向をy方向とし、前記接平面内でy方向と直交する方向をx方向とし、前記非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC1(m,n)とするとき、次の式(2)により規定され、且つ次の条件式(3)を満足する反射撮影レンズ。
    Figure JPOXMLDOC01-appb-M000001
     
    The reflective photographic lens according to claim 1 or 2,
    The rotationally asymmetric aspherical surface of the first reflecting mirror has a z-direction as a normal direction at the origin of a tangential plane of the aspherical surface, a y-direction as a direction of an intersection between the tangential plane and the reference plane, and the tangential plane. and a direction perpendicular to the y direction and x-direction at the inner, the amount of sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, monomial x m · y coefficients n C 1 (m, n) is a reflection photographic lens that is defined by the following expression (2) and satisfies the following conditional expression (3).
    Figure JPOXMLDOC01-appb-M000001
  4.  請求項1乃至4の何れか一項に記載の反射撮影レンズにおいて、
     前記第二反射鏡の回転非対称な非球面は、該非球面の接平面の原点における法線方向をz方向とし、前記接平面と前記基準面との交線の方向をy方向とし、前記接平面内でy方向と直交する方向をx方向とし、前記非球面のz方向のサグ量をsとし、mおよびnを0を含む自然数とし、単項式xm・ynの係数をC2(m,n)とするとき、次の式(4)により規定され、且つ次の条件式(5)を満足する反射撮影レンズ。
    Figure JPOXMLDOC01-appb-M000002
     
    The reflection photographing lens according to any one of claims 1 to 4,
    The rotationally asymmetric aspherical surface of the second reflecting mirror has a normal direction at the origin of the tangential plane of the aspherical surface as a z direction, a direction of an intersection line between the tangential plane and the reference plane as a y direction, and the tangential plane. and a direction perpendicular to the y direction and x-direction at the inner, the amount of sag in the z-direction of the aspherical surface and s, m and n is a natural number including 0, monomial x coefficients of m · y n C 2 (m, n), a reflective photographic lens that is defined by the following expression (4) and satisfies the following conditional expression (5).
    Figure JPOXMLDOC01-appb-M000002
  5.  請求項1乃至4の何れか一項に記載の反射撮影レンズにおいて、
     少なくとも1つの可動レンズを有し且つ前記像面に対する前記物体の合焦を行うための合焦光学系をさらに備えている反射撮影レンズ。
    The reflection photographing lens according to any one of claims 1 to 4,
    A reflection photographic lens having at least one movable lens and further comprising a focusing optical system for focusing the object on the image plane.
  6.  請求項5に記載の反射撮影レンズにおいて、
     前記合焦光学系は、前記第四反射鏡と前記像面との間の光路中に配置されている反射撮影レンズ。
    The reflective photographic lens according to claim 5.
    The focusing optical system is a reflection photographing lens disposed in an optical path between the fourth reflecting mirror and the image plane.
  7.  請求項5または6に記載の反射撮影レンズにおいて、
     前記合焦光学系は、前記第一基準軸と平行な方向に沿って一体的に移動可能な複数のレンズを有する反射撮影レンズ。
    In the reflective photographic lens according to claim 5 or 6,
    The focusing optical system includes a plurality of lenses that can move integrally along a direction parallel to the first reference axis.
  8.  請求項1乃至7の何れか一項に記載の反射撮影レンズにおいて、
     前記第一反射鏡乃至前記第四反射鏡は、前記物体の位置において前記像面と光学的に共役な面として定義される物体面が前記像面と平行になるように配置されている反射撮影レンズ。
    The reflection photographing lens according to any one of claims 1 to 7,
    The first reflecting mirror to the fourth reflecting mirror are arranged so that an object plane defined as a plane optically conjugate with the image plane at the position of the object is parallel to the image plane. lens.
  9.  請求項1乃至8の何れか一項に記載の反射撮影レンズにおいて、
     前記第一反射鏡乃至前記第四反射鏡は、前記第一反射鏡の反射面の中心に対して前記第一基準軸と平行に入射した光が、前記第二反射鏡、前記第三反射鏡および前記第四反射鏡を経て前記像面の中心に垂直入射するように配置されている反射撮影レンズ。
    The reflection photographing lens according to any one of claims 1 to 8,
    In the first reflecting mirror to the fourth reflecting mirror, light incident in parallel with the first reference axis with respect to the center of the reflecting surface of the first reflecting mirror is converted into the second reflecting mirror and the third reflecting mirror. And a reflective photographic lens arranged so as to be perpendicularly incident on the center of the image plane through the fourth reflecting mirror.
PCT/JP2013/078081 2012-11-29 2013-10-16 Reflecting photographic lens WO2014083956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-260424 2012-11-29
JP2012260424A JP6187733B2 (en) 2012-11-29 2012-11-29 Reflective lens for camera

Publications (1)

Publication Number Publication Date
WO2014083956A1 true WO2014083956A1 (en) 2014-06-05

Family

ID=50827602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078081 WO2014083956A1 (en) 2012-11-29 2013-10-16 Reflecting photographic lens

Country Status (3)

Country Link
JP (1) JP6187733B2 (en)
TW (1) TWI609197B (en)
WO (1) WO2014083956A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815203B (en) * 2022-04-11 2023-05-05 北京理工大学 Off-axis four-reflection type non-axial zooming imaging optical system with large relative aperture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205124A (en) * 1982-05-26 1983-11-30 Nippon Kogaku Kk <Nikon> Reflecting and refracting telephoto lens
EP0790513A2 (en) * 1996-02-15 1997-08-20 Canon Kabushiki Kaisha Zoom lens
JPH09222561A (en) * 1996-02-15 1997-08-26 Canon Inc Zoom optical system and image pickup device using same
JP2004133378A (en) * 2002-08-09 2004-04-30 Minolta Co Ltd Reflective reading optical system
JP2005241682A (en) * 2004-02-24 2005-09-08 Canon Inc Image forming optical system for reading image, and image reading apparatus using the same
JP2006215172A (en) * 2005-02-02 2006-08-17 Canon Inc Optical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083422A (en) * 1999-09-09 2001-03-30 Canon Inc Optical element and optical device using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205124A (en) * 1982-05-26 1983-11-30 Nippon Kogaku Kk <Nikon> Reflecting and refracting telephoto lens
EP0790513A2 (en) * 1996-02-15 1997-08-20 Canon Kabushiki Kaisha Zoom lens
JPH09222561A (en) * 1996-02-15 1997-08-26 Canon Inc Zoom optical system and image pickup device using same
HK1001785A1 (en) * 1996-02-15 1998-07-10 Canon Kk Catadioptric zoom lens
US20030007255A1 (en) * 1996-02-15 2003-01-09 Takeshi Akiyama Zoom lens
US20030137742A1 (en) * 1996-02-15 2003-07-24 Canon Kabushiki Kaisha Zoom lens
DE69728804D1 (en) * 1996-02-15 2004-06-03 Canon Kk Catadioptric zoom lens
JP2004133378A (en) * 2002-08-09 2004-04-30 Minolta Co Ltd Reflective reading optical system
JP2005241682A (en) * 2004-02-24 2005-09-08 Canon Inc Image forming optical system for reading image, and image reading apparatus using the same
JP2006215172A (en) * 2005-02-02 2006-08-17 Canon Inc Optical system

Also Published As

Publication number Publication date
TW201432302A (en) 2014-08-16
TWI609197B (en) 2017-12-21
JP2014106431A (en) 2014-06-09
JP6187733B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
EP4235249A2 (en) Compact folded lenses with large apertures
JP5441377B2 (en) Single focus optical system and imaging apparatus having the same
CN110208932B (en) Optical system and imaging device
JP6035416B2 (en) Projection display device
US20040027475A1 (en) Finder optical system and image pickup apparatus using the same
EP1860478A1 (en) Imaging optical system
JP2007025499A (en) Optical device
JP2007206516A (en) Imaging lens
JP7214382B2 (en) LENS DEVICE AND IMAGING DEVICE HAVING THE SAME
JP6393906B2 (en) Projection optical system and image projection apparatus
EP3605182A1 (en) Projection optical system, image projection device and image projection system
JP6758640B2 (en) Zoom lens
TWI393916B (en) Fixed-focus lens
JP5796793B2 (en) Telescope optical system and optical equipment
JP4212721B2 (en) Wide-angle reflective optics
JP6048056B2 (en) Catadioptric lens
WO2017213058A1 (en) Image forming optical system, and imaging device and projection device provided with same
JP4724392B2 (en) Variable magnification imaging optical system and imaging apparatus having the same
JP6187733B2 (en) Reflective lens for camera
JP5835647B2 (en) Catadioptric lens
JP2017044733A (en) Imaging lens and imaging apparatus
WO2022215293A1 (en) Lens system, imaging device, and imaging system
JP4829545B2 (en) Zoom optical system
JP6415520B2 (en) Imaging optical system, imaging apparatus and projection apparatus including the same
WO2018179607A1 (en) Projection optical system, image projection device, and image projection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857781

Country of ref document: EP

Kind code of ref document: A1