JPS58205064A - Controller for heat pump type air conditioner - Google Patents

Controller for heat pump type air conditioner

Info

Publication number
JPS58205064A
JPS58205064A JP57089263A JP8926382A JPS58205064A JP S58205064 A JPS58205064 A JP S58205064A JP 57089263 A JP57089263 A JP 57089263A JP 8926382 A JP8926382 A JP 8926382A JP S58205064 A JPS58205064 A JP S58205064A
Authority
JP
Japan
Prior art keywords
defrosting
heat exchanger
current
air conditioner
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57089263A
Other languages
Japanese (ja)
Other versions
JPH0230431B2 (en
Inventor
高沢 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57089263A priority Critical patent/JPS58205064A/en
Publication of JPS58205064A publication Critical patent/JPS58205064A/en
Publication of JPH0230431B2 publication Critical patent/JPH0230431B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はヒートポンプ式空気調和機の制御装置に係り、
特に、室外熱交換器の除霜制御回路の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a control device for a heat pump type air conditioner,
In particular, the present invention relates to improvements in defrosting control circuits for outdoor heat exchangers.

〔発明の技術的背景〕[Technical background of the invention]

一般にヒートポンプ式空気調和機の暖房運転中には、室
外熱交換器の表面温度を氷点以下で使用する場合が出て
くる。このため、室外熱交換器の表面に着霜して熱交換
を阻害する。この霜をとるためには、一時的に冷房サイ
クルに切換えて、室外熱交換器を凝縮器としこれに熱を
加えて溶かし去る。当然のことではあるが、除霜時には
室外側の送風機を停止させ、熱が有効に除霜に作用する
よう、制御回路が形成される。
Generally, during heating operation of a heat pump type air conditioner, there are cases where the outdoor heat exchanger is used at a surface temperature below the freezing point. For this reason, frost forms on the surface of the outdoor heat exchanger, inhibiting heat exchange. To remove this frost, the air conditioner is temporarily switched to the cooling cycle, and the outdoor heat exchanger is used as a condenser and heat is applied to it to melt it away. As a matter of course, a control circuit is formed to stop the outdoor air blower during defrosting so that the heat effectively acts on defrosting.

かかる除霜制御を行う従来の制御回路は、室温を検出す
る温度センサおよび室内熱交換器の温度を検出する温度
センサの検出信号に基いて室外熱交換器の着霜量を判断
し、熱交換が大きく阻害される状態で除霜を開始すると
ともに、除霜するに必要な時間を設定したタイマのタイ
ムアツプ時に除霜を停止していた。
Conventional control circuits that perform such defrosting control determine the amount of frost on the outdoor heat exchanger based on detection signals from a temperature sensor that detects room temperature and a temperature sensor that detects the temperature of the indoor heat exchanger, and then performs heat exchange. In addition to starting defrosting in a state where the defrosting process was greatly inhibited, defrosting was also stopped when the timer that was set for the time required for defrosting expired.

この場合、着霜量の判断は通常、制御回路を構成する中
央処理装置によってなされるが、この中央処理装置が室
外熱交換器の実際の着霜量を正確に判断し得るものであ
ればタイマで設定された時間だけ除霜することで何等問
題はなく、しかも、室内機側で着霜骨な判断することに
よって室内機と室外機を結ぶ、いわゆる渡り線を減少さ
せ得るとともに室外機の制御部品数を減少させ得る等の
利点がある。
In this case, the amount of frost formed is normally determined by the central processing unit that constitutes the control circuit, but if this central processing unit can accurately judge the actual amount of frost formed on the outdoor heat exchanger, a timer is used. There is no problem with defrosting for the time set by the indoor unit, and by determining whether or not frost is formed on the indoor unit side, it is possible to reduce the so-called crossover wire that connects the indoor unit and outdoor unit, and to control the outdoor unit. There are advantages such as being able to reduce the number of parts.

しかしながら、冷媒を循環させる配管長、または、空気
調和機を据付ける環境若しくは地域によって着霜量が大
きく異り、室内機側でこれを判断することには自ずから
限度があった。
However, the amount of frost formation varies greatly depending on the length of the piping that circulates the refrigerant or the environment or region where the air conditioner is installed, and there is a natural limit to how indoor units can judge this.

ここで、例えば中央処理装置が除霜を必要とすると判断
したときの実際の着霜量が極端に違った1、。
Here, for example, when the central processing unit determines that defrosting is necessary, the actual amount of frost formed is extremely different.

ものと仮定し、この状態で除霜した場合、空気調和機に
起こる現象と併せて従来の制御装置の概要を第2図をも
参照して説明する。
The outline of the conventional control device will be explained with reference to FIG. 2 as well as the phenomena that occur in the air conditioner when defrosting is performed in this state.

第1図(a) 、 (b) H((j)は除霜を開始し
てからの室内熱交換器温度、室外熱交換器の高圧側の冷
媒圧力(以下室外熱交換器圧力と言う)および冷媒循環
用の圧縮機を駆動する電動機の電流(以下圧縮機電流と
言う)の変化をそれぞれ示すとともに、破線で示した曲
線■は無着霜の場合、実線で示した曲線0は通常着霜の
場合、一点鎖線で示した曲線θは過大着霜の場合をそれ
ぞれ示している。
Figure 1 (a), (b) H ((j) is the indoor heat exchanger temperature after starting defrosting, and the refrigerant pressure on the high pressure side of the outdoor heat exchanger (hereinafter referred to as outdoor heat exchanger pressure) and the change in the current of the electric motor that drives the compressor for refrigerant circulation (hereinafter referred to as compressor current).The curve ∆ shown by the broken line is for the case of no frost, and the curve 0 shown by the solid line is for the normal case. In the case of frost, the curve θ shown by a dashed-dotted line indicates the case of excessive frost formation.

ここで、時刻toにて除霜が開始されると、室内熱交換
器温度Tは、当初、着霜量に関係なく緩やかに降下する
もののある程度時間を経過した後は降下速塵および降下
温度に大きな差が現れる。すなわち、曲線■に示した無
着霜の場合には、霜の除去が完了したと判断される一定
温度TLよりも高い温度に維持され、曲線0で示した通
常着霜の場合には急速に降下して一定温度TLよりも低
い値に維持され、さらに1.、、、、、、、.8111
線θで示した過大着霜の場合は、通常着霜時よりも緩や
かに降下するものの、やはり一定温度TLよりも低い値
に維持される。
Here, when defrosting is started at time to, the indoor heat exchanger temperature T initially decreases gradually regardless of the amount of frost, but after a certain period of time, the temperature decreases to the rate of falling dust and temperature. A big difference appears. In other words, in the case of no frost as shown by the curve ■, the temperature is maintained higher than the constant temperature TL at which it is determined that frost removal has been completed, and in the case of normal frost as shown by the curve 0, the temperature is rapidly increased. and is maintained at a value lower than the constant temperature TL, and further 1. ,,,,,,,. 8111
In the case of excessive frosting indicated by the line θ, although the temperature drops more slowly than in normal frosting, it is still maintained at a value lower than the constant temperature TL.

一方、室外熱交換器圧力pは、除霜開始当初、着霜骨に
関係なく急速に上昇して次いで一定の圧力に保たれるが
、それ以降は着霜量に応じて大きく変化するものがでて
くる。すなわち、曲線0およびθに示した通常着霜時お
よび過大M1時にはその後も略一定に保持されるが、曲
線■に示した無着霜時にはこの圧力pが次第に増加し、
室外熱交換器等に一般(で定められる許容圧力P山1を
超えることになる。
On the other hand, at the beginning of defrosting, the outdoor heat exchanger pressure p rises rapidly regardless of the amount of frosting, and then remains at a constant pressure, but after that, it changes greatly depending on the amount of frosting. It comes out. That is, during normal frosting and excessive M1 as shown by curves 0 and θ, the pressure p remains approximately constant, but during no frosting as shown by curve (■), this pressure p gradually increases.
This will exceed the allowable pressure P peak 1, which is generally specified for outdoor heat exchangers, etc.

また、圧縮機電流工も、除霜開始当初、着霜量に関係な
く僅かに降下し、次いで、一定の値に保たれるがそれ以
降は、室外熱交換器圧力pの変化に追随して変化するこ
ととなり、特に、曲線■に示した無着霜時には、許容圧
力”dhに対応する許容電流工Hを超えることになる。
In addition, the compressor current also drops slightly at the beginning of defrosting, regardless of the amount of frost, and then remains at a constant value, but after that it follows changes in the outdoor heat exchanger pressure p. In particular, when there is no frost as shown in curve (2), the allowable current H corresponding to the allowable pressure "dh" will be exceeded.

なお、室外熱交換器の許容圧力Pdhは、圧縮機の許容
電流工Hを基準にして決定される場合もある。
Note that the allowable pressure Pdh of the outdoor heat exchanger may be determined based on the allowable electric current H of the compressor.

しかして、上述したタイマに12時間を設定し、このタ
イマのタイムアツプ時すなわち時刻t2にて除霜を停止
すれば、少なくとも、通常着霜時および過大着霜時には
何等問題のない除霜が可能である。
Therefore, if the above-mentioned timer is set for 12 hours and defrosting is stopped when this timer times up, that is, at time t2, defrosting can be performed without any problems at least during normal frosting and excessive frosting. be.

ところで、室外熱交換器に着霜していないにも拘わらず
、中央処理装置が除霜を要するものと判断して、冷媒サ
イクルを切換えるとともに室外側送風機を停止させた場
合には上述したように、タイ寸に設定された時間T2が
経過する以前に、室外熱交換器圧力pおよび圧縮機雷流
工が許容値を超え極めて危険な状態を呈する。
By the way, if the central processing unit determines that defrosting is required even though there is no frost on the outdoor heat exchanger, and switches the refrigerant cycle and stops the outdoor fan, as described above, , before the time T2 set in the tie dimension elapses, the outdoor heat exchanger pressure p and the compressor mine flow exceed allowable values, creating an extremely dangerous situation.

この対策として、例えば、無着霜時の室外熱交換器圧力
p1または、圧縮機電流工の上昇曲線を予測し、これが
許容範囲を超える以前、すなわちT1時間でタイムアツ
プするもう1つのタイマを設け、このタイマがタイムア
ツプする時刻t1における室内熱交換器温度Tが一定温
度TLを超えていた場合に隙間停止信号を出力し、室外
熱交換器圧力pが許容圧力Pc1hを超えないようにし
ている。
As a countermeasure against this, for example, by predicting the outdoor heat exchanger pressure p1 or the rising curve of the compressor electric current when there is no frost, and setting up another timer that times out before this exceeds the allowable range, that is, at time T1, If the indoor heat exchanger temperature T exceeds a constant temperature TL at time t1 when this timer times up, a gap stop signal is output to prevent the outdoor heat exchanger pressure p from exceeding the allowable pressure Pc1h.

〔背景技術の問題点〕[Problems with background technology]

斯かる従来のヒートポンプ式空気調和機の制御装置にあ
っては、時刻t1における室内熱交換器温度Tが一定温
度TJ、L上であるときに除霜を停止して、無置霜時に
起こる室外熱交換器圧力pの増大を防いでいるが、第1
図(a)からも明らかなように、過大着霜時でも同様な
作用が行なわれることになる。このことは、さらに除霜
動作を継続しなければならないにも拘わらず、その途中
で除霜を停止することに他ならず、これによって十分な
除霜ができないという欠点があった。
In such a conventional heat pump type air conditioner control device, defrosting is stopped when the indoor heat exchanger temperature T at time t1 is above the constant temperature TJ, L, and the outdoor Although the heat exchanger pressure p is prevented from increasing, the first
As is clear from Figure (a), the same effect will occur even in the case of excessive frost formation. This means that even though the defrosting operation must be continued, the defrosting operation must be stopped midway through, and as a result, sufficient defrosting cannot be achieved.

また、着霜量の相異を考慮して、タイマの設定時間T、
および除霜されたか否かの一様の目安とされる一定温度
TLが決められるが、これらを最適に選定することがか
なり難しいと言う欠点があった。
In addition, considering the difference in the amount of frost, the timer setting time T,
A constant temperature TL, which is a uniform standard for determining whether defrosting has been achieved or not, is determined, but there is a drawback in that it is quite difficult to optimally select these temperatures.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされたもので、
着霜1:が大きく異った場合でも、室外熱交換器圧力を
許容範囲に保持し乍ら、確実な除霜を行い得るヒートポ
ンプ式空気−和機の制御装置の提供を目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks.
To provide a control device for a heat pump type air-conditioning machine that can perform reliable defrosting while maintaining outdoor heat exchanger pressure within an allowable range even when frost formation 1: is significantly different.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明のヒートポンプ式空
気調和機の制御装置は、冷媒循環用の圧縮機電流を検出
するとともに、この電流値に応じた信号を発生する電流
検出回路と、除霜中の室外熱交換器圧力が許容範囲を超
える時点の圧縮機電流に対応した信号を設定により出力
し得るレベル設定回路と、前記電流検出回路およびレベ
ル設定回路の出力信号レベルを相互に比較し、前記電流
検出回路の出力信号レベルが前記レベル設定回路の出力
信号レベルよりも大きくなったときに除霜停止信号を出
力する比較回路とを具備する構成を採る。
In order to achieve the above object, a control device for a heat pump type air conditioner according to the present invention includes a current detection circuit that detects a compressor current for refrigerant circulation and generates a signal according to this current value, and a defrosting circuit. A level setting circuit capable of outputting a signal corresponding to the compressor current at the time when the pressure of the outdoor heat exchanger exceeds an allowable range, and the output signal levels of the current detection circuit and the level setting circuit are compared with each other; The present invention is configured to include a comparison circuit that outputs a defrosting stop signal when the output signal level of the current detection circuit becomes higher than the output signal level of the level setting circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第2図は本発明に係るヒートポンプ式空気調和機の制御
装置の構成を示すブロック図で、室温お、11 よび室内熱交換器の温度を検出する温度センサー111
11 の出力信号がA−D変換器コを介して中央処理装置3に
取り込まれる。この中央処理装置3は上述した設定時間
T2を有するタイマの機能をも具えており、室外熱交換
器の着霜量を判断するとともに、除霜を要すると判断t
、たときに除霜開始信号を、除霜を開始してから72時
間を経過した特産に除霜停止信号をそれぞれリレードラ
イバダを介して四方弁リレーSおよび室外ファンリレー
乙に加えている。ここで、四方弁リレーSは冷媒サイク
ルを切換える図示しない四方弁を動作させるもの、室外
ファンリレー6は室外熱交換器に通風する図示しない室
外側送風機を動作させるものである。
FIG. 2 is a block diagram showing the configuration of a control device for a heat pump type air conditioner according to the present invention.
11 output signals are taken into the central processing unit 3 via the A-D converter. This central processing unit 3 also has the function of a timer having the above-mentioned set time T2, and determines the amount of frost on the outdoor heat exchanger and determines that defrosting is required.
, a defrost start signal is applied to the four-way valve relay S and an outdoor fan relay B via the relay driver adapter, respectively. Here, the four-way valve relay S operates a four-way valve (not shown) that switches the refrigerant cycle, and the outdoor fan relay 6 operates an outdoor blower (not shown) that ventilates the outdoor heat exchanger.

従来は略これだけの要素により、しかも、設定時間T1
を有するタイマの機能を中央処理装置3に持たせて除霜
制御していたが、ここでは新たに、圧縮機電流■を検出
するとともに、この電流値に応じた清流電圧信号を発生
する電流検出回路10と、室外熱交換器圧力が許容範囲
を超えたときの圧縮機電流に対応した直流電圧信号を発
生するレベル設定回路ユOと、これらの直流電圧信号を
相互に比較し、電流検出回路10の信号レベルがレベル
設定回路SOの信号レベルよりも大きくなったときに除
霜停止信号を出力する比較回路30とが付加されている
Conventionally, almost all of these factors were used, and in addition, the setting time T1
Defrosting control was performed by providing the central processing unit 3 with a timer function that has a timer function, but here, a new current detection function is added to detect the compressor current ■ and generate a clear stream voltage signal according to this current value. circuit 10, a level setting circuit UO that generates a DC voltage signal corresponding to the compressor current when the outdoor heat exchanger pressure exceeds the allowable range, and a current detection circuit that compares these DC voltage signals with each other. A comparison circuit 30 is added that outputs a defrosting stop signal when the signal level of No. 10 becomes higher than the signal level of the level setting circuit SO.

この中、電流検出回路10は、圧縮機電流に比例した電
流を抽出し得る変流器//と、この変流器の電流な全波
整流する整流回路/、2と、この整流回路/2の出力を
平滑するコンデンサ/+、15および抵抗13と、変流
器l/の出力電圧を安定化させる抵抗/6および整流回
路/:lの出力電圧を安定化させる抵抗17とで形成さ
れている。
Among these, the current detection circuit 10 includes a current transformer // capable of extracting a current proportional to the compressor current, a rectifier circuit /, 2 that performs full-wave rectification of the current of this current transformer, and this rectifier circuit /2. It is formed by a capacitor /+, 15 and a resistor 13 that smooths the output of the current transformer l/, a resistor /6 that stabilizes the output voltage of the current transformer l/, and a resistor 17 that stabilizes the output voltage of the rectifier circuit /:l. There is.

また、レベル設定回路ユOは抵抗、2/およびnを直列
接続し、この直列回路の両端間に図示しない電源の直流
電圧を印加することによって、抵抗コ/およびnの接続
虚aK直流電圧を発生させるように講じられている。
In addition, the level setting circuit U0 connects resistors 2/ and n in series, and by applying a DC voltage from a power supply (not shown) between both ends of this series circuit, the imaginary aK DC voltage of the connection between the resistors 2/ and n is determined. Measures are being taken to ensure that this occurs.

次に、比較回路30は演算増幅器3/と、この演算増幅
器31の出力端子および非反転入力端子(+)間に接続
された抵抗32と、一端が演算増幅器3/の非反転入力
端子(+)に接続され、他端が上記電流検出回路10お
よびレベル設定回路の20の負極端子と共通に接地され
た可変抵抗3ユとで形成され、演算増幅器3/の反転入
力端子(→が抵抗ユ/およびnの接続点已に接続されて
いる。
Next, the comparison circuit 30 includes an operational amplifier 3/, a resistor 32 connected between the output terminal and the non-inverting input terminal (+) of the operational amplifier 31, and one end connected to the non-inverting input terminal (+) of the operational amplifier 3/. ), the other end is formed by the negative terminal of the current detection circuit 10 and the level setting circuit 20, and a variable resistor 3 unit which is commonly grounded, and the inverting input terminal of the operational amplifier 3/ (→ is the resistor unit / and connected to the connection point of n.

上記の如く構成された本発明のヒートポンプ式空気調和
機の制御回路の作用を以下に説明する。
The operation of the control circuit for the heat pump type air conditioner of the present invention configured as described above will be explained below.

先ず、中央処理装置3は温度センサlの出力信号に基い
て着霜量を演算するとともに、除霜を要する状態になる
と四方弁リレー!および室外ファンリレー6を動作せし
めて除霜を開始し、72時間(第1図)を経過した時点
で四方弁リレータおよび室外ファンリレー6を復・府せ
しめて除霜を停止する。
First, the central processing unit 3 calculates the amount of frost based on the output signal of the temperature sensor 1, and when it becomes necessary to defrost, it activates the four-way valve relay! Then, the outdoor fan relay 6 is activated to start defrosting, and when 72 hours have elapsed (FIG. 1), the four-way valve relator and the outdoor fan relay 6 are restored and defrosted to stop the defrosting.

次に、電流検出回路10は、除霜中の圧縮機電流■(第
1図)を変流器//によって検出し、この検出信号を整
流回路/2により全波整流し、続いて抵抗/3およびコ
ンデンサ/I/−,15よりなる回路により平滑するこ
とによって、抵抗/3とコンデンサ15との接続点すに
圧縮機電流に応じた直流電圧信号を発生させるとともに
、この直流電圧信号を演算増幅器3/の非反転入力端子
(+)に加える。
Next, the current detection circuit 10 detects the compressor current (Fig. 1) during defrosting using a current transformer //, full-wave rectifies this detection signal using a rectifier circuit /2, and then performs full-wave rectification using a rectifier circuit /2. 3 and capacitor /I/-, 15, a DC voltage signal corresponding to the compressor current is generated at the connection point between resistor /3 and capacitor 15, and this DC voltage signal is calculated. Add to the non-inverting input terminal (+) of amplifier 3/.

また、レベル設定回路:1.Oは、抵抗2/および二の
接続点aに、室外交換器圧力pが許容圧力Paを超えた
ときの圧縮機雷流工Hに対応する直流電圧倍信号を発生
させるとともに、この直流電圧信号を演算増幅器3/の
反転入力端子(−)に加える。
Also, level setting circuit: 1. O generates a DC voltage doubler signal corresponding to the compressor mine flow H when the outdoor exchanger pressure p exceeds the permissible pressure Pa at the connection point a of the resistor 2/ and 2, and also outputs this DC voltage signal. Add to the inverting input terminal (-) of operational amplifier 3/.

さらに、比較回路30では、接続点aの電圧信号を基準
信号とし、接続点すの電圧信号レベルがこの基準信号レ
ベルを超えたときに演算増幅器3/の回路状態が反転す
るように可変抵抗32が調整されており、この反転によ
って演算増幅器3ノの出力信号レベルがrLJからrH
Jに変化する。
Further, in the comparison circuit 30, the voltage signal at the connection point a is used as a reference signal, and the variable resistor 32 is set so that the circuit state of the operational amplifier 3/ is inverted when the voltage signal level at the connection point A exceeds this reference signal level. is adjusted, and this inversion causes the output signal level of operational amplifier 3 to change from rLJ to rH.
Changes to J.

中央処理装置3は、演算増幅器3/の出力すなわち比較
回路30の出力がrLJから「H」に変化したとき、こ
れを除霜停止信号として受け、この除霜停止信号を四方
弁リレー!および室外ファンリレー乙に加える。
When the output of the operational amplifier 3/, that is, the output of the comparison circuit 30 changes from rLJ to "H", the central processing unit 3 receives this as a defrost stop signal, and sends this defrost stop signal to the four-way valve relay! and outdoor fan relay B.

しかして、除霜中に、室外熱交換器圧力pが許容圧力P
dhを超えるようなことがあれば、その瞬1 間に除霜動作が解除、、され、室外熱交換器圧力pが旨
ρ1゜ 許容圧力Pdhよりも低い値を維持している場合には、
タイマに設定された12時間後に除霜動作が解除される
Therefore, during defrosting, the outdoor heat exchanger pressure p changes to the allowable pressure P
If dh is exceeded, the defrosting operation is canceled at that moment, and if the outdoor heat exchanger pressure p remains at a value lower than the allowable pressure Pdh,
The defrosting operation is canceled after 12 hours set in the timer.

一方、外部熱交換器に過大着霜した場合でも、室外熱交
換器圧力が著しく増大しない限り、72時間を経過する
まで除霜動作が継続されるために、確実な除霜が可能に
なる。
On the other hand, even if the external heat exchanger is excessively frosted, as long as the outdoor heat exchanger pressure does not increase significantly, the defrosting operation is continued until 72 hours have elapsed, so that reliable defrosting is possible.

なお、上記実施例では電流検出回路IQおよびレベル設
定回路Jがそれぞれ直流電圧信号を出力するとともに、
比較回路、qoがこれらの電圧信号のレベルを比較して
いるが、電流値を比較1〜得る比較回路を用いる場合に
は、電流検出回路IOおよびレベル設定回路ごとして、
それぞれ直流電流信号を出力するものを用いることも可
能である。
In the above embodiment, the current detection circuit IQ and the level setting circuit J each output a DC voltage signal, and
The comparison circuit qo compares the levels of these voltage signals, but when using a comparison circuit that obtains the current value from comparison 1 to 1, the current detection circuit IO and level setting circuit each have
It is also possible to use devices that each output a direct current signal.

また、上記実施例では、中央処理装置3がタイマの機能
を有するものについて説明したが、中央処理装置3の外
部にタイマ若しくはこれと同様な機能を有するタイマ回
路を設けても上述したと同様な作用を行なわせることが
できる。
Further, in the above embodiment, the central processing unit 3 has a timer function, but even if a timer or a timer circuit having a similar function is provided outside the central processing unit 3, the same effect as described above can be obtained. It can be made to perform an action.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかな如く、本発明のヒートポン
プ式空気調和機の制御装置によれば、着霜量が大きく異
った場合でも、室外熱交換器圧力を許容範囲に保持し乍
ら、確実に除霜することができる。
As is clear from the above explanation, according to the control device for a heat pump air conditioner of the present invention, even when the amount of frost formation varies greatly, the outdoor heat exchanger pressure can be maintained within an allowable range and can be reliably maintained. Can be defrosted.

また、従来装置にあっては、着霜量の相異を考慮して、
第1図に示した時間T1および除霜されたか否かの一様
の目安とされる一定温度TI、を決定していたが、本発
明では過大着箱時を想定した時間T2および室外熱交換
器の許容圧力に対応する圧縮機電流を設定するだけでよ
(、空気調和機据付時の調整が著しく単純化される。
In addition, with conventional equipment, taking into account the difference in the amount of frost,
The time T1 shown in FIG. 1 and the constant temperature TI, which is a uniform guide to whether or not defrosting has been performed, were determined, but in the present invention, the time T2 and the outdoor heat exchange assuming the case of overloaded boxes were determined. Simply set the compressor current corresponding to the allowable pressure of the air conditioner (this greatly simplifies the adjustment when installing the air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は従来のヒートポンプ式空気調和機の制御装置の
概要および作用を説明するためのタイムチャート、第2
図は本発明に係るヒートポンプ式空気調和機の制御装置
の一実施例の構成を示すブロック図である。 /・・・温度センサ、コ・・・A−D変換器、3・・・
中央処理装置、l・・・リレードライバ、3・・・四方
弁リレー、6・・・室外ファンリレー、10・・・′電
流検出回路、l/・・・変流器、/2・・・整流回路、
/3./A 、/”1,2/、22゜33・・・抵抗、
J・・・レベル設定回路、3o・・・比較回路、3/・
・・演算増幅器、3ユ・・・可変抵抗。 出願人代理人   猪  股    清(15) 壓1図 6六間□
Figure 7 is a time chart for explaining the outline and operation of a conventional heat pump air conditioner control device;
The figure is a block diagram showing the configuration of an embodiment of a control device for a heat pump type air conditioner according to the present invention. /...Temperature sensor, Co...A-D converter, 3...
Central processing unit, l...Relay driver, 3...Four-way valve relay, 6...Outdoor fan relay, 10...' current detection circuit, l/...Current transformer, /2... rectifier circuit,
/3. /A, /”1,2/,22゜33...resistance,
J...Level setting circuit, 3o...Comparison circuit, 3/...
...Operation amplifier, 3 units...variable resistor. Applicant's agent Kiyoshi Inomata (15) 1 6 Rokuken□

Claims (1)

【特許請求の範囲】[Claims] 室外熱交換器の着霜時に冷媒サイクルを一次的に切換え
て除霜するヒートポンプ式空気調和機の制御装置におい
て、冷媒循環用の圧縮機を駆動する電動機の除霜中の電
流を検出するとともに、この電流値に応じた信号を発生
する電流検出回路と、除霜中の前記室外熱交換器の高圧
側の冷媒圧力が許容範囲を超える時点の前記電動機の電
流に対応した信号を設定により出力し得るレベル設定回
路と、前記電流検出回路およびレベル設定回路の出力信
号レベルを相互に比較し、前記電流検出回路の出力信号
レベルが前記レベル設定回路の出力信号レベルよりも大
きくなったときに除霜停止信号を出力する比較回路とを
具備したことを特徴とするヒートポンプ式空気調和機の
制御装置。
In a control device for a heat pump air conditioner that temporarily switches the refrigerant cycle to defrost when an outdoor heat exchanger is frosted, it detects the current during defrosting of the electric motor that drives the compressor for refrigerant circulation, and A current detection circuit generates a signal corresponding to this current value, and a signal corresponding to the current of the motor at the time when the refrigerant pressure on the high pressure side of the outdoor heat exchanger during defrosting exceeds an allowable range is output by setting. The output signal level of the current detection circuit and the level setting circuit are compared with each other, and when the output signal level of the current detection circuit becomes larger than the output signal level of the level setting circuit, defrosting is performed. 1. A control device for a heat pump air conditioner, comprising a comparison circuit that outputs a stop signal.
JP57089263A 1982-05-26 1982-05-26 Controller for heat pump type air conditioner Granted JPS58205064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089263A JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089263A JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS58205064A true JPS58205064A (en) 1983-11-29
JPH0230431B2 JPH0230431B2 (en) 1990-07-06

Family

ID=13965863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089263A Granted JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS58205064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190687A (en) * 1984-03-09 1985-09-28 Sanyo Electric Co Ltd Refrigeration cycle operation control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511872A (en) * 1978-07-12 1980-01-28 Takeshi Yoshikawa Method of making heattinsulating multilayer leaf with brilliant surface
JPS573958A (en) * 1980-06-04 1982-01-09 Kankiyou Kaihatsu Kouhan Kk Wall ground application and device
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511872A (en) * 1978-07-12 1980-01-28 Takeshi Yoshikawa Method of making heattinsulating multilayer leaf with brilliant surface
JPS573958A (en) * 1980-06-04 1982-01-09 Kankiyou Kaihatsu Kouhan Kk Wall ground application and device
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190687A (en) * 1984-03-09 1985-09-28 Sanyo Electric Co Ltd Refrigeration cycle operation control method
JPH048637B2 (en) * 1984-03-09 1992-02-17

Also Published As

Publication number Publication date
JPH0230431B2 (en) 1990-07-06

Similar Documents

Publication Publication Date Title
US4850200A (en) Refrigerating circuit device for air conditioning apparatus and control method thereof
CN112268349B (en) Air conditioner, control method thereof, and computer-readable storage medium
JPH04255597A (en) Control for discharge temperature for shift compressor
JPH10153353A (en) Air conditioner
WO2019102566A1 (en) Air conditioner
JPS58193055A (en) Heat pump type air conditioner
JPS6332255A (en) Air conditioner
JPS58205064A (en) Controller for heat pump type air conditioner
JPH0260942B2 (en)
JP2003139418A (en) Air conditioner
JPS6277538A (en) Derfosting device of air conditioner
JPS61272555A (en) Air conditioner
JPS59104051A (en) Air conditioner
JPS63233257A (en) Compressor protective device for air conditioner
JPS62293049A (en) Overload protecting control method of air conditioner
JPH0317165Y2 (en)
JP3613862B2 (en) Air conditioner
JPS60181557A (en) Controller for defrostation operation of air conditioner
JPH0260941B2 (en)
KR100192896B1 (en) Total current control method of airconditioner
JPH05196275A (en) Abnormal state judgement device for air conditioner
EP3447405B1 (en) Air-conditioning device
JPS6141838A (en) Cooling/heating automatic switching control device for air conditioner
JP3467705B2 (en) Air conditioner
JP3327687B2 (en) Air conditioner