WO2019102566A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019102566A1
WO2019102566A1 PCT/JP2017/042125 JP2017042125W WO2019102566A1 WO 2019102566 A1 WO2019102566 A1 WO 2019102566A1 JP 2017042125 W JP2017042125 W JP 2017042125W WO 2019102566 A1 WO2019102566 A1 WO 2019102566A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
air conditioner
sensor information
sensor
state detection
Prior art date
Application number
PCT/JP2017/042125
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 穴井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/042125 priority Critical patent/WO2019102566A1/en
Priority to JP2019556034A priority patent/JP6869371B2/en
Publication of WO2019102566A1 publication Critical patent/WO2019102566A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing

Definitions

  • the present invention relates to an air conditioner that performs a defrosting operation that melts frost on an evaporator.
  • the air conditioner determines the presence or absence of frost formation on the evaporator using the pipe temperature, and performs defrosting operation when it is determined that frost formation is occurring, thereby melting the frost ( For example, refer to Patent Document 1).
  • a general air conditioner stops operation based on a stop instruction of operation by a user or the like. Therefore, if frost formation on the evaporator is detected and an instruction to stop the operation is issued immediately before the defrosting operation is performed, the operation of the air conditioner is performed with the evaporator frosted without performing the defrosting operation. Is stopped.
  • the air conditioner starts the heating operation when instructed to start the heating operation, but if there is frost remaining in the evaporator at this time, the air volume of the air passing through the evaporator is lower than usual. , The piping temperature of the evaporator decreases. Thereby, the frost of the evaporator grows and the air volume is further reduced. In this case, the piping temperature of the evaporator reaches the frost detection temperature immediately after the heating operation is started, and the defrosting operation is performed in the air conditioner. That is, in the conventional air conditioner, the heating operation continuation time from the start of the heating operation to the start of the defrosting operation becomes short.
  • the evaporator may be frosted even while the operation is stopped due to the influence of the wind or the like. Therefore, if the evaporator is frosted when a start instruction of the heating operation is received, frost formation is detected immediately after the start of the operation, and therefore the defrosting operation is performed without the hot air being blown out by the heating operation. It is started.
  • This invention is made in view of the subject in the said prior art, Comprising: It aims at providing the air conditioner which can suppress the reduction of heating operation continuation time.
  • the air conditioner according to the present invention has a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, and a refrigerant circulates, and the defroster for removing frost formation of the evaporator during heating operation
  • An air conditioner that performs operation comprising: a state detection sensor that detects a state of the evaporator as sensor information; and a control device that controls switching between the heating operation and the defrosting operation, the control device including: The frost formation state of the evaporator is determined based on the sensor information detected by the state detection sensor at the time of the operation stop or the operation stop, and the defrosting operation is performed based on the determination result.
  • the present invention it is possible to suppress a decrease in heating operation continuation time by determining the frost formation state of the evaporator at the time of operation stop or during operation stop and performing the defrosting operation according to the determination result.
  • FIG. 1 is a schematic view showing an example of a configuration of an air conditioner according to Embodiment 1. It is a functional block diagram which shows an example of a structure of the control apparatus of FIG. It is a flowchart which shows an example of the flow of frost formation determination processing in the air conditioner concerning Embodiment 1.
  • FIG. It is the schematic which shows the mode of the driving
  • FIG. 1 is a schematic view showing an example of a configuration of an air conditioner according to Embodiment 1. It is a functional block diagram which shows an example of a structure of the control apparatus of FIG. It is a flowchart which shows an example of the flow of frost formation determination processing in the air conditioner concerning Embodiment 1.
  • FIG. It
  • Embodiment 1 Hereinafter, an air conditioner according to Embodiment 1 of the present invention will be described.
  • the air conditioner according to the first embodiment performs a heating operation and a defrosting operation for removing frost generated in the evaporator during the heating operation.
  • FIG. 1 is schematic which shows an example of a structure of the air conditioner 100 which concerns on this Embodiment 1.
  • the air conditioner 100 includes a compressor 1, a condenser 2, an expansion valve 3, an evaporator 4, a condenser fan 5, a condenser fan motor 6, an evaporator fan 7, and an evaporator fan motor 8. , And a state detection sensor 9 and a control device 10.
  • a refrigerant circuit is formed by connecting the compressor 1, the condenser 2, the expansion valve 3 and the evaporator 4 with a refrigerant pipe.
  • a refrigerant circulating in the refrigerant circuit a single refrigerant such as R22, a mixed refrigerant such as R410A, or a natural refrigerant such as CO 2 is used.
  • the compressor 1 sucks a low-temperature low-pressure refrigerant, compresses the sucked refrigerant, and discharges a high-temperature high-pressure refrigerant.
  • the compressor 1 is, for example, an inverter compressor or the like whose capacity, which is a delivery amount per unit time, is controlled by changing an operating frequency.
  • the operating frequency of the compressor 1 is controlled by the controller 10.
  • the compressor 1 is not limited to this, and a constant speed compressor with a fixed operating frequency may be used.
  • the condenser 2 exchanges heat between the indoor air supplied by the condenser fan 5 and the refrigerant to generate heating air supplied to the indoor space. During the heating operation, the condenser 2 dissipates the heat of the refrigerant to the room air to condense the refrigerant.
  • the object of heat exchange with the refrigerant in the condenser 2 is not limited to a gas such as indoor air, and may be, for example, a liquid such as water.
  • the expansion valve 3 expands the refrigerant.
  • the expansion valve 3 is configured by, for example, a valve capable of controlling the opening degree such as an electronic expansion valve.
  • the opening degree of the expansion valve 3 is controlled by the control device 10.
  • the expansion valve 3 is not limited to this, and may be, for example, a capillary tube.
  • the evaporator 4 exchanges heat between the outdoor air supplied by the evaporator fan 7 and the refrigerant to evaporate the refrigerant.
  • the condenser fan 5 is driven by the condenser fan motor 6 and is provided to send room air, which is in heat exchange with the refrigerant in the condenser 2, to the condenser 2.
  • a sirocco fan or a plug fan is used as the condenser fan 5, but the fan is not limited to this, and any fan may be used as long as the same effect can be obtained.
  • the condenser fan 5 may be a push-in type that is disposed on the upstream side of the air in the condenser 2 or may be a pull-in type that is disposed on the downstream side of the air.
  • the condenser fan motor 6 is for driving the condenser fan 5.
  • the condenser fan motor 6 is, for example, a DC (Direct Current) fan motor, and the control device 10 controls the number of rotations of the motor.
  • DC Direct Current
  • the evaporator fan 7 is driven by the evaporator fan motor 8 and is provided to supply the evaporator 4 with outdoor air that exchanges heat with the refrigerant in the evaporator 4.
  • a sirocco fan or a plug fan is used as the evaporator fan 7, but it is not limited thereto, and any fan may be used as long as the same effect can be obtained.
  • the evaporator fan 7 may be a push-in type disposed on the upstream side of the air in the evaporator 4 or may be a pull-on type disposed on the downstream side of the air.
  • the evaporator fan motor 8 is for driving the evaporator fan 7.
  • the evaporator fan motor 8 is, for example, a DC fan motor, and the control device 10 controls the number of rotations of the motor.
  • the state detection sensor 9 detects information indicating the state of the evaporator 4 and outputs sensor information used to determine whether the evaporator 4 is frosted.
  • a temperature sensor for detecting the pipe temperature of the evaporator 4 a pressure sensor for detecting the pipe pressure of the evaporator 4, or a humidity sensor for detecting the humidity of the pipe of the evaporator 4 is used.
  • the state detection sensor 9 detects the pipe temperature of the pipe through which the refrigerant in the evaporator 4 flows, and outputs the detected pipe temperature as sensor information.
  • the sensor used as the state detection sensor 9 may detect any one of temperature, pressure, and humidity, or may detect all of them.
  • the control device 10 controls the overall operation of the air conditioner 100 based on various information received from each part of the air conditioner 100. Specifically, control device 10 controls start and stop of the heating operation based on an instruction from the outside, switching between the heating operation and the defrosting operation, and the like. In particular, in the first embodiment, the control device 10 determines the frosted state of the evaporator 4 based on sensor information acquired from the state detection sensor 9 when there is a heating operation stop instruction or during the heating operation stop. Control of the operation according to the determination result.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the control device 10 of FIG.
  • the control device 10 includes a sensor information acquisition unit 11, a frost formation determination unit 12, an operation control unit 13, and a storage unit 14.
  • the control device 10 is configured by hardware such as a circuit device that realizes various functions by executing software on an arithmetic device such as a microcomputer or the like.
  • the sensor information acquisition unit 11 acquires sensor information detected by the state detection sensor 9.
  • the frost formation determination unit 12 determines whether the evaporator 4 is frosted based on the sensor information acquired by the sensor information acquisition unit 11. Specifically, in the first embodiment, a determination threshold is set in advance for sensor information, and the frosting determination unit 12 compares the value of the sensor information with the temperature indicated by the determination threshold. When the value of the sensor information is equal to or less than the determination threshold value, the frost formation determination unit 12 determines that the evaporator 4 is frosted.
  • the operation control unit 13 controls the operation of the air conditioner 100 such as the heating operation and the defrosting operation based on the determination result by the frost determination unit 12.
  • the storage unit 14 stores in advance a determination threshold used by the frost determination unit 12.
  • FIG. 3 is a flowchart showing an example of the flow of the frost formation determination process in the air conditioner 100 according to the first embodiment.
  • step S1 the sensor information acquisition unit 11 receives an operation stop signal during heating operation.
  • step S 2 the sensor information acquisition unit 11 acquires sensor information from the state detection sensor 9 and supplies it to the frost formation determination unit 12.
  • step S3 the frost formation determination unit 12 determines whether or not the evaporator 4 is frosted, based on the received sensor information and the determination threshold stored in the storage unit 14. As a result of the determination, when it is determined that the evaporator 4 is frosted (Step S3; Yes), the operation control unit 13 performs the defrosting operation in Step S4.
  • the defrosting operation is performed, for example, by heating a heater or the like (not shown) provided in the vicinity of the evaporator 4. Thereby, the frost formation of the evaporator 4 fuses.
  • step S5 the operation control unit 13 stops the operation of the air conditioner 100.
  • step S3 when it is determined that the evaporator 4 is not frosted (step S3; No), the operation control unit 13 stops the operation of the air conditioner 100 in step S5.
  • FIG. 4 is the schematic which shows the mode of the driving
  • FIG. 5 is a schematic view showing the operating state of the air conditioner 100 and the pipe temperature of the evaporator 4 under operation control for performing the frosting determination process according to the first embodiment.
  • the state detection sensor 9 is a temperature sensor, and the case where defrosting operation is performed based on the piping temperature of the evaporator 4 is demonstrated to an example.
  • the conventional air conditioner receives the operation stop signal at time t1 as shown in FIG. 4, the operation is stopped even in the state where the defrosting operation is performed immediately before. That is, at time t1, the operation of the air conditioner is stopped with the evaporator 4 frosted. Therefore, until the air conditioning apparatus receives the operation start signal at time t2, the evaporator 4 is in a state in which frost remains although the pipe temperature rises.
  • the heating operation is started with the evaporator 4 frosted.
  • frost remains in the evaporator 4 and the heating operation is started in a state where the pipe temperature of the evaporator 4 is relatively low, so the volume of air passing through the evaporator 4 becomes lower than normal.
  • the piping temperature of 4 decreases.
  • the heating operation continuation time T1 in this case is "t4-t2".
  • the air conditioner 100 determines the frosted state of the evaporator 4 and determines that frost is formed. Perform defrosting operation. Then, at time t11, the air conditioner 100 ends the defrosting operation and stops the operation.
  • the heating operation is started. At this time, heating operation is started with no frost formation on the evaporator 4 and the pipe temperature of the evaporator 4 is sufficiently high, and the pipe temperature of the evaporator 4 is gradually decreased.
  • the heating operation continuation time T2 in this case is "t40-t20".
  • the heating operation continuation time T2 is longer than the heating operation continuation time T1. This is because the piping temperature of the evaporator 4 is raised by performing the defrosting operation before the operation stop, and is sufficiently higher than the judgment temperature of frost formation.
  • the air conditioner 100 performs the frosting determination process when the operation stop is instructed, and performs the defrosting operation based on the sensor information of the evaporator 4. Thereby, the frost formation of the evaporator 4 when heating operation is started is suppressed, and the reduction of heating operation continuation time can be suppressed.
  • the air conditioner 100 determines the presence or absence of frost formation on the evaporator 4 when receiving the operation stop signal, and performs the defrosting operation before the operation stop according to the determination result.
  • the defrosting operation may be performed by determining the presence or absence of frost formation during the operation stop. While the operation is stopped, frost on the evaporator 4 may grow due to the influence of wind, etc., but the next air conditioning can be performed by performing the defrosting operation according to the determination result of the presence or absence of frosting during the operation stop. It is possible to suppress frost formation on the evaporator 4 at the start of operation of the machine 100.
  • the air conditioner 100 acquires sensor information from the state detection sensor 9 after a set time has elapsed since receiving the operation stop signal, and performs the defrosting operation based on the acquired sensor information.
  • the control device 10 forms the frost on the evaporator 4 based on the sensor information indicating the state of the evaporator 4 during the operation stop or the operation stop. The state is determined, and the defrosting operation is performed based on the determination result. At this time, the control device 10 determines that the evaporator 4 is frosted when the value indicated by the sensor information is equal to or less than the set threshold value. Thereby, since frost formation of the evaporator 4 when heating operation is started is suppressed, reduction of heating operation continuation time can be suppressed.
  • the state detection sensor 9 for detecting the state of the evaporator 4.
  • the frost formation state of the evaporator 4 can be determined from the sensor information which can be detected easily.
  • the air conditioner 100 may be capable of performing a cooling operation in addition to the heating operation.
  • the defrosting operation may be performed by flowing a refrigerant as in the cooling operation.
  • the air conditioner 100 may stop the operation of the air conditioner after performing the defrosting operation regardless of the presence or absence of frost formation. This enables the frost to be melted more reliably.
  • the air conditioner 100 may accumulate past operation data, and perform defrosting operation based on the accumulated operation data.
  • Reference Signs List 1 compressor, 2 condenser, 3 expansion valve, 4 evaporator, 5 condenser fan, 6 condenser fan motor, 7 evaporator fan, 8 evaporator fan motor, 9 state detection sensor, 10 controller, 11 sensor information Acquisition unit, 12 frost determination unit, 13 operation control unit, 14 storage unit, 100 air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Abstract

An air conditioner having a refrigerant circuit in which a refrigerant circulates, and a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, the air conditioner performing a defrosting operation that removes frost formed on the evaporator during an air-warming operation, wherein: the air conditioner comprises a state detection sensor that detects the state of the evaporator as sensor information, and a control device that controls the switching of the air-warming operation and the defrosting operation; and, when operation is stopped or while operation is being stopped, the control device determines the frost formation state of the evaporator on the basis of the sensor information detected by the state detection sensor, and performs a defrosting operation on the basis of the determination result.

Description

空気調和機Air conditioner
 本発明は、蒸発器の着霜を融解する霜取運転を行う空気調和機に関するものである。 The present invention relates to an air conditioner that performs a defrosting operation that melts frost on an evaporator.
 従来の空気調和機は、暖房運転時に蒸発器が着霜することにより、能力低下等の問題が発生する。そのため、空気調和機は、配管温度を用いて蒸発器への着霜の有無を判断し、着霜していると判断された場合に霜取運転を行い、霜を融解させるようにしている(例えば、特許文献1参照)。 In conventional air conditioners, problems such as reduced capacity occur due to frost formation on the evaporator during heating operation. Therefore, the air conditioner determines the presence or absence of frost formation on the evaporator using the pipe temperature, and performs defrosting operation when it is determined that frost formation is occurring, thereby melting the frost ( For example, refer to Patent Document 1).
特開平11-23112号公報Japanese Patent Application Laid-Open No. 11-23112 国際公開第2010/106821号WO 2010/106821
 ところで、一般的な空気調和機は、ユーザ等による運転の停止指示に基づいて運転を停止させる。したがって、蒸発器への着霜が検知されて霜取運転が行われる直前に運転の停止指示がなされると、霜取運転を行うことなく、蒸発器が着霜した状態で空気調和機の運転が停止される。 By the way, a general air conditioner stops operation based on a stop instruction of operation by a user or the like. Therefore, if frost formation on the evaporator is detected and an instruction to stop the operation is issued immediately before the defrosting operation is performed, the operation of the air conditioner is performed with the evaporator frosted without performing the defrosting operation. Is stopped.
 その後、暖房運転の開始指示を受けた場合、空気調和機は暖房運転を開始するが、このとき蒸発器に霜が残っていると、蒸発器を通過する空気の風量が通常時よりも低下し、蒸発器の配管温度が低下する。これにより、蒸発器の霜が成長して風量がさらに低下する。この場合、蒸発器の配管温度は、暖房運転が開始されてからすぐに着霜検知温度に到達し、空気調和機では霜取運転が行われる。すなわち、従来の空気調和機では、暖房運転の開始から霜取運転が開始されるまでの暖房運転継続時間が短くなる。 Thereafter, the air conditioner starts the heating operation when instructed to start the heating operation, but if there is frost remaining in the evaporator at this time, the air volume of the air passing through the evaporator is lower than usual. , The piping temperature of the evaporator decreases. Thereby, the frost of the evaporator grows and the air volume is further reduced. In this case, the piping temperature of the evaporator reaches the frost detection temperature immediately after the heating operation is started, and the defrosting operation is performed in the air conditioner. That is, in the conventional air conditioner, the heating operation continuation time from the start of the heating operation to the start of the defrosting operation becomes short.
 また、空気調和機では、風の影響等により運転停止中であっても蒸発器が着霜することがある。そのため、暖房運転の開始指示を受けた場合に、蒸発器が着霜していると、運転開始直後に着霜が検知されるため、暖房運転によって温風が吹き出されることなく霜取運転が開始される。 Further, in the air conditioner, the evaporator may be frosted even while the operation is stopped due to the influence of the wind or the like. Therefore, if the evaporator is frosted when a start instruction of the heating operation is received, frost formation is detected immediately after the start of the operation, and therefore the defrosting operation is performed without the hot air being blown out by the heating operation. It is started.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、暖房運転継続時間の減少を抑制することができる空気調和機を提供することを目的とする。 This invention is made in view of the subject in the said prior art, Comprising: It aims at providing the air conditioner which can suppress the reduction of heating operation continuation time.
 本発明の空気調和機は、圧縮機、凝縮器、膨張弁および蒸発器が配管で接続され、冷媒が循環する冷媒回路を有し、暖房運転の際の前記蒸発器の着霜を取り除く霜取運転を行う空気調和機であって、前記蒸発器の状態をセンサ情報として検出する状態検出センサと、前記暖房運転および前記霜取運転の切り替えを制御する制御装置とを備え、前記制御装置は、運転停止時または運転停止中に、前記状態検出センサにより検出された前記センサ情報に基づき前記蒸発器の着霜状態を判定し、判定結果に基づき前記霜取運転を行うものである。 The air conditioner according to the present invention has a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, and a refrigerant circulates, and the defroster for removing frost formation of the evaporator during heating operation An air conditioner that performs operation, comprising: a state detection sensor that detects a state of the evaporator as sensor information; and a control device that controls switching between the heating operation and the defrosting operation, the control device including: The frost formation state of the evaporator is determined based on the sensor information detected by the state detection sensor at the time of the operation stop or the operation stop, and the defrosting operation is performed based on the determination result.
 本発明によれば、運転停止時または運転停止中に蒸発器の着霜状態を判定し、判定結果に応じて霜取運転を行うことにより、暖房運転継続時間の減少を抑制することができる。 According to the present invention, it is possible to suppress a decrease in heating operation continuation time by determining the frost formation state of the evaporator at the time of operation stop or during operation stop and performing the defrosting operation according to the determination result.
実施の形態1に係る空気調和機の構成の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a configuration of an air conditioner according to Embodiment 1. 図1の制御装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of a structure of the control apparatus of FIG. 実施の形態1に係る空気調和機における着霜判定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of frost formation determination processing in the air conditioner concerning Embodiment 1. FIG. 従来の運転制御による空気調和機の運転状態および蒸発器の配管温度の様子を示す概略図である。It is the schematic which shows the mode of the driving | running state of the air conditioner by conventional driving | operation control, and the piping temperature of an evaporator. 実施の形態1による着霜判定処理を行う運転制御による空気調和機の運転状態および蒸発器の配管温度の様子を示す概略図である。It is the schematic which shows the mode of the driving | running state of the air conditioner by operation control and the piping temperature of an evaporator by the operation control which performs frost formation determination processing by Embodiment 1. FIG.
実施の形態1.
 以下、本発明の実施の形態1に係る空気調和機について説明する。本実施の形態1に係る空気調和機は、暖房運転と、暖房運転時に蒸発器に発生する霜を取り除くための霜取運転とを行う。
Embodiment 1
Hereinafter, an air conditioner according to Embodiment 1 of the present invention will be described. The air conditioner according to the first embodiment performs a heating operation and a defrosting operation for removing frost generated in the evaporator during the heating operation.
[空気調和機の構成]
 図1は、本実施の形態1に係る空気調和機100の構成の一例を示す概略図である。図1に示すように、空気調和機100は、圧縮機1、凝縮器2、膨張弁3、蒸発器4、凝縮器用ファン5、凝縮器用ファンモータ6、蒸発器用ファン7、蒸発器用ファンモータ8、状態検出センサ9および制御装置10で構成されている。圧縮機1、凝縮器2、膨張弁3および蒸発器4が冷媒配管で接続されることにより、冷媒回路が形成される。冷媒回路を循環する冷媒として、R22等の単一冷媒、R410A等の混合冷媒、またはCO等の自然冷媒が用いられる。
[Configuration of air conditioner]
FIG. 1: is schematic which shows an example of a structure of the air conditioner 100 which concerns on this Embodiment 1. As shown in FIG. As shown in FIG. 1, the air conditioner 100 includes a compressor 1, a condenser 2, an expansion valve 3, an evaporator 4, a condenser fan 5, a condenser fan motor 6, an evaporator fan 7, and an evaporator fan motor 8. , And a state detection sensor 9 and a control device 10. A refrigerant circuit is formed by connecting the compressor 1, the condenser 2, the expansion valve 3 and the evaporator 4 with a refrigerant pipe. As a refrigerant circulating in the refrigerant circuit, a single refrigerant such as R22, a mixed refrigerant such as R410A, or a natural refrigerant such as CO 2 is used.
 圧縮機1は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機1は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機等からなる。圧縮機1の運転周波数は、制御装置10によって制御される。なお、圧縮機1は、これに限られず、運転周波数が固定された一定速のものを用いてもよい。 The compressor 1 sucks a low-temperature low-pressure refrigerant, compresses the sucked refrigerant, and discharges a high-temperature high-pressure refrigerant. The compressor 1 is, for example, an inverter compressor or the like whose capacity, which is a delivery amount per unit time, is controlled by changing an operating frequency. The operating frequency of the compressor 1 is controlled by the controller 10. The compressor 1 is not limited to this, and a constant speed compressor with a fixed operating frequency may be used.
 凝縮器2は、凝縮器用ファン5によって供給される室内空気と冷媒との間で熱交換を行い、室内空間に供給される暖房用空気を生成する。凝縮器2は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる。なお、凝縮器2における冷媒との熱交換対象は、室内空気などの気体に限られず、例えば水などの液体でもよい。 The condenser 2 exchanges heat between the indoor air supplied by the condenser fan 5 and the refrigerant to generate heating air supplied to the indoor space. During the heating operation, the condenser 2 dissipates the heat of the refrigerant to the room air to condense the refrigerant. The object of heat exchange with the refrigerant in the condenser 2 is not limited to a gas such as indoor air, and may be, for example, a liquid such as water.
 膨張弁3は、冷媒を膨張させる。膨張弁3は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。膨張弁3の開度は、制御装置10によって制御される。なお、膨張弁3は、これに限られず、例えばキャピラリーチューブでもよい。蒸発器4は、蒸発器用ファン7によって供給される室外空気と冷媒との間で熱交換を行い、冷媒を蒸発させる。 The expansion valve 3 expands the refrigerant. The expansion valve 3 is configured by, for example, a valve capable of controlling the opening degree such as an electronic expansion valve. The opening degree of the expansion valve 3 is controlled by the control device 10. The expansion valve 3 is not limited to this, and may be, for example, a capillary tube. The evaporator 4 exchanges heat between the outdoor air supplied by the evaporator fan 7 and the refrigerant to evaporate the refrigerant.
 凝縮器用ファン5は、凝縮器用ファンモータ6によって駆動され、凝縮器2で冷媒と熱交換を行う室内空気を凝縮器2に送るために設けられている。凝縮器用ファン5として、例えばシロッコファンまたはプラグファン等が用いられるが、これに限られず、同様の効果を得ることができるものであれば、どのようなファンでもよい。また、凝縮器用ファン5は、凝縮器2における空気の上流側に配置される押し込み方式のものでもよいし、空気の下流側に配置される引っぱり方式のものでもよい。 The condenser fan 5 is driven by the condenser fan motor 6 and is provided to send room air, which is in heat exchange with the refrigerant in the condenser 2, to the condenser 2. For example, a sirocco fan or a plug fan is used as the condenser fan 5, but the fan is not limited to this, and any fan may be used as long as the same effect can be obtained. Further, the condenser fan 5 may be a push-in type that is disposed on the upstream side of the air in the condenser 2 or may be a pull-in type that is disposed on the downstream side of the air.
 凝縮器用ファンモータ6は、凝縮器用ファン5を駆動するためのものである。凝縮器用ファンモータ6は、例えばDC(Direct Current)ファンモータであり、制御装置10によってモータの回転数が制御される。 The condenser fan motor 6 is for driving the condenser fan 5. The condenser fan motor 6 is, for example, a DC (Direct Current) fan motor, and the control device 10 controls the number of rotations of the motor.
 蒸発器用ファン7は、蒸発器用ファンモータ8によって駆動され、蒸発器4で冷媒と熱交換を行う室外空気を蒸発器4に送るために設けられている。蒸発器用ファン7として、例えばシロッコファンまたはプラグファン等が用いられるが、これに限られず、同様の効果を得ることができるものであれば、どのようなファンでもよい。また、蒸発器用ファン7は、蒸発器4における空気の上流側に配置される押し込み方式のものでもよいし、空気の下流側に配置される引っぱり方式のものでもよい。 The evaporator fan 7 is driven by the evaporator fan motor 8 and is provided to supply the evaporator 4 with outdoor air that exchanges heat with the refrigerant in the evaporator 4. For example, a sirocco fan or a plug fan is used as the evaporator fan 7, but it is not limited thereto, and any fan may be used as long as the same effect can be obtained. Further, the evaporator fan 7 may be a push-in type disposed on the upstream side of the air in the evaporator 4 or may be a pull-on type disposed on the downstream side of the air.
 蒸発器用ファンモータ8は、蒸発器用ファン7を駆動するためのものである。蒸発器用ファンモータ8は、例えばDCファンモータであり、制御装置10によってモータの回転数が制御される。 The evaporator fan motor 8 is for driving the evaporator fan 7. The evaporator fan motor 8 is, for example, a DC fan motor, and the control device 10 controls the number of rotations of the motor.
 状態検出センサ9は、蒸発器4の状態を示す情報を検出し、蒸発器4が着霜しているか否かを判定するために用いられるセンサ情報を出力する。状態検出センサ9として、例えば、蒸発器4の配管温度を検出する温度センサ、蒸発器4の配管圧力を検出する圧力センサ、または、蒸発器4の配管の湿度を検出する湿度センサ等が用いられる。具体的には、状態検出センサ9として温度センサが用いられる場合、状態検出センサ9は、蒸発器4内の冷媒が流れる配管の配管温度を検出し、検出した配管温度をセンサ情報として出力する。なお、状態検出センサ9として用いられるセンサは、温度、圧力および湿度のいずれかを検出するものでもよいし、これらすべてを検出するものでもよい。 The state detection sensor 9 detects information indicating the state of the evaporator 4 and outputs sensor information used to determine whether the evaporator 4 is frosted. As the state detection sensor 9, for example, a temperature sensor for detecting the pipe temperature of the evaporator 4, a pressure sensor for detecting the pipe pressure of the evaporator 4, or a humidity sensor for detecting the humidity of the pipe of the evaporator 4 is used. . Specifically, when a temperature sensor is used as the state detection sensor 9, the state detection sensor 9 detects the pipe temperature of the pipe through which the refrigerant in the evaporator 4 flows, and outputs the detected pipe temperature as sensor information. The sensor used as the state detection sensor 9 may detect any one of temperature, pressure, and humidity, or may detect all of them.
 制御装置10は、空気調和機100の各部から受け取る各種情報に基づき、空気調和機100全体の動作を制御する。具体的には、制御装置10は、外部からの指示に基づく暖房運転の開始および停止、ならびに暖房運転と霜取運転との切り替え等を制御する。特に、本実施の形態1において、制御装置10は、暖房運転の停止指示があった場合または暖房運転停止中に状態検出センサ9から取得したセンサ情報に基づき、蒸発器4の着霜状態を判定し、判定結果に応じた運転の制御を行う。 The control device 10 controls the overall operation of the air conditioner 100 based on various information received from each part of the air conditioner 100. Specifically, control device 10 controls start and stop of the heating operation based on an instruction from the outside, switching between the heating operation and the defrosting operation, and the like. In particular, in the first embodiment, the control device 10 determines the frosted state of the evaporator 4 based on sensor information acquired from the state detection sensor 9 when there is a heating operation stop instruction or during the heating operation stop. Control of the operation according to the determination result.
 図2は、図1の制御装置10の構成の一例を示す機能ブロック図である。図2に示すように、制御装置10は、センサ情報取得部11、着霜判定部12、運転制御部13および記憶部14を備えている。このような制御装置10は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。 FIG. 2 is a functional block diagram showing an example of the configuration of the control device 10 of FIG. As shown in FIG. 2, the control device 10 includes a sensor information acquisition unit 11, a frost formation determination unit 12, an operation control unit 13, and a storage unit 14. The control device 10 is configured by hardware such as a circuit device that realizes various functions by executing software on an arithmetic device such as a microcomputer or the like.
 センサ情報取得部11は、状態検出センサ9で検出されたセンサ情報を取得する。着霜判定部12は、センサ情報取得部11で取得したセンサ情報に基づき、蒸発器4が着霜しているか否かを判定する。具体的には、本実施の形態1では、センサ情報に対して判定閾値が予め設定されており、着霜判定部12は、センサ情報の値と判定閾値が示す温度とを比較する。着霜判定部12は、センサ情報の値が判定閾値以下である場合に、蒸発器4が着霜していると判定する。 The sensor information acquisition unit 11 acquires sensor information detected by the state detection sensor 9. The frost formation determination unit 12 determines whether the evaporator 4 is frosted based on the sensor information acquired by the sensor information acquisition unit 11. Specifically, in the first embodiment, a determination threshold is set in advance for sensor information, and the frosting determination unit 12 compares the value of the sensor information with the temperature indicated by the determination threshold. When the value of the sensor information is equal to or less than the determination threshold value, the frost formation determination unit 12 determines that the evaporator 4 is frosted.
 運転制御部13は、着霜判定部12による判定結果に基づき、暖房運転および霜取運転等の空気調和機100の運転を制御する。記憶部14は、着霜判定部12で用いられる判定閾値が予め記憶されている。 The operation control unit 13 controls the operation of the air conditioner 100 such as the heating operation and the defrosting operation based on the determination result by the frost determination unit 12. The storage unit 14 stores in advance a determination threshold used by the frost determination unit 12.
[着霜判定処理]
 次に、空気調和機100による着霜判定処理について説明する。図3は、本実施の形態1に係る空気調和機100における着霜判定処理の流れの一例を示すフローチャートである。
[Frost determination processing]
Next, frost formation determination processing by the air conditioner 100 will be described. FIG. 3 is a flowchart showing an example of the flow of the frost formation determination process in the air conditioner 100 according to the first embodiment.
 ステップS1において、センサ情報取得部11は、暖房運転中に運転停止信号を受信する。ステップS2において、センサ情報取得部11は、状態検出センサ9からセンサ情報を取得し、着霜判定部12に供給する。 In step S1, the sensor information acquisition unit 11 receives an operation stop signal during heating operation. In step S 2, the sensor information acquisition unit 11 acquires sensor information from the state detection sensor 9 and supplies it to the frost formation determination unit 12.
 ステップS3において、着霜判定部12は、受け取ったセンサ情報と、記憶部14に記憶された判定閾値とに基づき、蒸発器4が着霜しているか否かを判定する。判定の結果、蒸発器4が着霜していると判断された場合(ステップS3;Yes)、運転制御部13は、ステップS4において霜取運転を行う。霜取運転は、例えば、蒸発器4の近傍に設けられた図示しないヒータ等を加熱して行われる。これにより、蒸発器4の着霜が融解する。そして、ステップS5において、運転制御部13は、空気調和機100の運転を停止する。 In step S3, the frost formation determination unit 12 determines whether or not the evaporator 4 is frosted, based on the received sensor information and the determination threshold stored in the storage unit 14. As a result of the determination, when it is determined that the evaporator 4 is frosted (Step S3; Yes), the operation control unit 13 performs the defrosting operation in Step S4. The defrosting operation is performed, for example, by heating a heater or the like (not shown) provided in the vicinity of the evaporator 4. Thereby, the frost formation of the evaporator 4 fuses. Then, in step S5, the operation control unit 13 stops the operation of the air conditioner 100.
 一方、蒸発器4が着霜していないと判断された場合(ステップS3;No)、運転制御部13は、ステップS5において、空気調和機100の運転を停止する。 On the other hand, when it is determined that the evaporator 4 is not frosted (step S3; No), the operation control unit 13 stops the operation of the air conditioner 100 in step S5.
 着霜判定処理を行う運転制御について、従来の制御と比較しながら説明する。図4は、従来の運転制御による空気調和機の運転状態および蒸発器の配管温度の様子を示す概略図である。図5は、本実施の形態1による着霜判定処理を行う運転制御による空気調和機100の運転状態および蒸発器4の配管温度の様子を示す概略図である。なお、以下では、状態検出センサ9が温度センサであり、蒸発器4の配管温度に基づいて霜取運転を行う場合を例にとって説明する。 The operation control for performing the frost formation determination process will be described in comparison with the conventional control. FIG. 4: is the schematic which shows the mode of the driving | running state of the air conditioner by conventional driving | operation control, and the piping temperature of an evaporator. FIG. 5 is a schematic view showing the operating state of the air conditioner 100 and the pipe temperature of the evaporator 4 under operation control for performing the frosting determination process according to the first embodiment. In addition, below, the state detection sensor 9 is a temperature sensor, and the case where defrosting operation is performed based on the piping temperature of the evaporator 4 is demonstrated to an example.
 従来の空気調和機は、図4に示すように時刻t1において運転停止信号を受信すると、直前に霜取運転を行う状態であっても運転を停止する。すなわち、時刻t1においては、蒸発器4が着霜した状態で、空気調和機の運転が停止する。そのため、時刻t2において空気調和装置が運転開始信号を受信するまで、蒸発器4は、配管温度が上昇するものの、霜が残っている状態となる。 When the conventional air conditioner receives the operation stop signal at time t1 as shown in FIG. 4, the operation is stopped even in the state where the defrosting operation is performed immediately before. That is, at time t1, the operation of the air conditioner is stopped with the evaporator 4 frosted. Therefore, until the air conditioning apparatus receives the operation start signal at time t2, the evaporator 4 is in a state in which frost remains although the pipe temperature rises.
 時刻t2において、従来の空気調和機により運転開始信号が受信されると、蒸発器4が着霜した状態で暖房運転が開始される。このとき、蒸発器4に霜が残っており、蒸発器4の配管温度が比較的低い状態で暖房運転が開始されるため、蒸発器4を通過する風量が通常時よりも低下し、蒸発器4の配管温度が低下する。 At time t2, when the operation start signal is received by the conventional air conditioner, the heating operation is started with the evaporator 4 frosted. At this time, frost remains in the evaporator 4 and the heating operation is started in a state where the pipe temperature of the evaporator 4 is relatively low, so the volume of air passing through the evaporator 4 becomes lower than normal. The piping temperature of 4 decreases.
 そして、時刻t3において、配管温度が判定閾値である判定温度に到達し、予め設定された判定時間が経過すると、時刻t4において霜取運転が行われる。この場合の暖房運転継続時間T1は、「t4-t2」となる。 Then, at time t3, when the pipe temperature reaches the judgment temperature which is the judgment threshold and the judgment time set in advance passes, the defrosting operation is performed at time t4. The heating operation continuation time T1 in this case is "t4-t2".
 一方、本実施の形態1に係る空気調和機100は、図5に示すように時刻t10において運転停止信号を受信すると、蒸発器4の着霜状態を判定し、着霜していると判断して霜取運転を行う。そして、時刻t11において、空気調和機100は、霜取運転を終了し、運転を停止する。 On the other hand, when the air conditioner 100 according to the first embodiment receives the operation stop signal at time t10 as shown in FIG. 5, the air conditioner 100 determines the frosted state of the evaporator 4 and determines that frost is formed. Perform defrosting operation. Then, at time t11, the air conditioner 100 ends the defrosting operation and stops the operation.
 時刻t20において、空気調和機100により運転開始信号が受信されると、暖房運転が開始される。このとき、蒸発器4の着霜がなく、蒸発器4の配管温度が十分に高い状態で暖房運転が開始され、蒸発器4の配管温度は徐々に低下する。 At time t20, when the air conditioner 100 receives the operation start signal, the heating operation is started. At this time, heating operation is started with no frost formation on the evaporator 4 and the pipe temperature of the evaporator 4 is sufficiently high, and the pipe temperature of the evaporator 4 is gradually decreased.
 そして、時刻t30において、配管温度が判定温度に到達した後に判定時間が経過すると、時刻t40において霜取運転が行われる。この場合の暖房運転継続時間T2は、「t40-t20」となる。 Then, when the determination time passes after the pipe temperature reaches the determination temperature at time t30, the defrosting operation is performed at time t40. The heating operation continuation time T2 in this case is "t40-t20".
 ここで、従来の暖房運転継続時間T1と、本実施の形態1による暖房運転継続時間T2とを比較すると、暖房運転継続時間T2は、暖房運転継続時間T1よりも長い。これは、運転停止前に霜取運転が行われることにより、蒸発器4の配管温度が上昇し、着霜の判定温度よりも十分高くなっているためである。 Here, when the conventional heating operation continuation time T1 is compared with the heating operation continuation time T2 according to the first embodiment, the heating operation continuation time T2 is longer than the heating operation continuation time T1. This is because the piping temperature of the evaporator 4 is raised by performing the defrosting operation before the operation stop, and is sufficiently higher than the judgment temperature of frost formation.
 このように、本実施の形態1において、空気調和機100は、運転停止が指示された際に着霜判定処理を行い、蒸発器4のセンサ情報に基づいて霜取運転を行う。これにより、暖房運転を開始したときの蒸発器4の着霜が抑制され、暖房運転継続時間の減少を抑制することができる。 As described above, in the first embodiment, the air conditioner 100 performs the frosting determination process when the operation stop is instructed, and performs the defrosting operation based on the sensor information of the evaporator 4. Thereby, the frost formation of the evaporator 4 when heating operation is started is suppressed, and the reduction of heating operation continuation time can be suppressed.
 なお、上述した例では、空気調和機100は、運転停止信号を受信したときに蒸発器4の着霜の有無を判定し、判定結果に応じて運転停止前に霜取運転を行っているが、これに限られず、例えば、運転停止中に着霜の有無を判定して霜取運転を行ってもよい。運転停止中には、風の影響等によって蒸発器4の霜が成長することがあるが、運転停止中における着霜の有無の判定結果に応じて霜取運転を行うことにより、次回の空気調和機100の運転開始時の蒸発器4の着霜を抑制することができる。この場合、例えば、空気調和機100は、運転停止信号を受信してから設定時間経過後に状態検出センサ9からセンサ情報を取得し、取得したセンサ情報に基づき霜取運転を行う。 In the example described above, the air conditioner 100 determines the presence or absence of frost formation on the evaporator 4 when receiving the operation stop signal, and performs the defrosting operation before the operation stop according to the determination result. Not limited to this, for example, the defrosting operation may be performed by determining the presence or absence of frost formation during the operation stop. While the operation is stopped, frost on the evaporator 4 may grow due to the influence of wind, etc., but the next air conditioning can be performed by performing the defrosting operation according to the determination result of the presence or absence of frosting during the operation stop. It is possible to suppress frost formation on the evaporator 4 at the start of operation of the machine 100. In this case, for example, the air conditioner 100 acquires sensor information from the state detection sensor 9 after a set time has elapsed since receiving the operation stop signal, and performs the defrosting operation based on the acquired sensor information.
 以上のように、本実施の形態1に係る空気調和機100において、制御装置10は、運転停止中または運転停止中に、蒸発器4の状態を示すセンサ情報に基づき、蒸発器4の着霜状態を判定し、判定結果に基づいて霜取運転を行う。このとき、制御装置10は、センサ情報が示す値が設定閾値以下である場合に、蒸発器4が着霜していると判定する。これにより、暖房運転を開始したときの蒸発器4の着霜が抑制されるため、暖房運転継続時間の減少を抑制することができる。 As described above, in the air conditioner 100 according to the first embodiment, the control device 10 forms the frost on the evaporator 4 based on the sensor information indicating the state of the evaporator 4 during the operation stop or the operation stop. The state is determined, and the defrosting operation is performed based on the determination result. At this time, the control device 10 determines that the evaporator 4 is frosted when the value indicated by the sensor information is equal to or less than the set threshold value. Thereby, since frost formation of the evaporator 4 when heating operation is started is suppressed, reduction of heating operation continuation time can be suppressed.
 また、蒸発器4の状態を検出する状態検出センサ9として、温度センサ、圧力センサまたは湿度センサの少なくともいずれか1つが用いられる。これにより、容易に検出できるセンサ情報から蒸発器4の着霜状態を判定することができる。 Further, at least one of a temperature sensor, a pressure sensor, and a humidity sensor is used as the state detection sensor 9 for detecting the state of the evaporator 4. Thereby, the frost formation state of the evaporator 4 can be determined from the sensor information which can be detected easily.
 以上、本発明の実施の形態1について説明したが、本発明は、上述した本発明の実施の形態1に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、空気調和機100は、暖房運転に加えて冷房運転を行うことができるものでもよい。この場合、霜取運転は、冷房運転と同様に冷媒を流すことによって行ってもよい。 The first embodiment of the present invention has been described above, but the present invention is not limited to the above-described first embodiment of the present invention, and various modifications and applications can be made without departing from the scope of the present invention. Is possible. For example, the air conditioner 100 may be capable of performing a cooling operation in addition to the heating operation. In this case, the defrosting operation may be performed by flowing a refrigerant as in the cooling operation.
 また、空気調和機100は、運転停止信号を受信した際に、着霜の有無によらず、霜取運転を行ってから空気調和機の運転を停止してもよい。これにより、霜をより確実に融解させることができる。 In addition, when receiving the operation stop signal, the air conditioner 100 may stop the operation of the air conditioner after performing the defrosting operation regardless of the presence or absence of frost formation. This enables the frost to be melted more reliably.
 さらに、蒸発器4の状態を検出する際には、状態検出センサ9に代えて、外部に設けられたセンサ等が用いられてもよい。さらにまた、例えば、空気調和機100は、過去の運転データを蓄積し、蓄積された運転データに基づいて霜取運転を行ってもよい。 Furthermore, when detecting the state of the evaporator 4, a sensor or the like provided outside may be used instead of the state detection sensor 9. Furthermore, for example, the air conditioner 100 may accumulate past operation data, and perform defrosting operation based on the accumulated operation data.
 1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 凝縮器用ファン、6 凝縮器用ファンモータ、7 蒸発器用ファン、8 蒸発器用ファンモータ、9 状態検出センサ、10 制御装置、11 センサ情報取得部、12 着霜判定部、13 運転制御部、14 記憶部、100 空気調和機。 Reference Signs List 1 compressor, 2 condenser, 3 expansion valve, 4 evaporator, 5 condenser fan, 6 condenser fan motor, 7 evaporator fan, 8 evaporator fan motor, 9 state detection sensor, 10 controller, 11 sensor information Acquisition unit, 12 frost determination unit, 13 operation control unit, 14 storage unit, 100 air conditioner.

Claims (8)

  1.  圧縮機、凝縮器、膨張弁および蒸発器が配管で接続され、冷媒が循環する冷媒回路を有し、暖房運転の際の前記蒸発器の着霜を取り除く霜取運転を行う空気調和機であって、
     前記蒸発器の状態をセンサ情報として検出する状態検出センサと、
     前記暖房運転および前記霜取運転の切り替えを制御する制御装置と
    を備え、
     前記制御装置は、
     運転停止時または運転停止中に、前記状態検出センサにより検出された前記センサ情報に基づき前記蒸発器の着霜状態を判定し、判定結果に基づき前記霜取運転を行う
    空気調和機。
    An air conditioner having a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping and a refrigerant circulates, and performing frost removal operation for removing frost formation of the evaporator during heating operation. ,
    A state detection sensor that detects the state of the evaporator as sensor information;
    A control device that controls switching between the heating operation and the defrosting operation;
    The controller is
    An air conditioner that determines the frost formation state of the evaporator based on the sensor information detected by the state detection sensor at the time of operation stop or during operation stop, and performs the defrosting operation based on the determination result.
  2.  前記制御装置は、
     前記センサ情報が示す値が設定閾値以下である場合に、前記蒸発器が着霜していると判定する
    請求項1に記載の空気調和機。
    The controller is
    The air conditioner according to claim 1, wherein it is determined that the evaporator is frosted when the value indicated by the sensor information is equal to or less than a set threshold value.
  3.  前記制御装置は、
     運転停止時に前記霜取運転を行う
    請求項1または2に記載の空気調和機。
    The controller is
    The air conditioner according to claim 1, wherein the defrosting operation is performed when the operation is stopped.
  4.  前記制御装置は、
     運転開始時に前記霜取運転を行う
    請求項1~3のいずれか一項に記載の空気調和機。
    The controller is
    The air conditioner according to any one of claims 1 to 3, wherein the defrosting operation is performed at the start of operation.
  5.  前記状態検出センサは、前記蒸発器の配管温度を検出する温度センサを含む
    請求項1~4のいずれか一項に記載の空気調和機。
    The air conditioner according to any one of claims 1 to 4, wherein the state detection sensor includes a temperature sensor that detects a pipe temperature of the evaporator.
  6.  前記状態検出センサは、前記蒸発器の配管圧力を検出する圧力センサを含む
    請求項1~5のいずれか一項に記載の空気調和機。
    The air conditioner according to any one of claims 1 to 5, wherein the state detection sensor includes a pressure sensor that detects a piping pressure of the evaporator.
  7.  前記状態検出センサは、前記蒸発器の配管湿度を検出する湿度センサを含む
    請求項1~6のいずれか一項に記載の空気調和機。
    The air conditioner according to any one of claims 1 to 6, wherein the state detection sensor includes a humidity sensor that detects a piping humidity of the evaporator.
  8.  前記制御装置は、
     前記センサ情報を取得するセンサ情報取得部と、
     前記センサ情報取得部で取得された前記センサ情報に基づき前記蒸発器の着霜状態を判定する着霜判定部と、
     前記着霜判定部による判定結果に基づき、前記暖房運転および前記霜取運転の切り替えを行う運転制御部と
    を有する
    請求項1~7のいずれか一項に記載の空気調和機。
    The controller is
    A sensor information acquisition unit that acquires the sensor information;
    A frost formation determination unit that determines a frost formation state of the evaporator based on the sensor information acquired by the sensor information acquisition unit;
    The air conditioner according to any one of claims 1 to 7, further comprising an operation control unit that switches between the heating operation and the defrosting operation based on the determination result by the frost determination unit.
PCT/JP2017/042125 2017-11-24 2017-11-24 Air conditioner WO2019102566A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/042125 WO2019102566A1 (en) 2017-11-24 2017-11-24 Air conditioner
JP2019556034A JP6869371B2 (en) 2017-11-24 2017-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042125 WO2019102566A1 (en) 2017-11-24 2017-11-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019102566A1 true WO2019102566A1 (en) 2019-05-31

Family

ID=66631844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042125 WO2019102566A1 (en) 2017-11-24 2017-11-24 Air conditioner

Country Status (2)

Country Link
JP (1) JP6869371B2 (en)
WO (1) WO2019102566A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212603A (en) * 2020-07-30 2021-01-12 青岛海尔特种电冰柜有限公司 Control method of refrigerator
CN114216212A (en) * 2021-12-10 2022-03-22 珠海格力电器股份有限公司 Heating and defrosting control method of multi-split air conditioner and multi-split air conditioner
JP2022092790A (en) * 2020-12-11 2022-06-23 三菱重工冷熱株式会社 Spot air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251612B (en) * 2021-05-06 2022-12-23 青岛海尔空调器有限总公司 Anti-condensation control method for air conditioner and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773536U (en) * 1980-10-22 1982-05-06
JPH0437340B2 (en) * 1985-05-22 1992-06-19 Saginomiya Seisakusho Inc
JP2013170726A (en) * 2012-02-20 2013-09-02 Mitsubishi Electric Corp Air conditioner
JP2014066485A (en) * 2012-09-27 2014-04-17 Sharp Corp Air conditioner
JP2016125732A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Air conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773536U (en) * 1980-10-22 1982-05-06
JPH0437340B2 (en) * 1985-05-22 1992-06-19 Saginomiya Seisakusho Inc
JP2013170726A (en) * 2012-02-20 2013-09-02 Mitsubishi Electric Corp Air conditioner
JP2014066485A (en) * 2012-09-27 2014-04-17 Sharp Corp Air conditioner
JP2016125732A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212603A (en) * 2020-07-30 2021-01-12 青岛海尔特种电冰柜有限公司 Control method of refrigerator
JP2022092790A (en) * 2020-12-11 2022-06-23 三菱重工冷熱株式会社 Spot air conditioner
JP7239844B2 (en) 2020-12-11 2023-03-15 三菱重工冷熱株式会社 spot air conditioner
CN114216212A (en) * 2021-12-10 2022-03-22 珠海格力电器股份有限公司 Heating and defrosting control method of multi-split air conditioner and multi-split air conditioner

Also Published As

Publication number Publication date
JP6869371B2 (en) 2021-05-12
JPWO2019102566A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019102566A1 (en) Air conditioner
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
US9719709B2 (en) Air-conditioning apparatus with thermo-off postponement control
US10054347B2 (en) Air conditioner
JP3476899B2 (en) Air conditioner
US10197317B2 (en) Air conditioner with outdoor unit compressor driven at controllable activation rotational speed
US20150040592A1 (en) Outdoor unit of air conditioner and air conditioner
JP6071648B2 (en) Air conditioner
JP2012002455A (en) Air conditioner
JP2010223494A (en) Air conditioner
US10648718B2 (en) Air conditioning apparatus with compressor discharge pressure sensing
JP2018128194A (en) Air conditioner
JPWO2019003306A1 (en) Air conditioner
WO2017056158A1 (en) Air conditioner
JP2019020061A (en) Air-conditioner
JP4844147B2 (en) Air conditioner
JP2011202845A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
JP6615371B2 (en) Refrigeration cycle equipment
JPH0650596A (en) Air conditioner
JP3977523B2 (en) Air conditioner
JP2004233015A (en) Air conditioner
JP7400583B2 (en) air conditioner
KR100243085B1 (en) Air conditioner and defrosting method therefor
JP2006308221A (en) Operation control method of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932882

Country of ref document: EP

Kind code of ref document: A1