JPH0230431B2 - - Google Patents

Info

Publication number
JPH0230431B2
JPH0230431B2 JP57089263A JP8926382A JPH0230431B2 JP H0230431 B2 JPH0230431 B2 JP H0230431B2 JP 57089263 A JP57089263 A JP 57089263A JP 8926382 A JP8926382 A JP 8926382A JP H0230431 B2 JPH0230431 B2 JP H0230431B2
Authority
JP
Japan
Prior art keywords
defrosting
current
heat exchanger
circuit
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57089263A
Other languages
Japanese (ja)
Other versions
JPS58205064A (en
Inventor
Kazuhiro Takazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57089263A priority Critical patent/JPS58205064A/en
Publication of JPS58205064A publication Critical patent/JPS58205064A/en
Publication of JPH0230431B2 publication Critical patent/JPH0230431B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はヒートポンプ式空気調和機の制御装置
に係り、特に、室外熱交換器の除霜制御回路の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a heat pump type air conditioner, and particularly to an improvement in a defrosting control circuit for an outdoor heat exchanger.

〔発明の技術的背景〕[Technical background of the invention]

一般にヒートポンプ式空気調和機の暖房運転中
には、室外熱交換器の表面温度を氷点以下で使用
する場合が出てくる。このため、室外熱交換器の
表面に着霜して熱交換を阻害する。この霜をとる
ためには、一時的に冷房サイクルに切換えて、室
外熱交換器を凝縮器としこれに熱を加えて溶かし
去る。当然のことではあるが、除霜時には室外側
の送風機を停止させ、熱が有効に除霜に作用する
よう、制御回路が形成される。
Generally, during heating operation of a heat pump type air conditioner, there are cases where the outdoor heat exchanger is used at a surface temperature below the freezing point. For this reason, frost forms on the surface of the outdoor heat exchanger, inhibiting heat exchange. To remove this frost, the air conditioner is temporarily switched to the cooling cycle, and the outdoor heat exchanger is used as a condenser and heat is applied to it to melt it away. As a matter of course, a control circuit is formed to stop the outdoor air blower during defrosting so that the heat effectively acts on defrosting.

かかる除霜制御を行う従来の制御回路は、室内
温度(以下、室温という)を検出する温度センサ
および室内熱交換器の温度を検出する温度センサ
の検出信号に基いて室外熱交換器の着霜量を判断
し、熱交換が大きく阻害される状態で除霜を開始
するとともに、除霜するに必要な時間を設定した
タイマのタイムアツプ時に除霜を停止していた。
A conventional control circuit that performs such defrosting control controls frosting of an outdoor heat exchanger based on detection signals from a temperature sensor that detects the indoor temperature (hereinafter referred to as room temperature) and a temperature sensor that detects the temperature of the indoor heat exchanger. Defrosting was started in a state where heat exchange was significantly inhibited, and defrosting was stopped when the timer that set the time required for defrosting expired.

この場合、着霜量の判断は通常、制御回路を構
成する中央処理装置によつてなされるが、この中
央処理装置が室外熱交換器の実際の着霜量を正確
に判断し得るものであればタイマで設定された時
間だけ除霜することで何等問題はなく、しかも、
室内機側で着霜量を判断することによつて室内機
と室外機を結ぶ、いわゆる渡り線を減少させ得る
とともに室外機の制御部品数を減少させ得る等の
利点がある。
In this case, the amount of frost formed is normally determined by the central processing unit that constitutes the control circuit, but even if this central processing unit is capable of accurately determining the actual amount of frost formed on the outdoor heat exchanger, There is no problem if you defrost for the time set by the timer, and
By determining the amount of frost on the indoor unit side, there are advantages such as reducing the number of so-called crossover wires connecting the indoor unit and the outdoor unit, and reducing the number of control parts for the outdoor unit.

しかしながら、冷媒を循環させる配管長、また
は、空気調和機を据付ける環境若しくは地域によ
つて着霜量が大きく異り、室内機側でこれを判断
することには自ずから限度があつた。
However, the amount of frost formation varies greatly depending on the length of the piping that circulates the refrigerant, or the environment or region where the air conditioner is installed, and there is a natural limit to the ability of the indoor unit to judge this.

ここで、例えば中央処理装置が除霜を必要とす
ると判断したときの実際の着霜量が極端に違つた
ものと仮定し、この状態で除霜した場合、空気調
和機に起こる現象と併せて従来の制御装置の概要
を第1図をも参照して説明する。
For example, suppose that the actual amount of frost formed when the central processing unit determines that defrosting is necessary is extremely different, and if defrosting is performed under this condition, the phenomenon that occurs in the air conditioner and the An outline of a conventional control device will be explained with reference to FIG.

第1図a,b,cは除霜を開始してからの室内
熱交換器温度、室外熱交換器の高圧側の冷媒圧力
(以下室外熱交換器圧力と言う)および冷媒循環
用の圧縮機を駆動する電動機の電流(以下圧縮機
電流と言う)の変化をそれぞれ示すとともに、破
線で示した曲線イは無着霜の場合、実線で示した
曲線ロは通常着霜の場合、一点鎖線で示した曲線
ハは過大着霜の場合をそれぞれ示している。
Figure 1 a, b, and c show the temperature of the indoor heat exchanger after the start of defrosting, the refrigerant pressure on the high pressure side of the outdoor heat exchanger (hereinafter referred to as outdoor heat exchanger pressure), and the compressor for refrigerant circulation. In addition to showing the changes in the current of the electric motor that drives the compressor (hereinafter referred to as compressor current), curve A shown with a broken line is in the case of no frost, curve B shown with a solid line is in the case of normal frost, and the dashed line is The curves shown in Fig. 3 show the cases of excessive frost formation.

ここで、時刻t0にて除霜が開始されると、室内
熱交換器温度Tは、当初、着霜量に関係なく緩や
かに降下するもののある程度時間を経過した後は
降下速度および降下温度に大きな差が現れる。す
なわち、曲線イに示した無着霜の場合には、霜の
除去が完了したと判断される一定温度TLよりも
高い温度に維持され、曲線ロで示した通常着霜の
場合には急速に降下して一定温度TLよりも低い
値に維持され、さらに、曲線ハで示した過大着霜
の場合は、通常着霜時よりも緩やかに降下するも
のの、やはり一定温度TLよりも低い値に維持さ
れる。
Here, when defrosting is started at time t 0 , the indoor heat exchanger temperature T initially decreases gradually regardless of the amount of frost, but after a certain amount of time, the rate of decrease and temperature decrease. A big difference appears. In other words, in the case of no frost as shown in curve A, the temperature is maintained higher than the constant temperature T L at which frost removal is judged to have been completed, and in the case of normal frost as shown in curve B, the temperature is maintained at a temperature higher than the constant temperature T In addition, in the case of excessive frosting shown in curve C, the temperature drops more slowly than in normal frosting, but is still lower than the constant temperature T L. maintained at the value.

一方、室外熱交換器圧力pは、除霜開始当初、
着霜量に関係なく急速に上昇して次いで一定の圧
力に保たれるが、それ以降は着霜量に応じて大き
く変化するものがでてくる。すなわち、曲線ロお
よびハに示した通常着霜時および過大着霜時には
その後も略一定に保持されるが、曲線イに示した
無着霜時にはこの圧力pが次第に増加し、室外熱
交換器等に一般に定められる許容圧力Pdhを超え
ることになる。
On the other hand, the outdoor heat exchanger pressure p is at the beginning of defrosting.
The pressure rises rapidly regardless of the amount of frost and then remains at a constant pressure, but after that the pressure changes greatly depending on the amount of frost. In other words, during normal frosting and excessive frosting as shown in curves B and C, the pressure p remains approximately constant, but during no frosting as shown in curve A, this pressure p gradually increases, causing damage to the outdoor heat exchanger, etc. This will exceed the allowable pressure Pdh generally established for

また、圧縮機電流Iも、除霜開始当初、着霜量
に関係なく僅かに降下し、次いで、一定の値に保
たれるがそれ以降は、室外熱交換器圧力pの変化
に追随して変化することとなり、特に、曲線イに
示した無着霜時には、許容圧力Pdhに対応する許
容電流IHを超えることになる。
In addition, the compressor current I also drops slightly at the beginning of defrosting, regardless of the amount of frost formed, and then remains at a constant value, but after that, it follows the change in the outdoor heat exchanger pressure p. In particular, when there is no frost as shown in curve A, the allowable current I H corresponding to the allowable pressure P dh is exceeded.

なお、室外熱交換器の許容圧力Pdhは、圧縮機
の許容電流IHを基準にして決定される場合もあ
る。
Note that the allowable pressure P dh of the outdoor heat exchanger may be determined based on the allowable current I H of the compressor.

しかして、上述したタイマにT2時間を設定し、
このタイマのタイムアツプ時すなわち時刻t2にて
除霜を停止すれば、少なくとも、通常着霜時およ
び過大着霜時には何等問題のない除霜が可能であ
る。
Then, set T 2 hours to the above-mentioned timer,
If defrosting is stopped when the timer times up, that is, at time t2 , defrosting can be performed without any problem at least during normal frosting and excessive frosting.

ところで、室外熱交換器に着霜していないにも
拘わらず、中央処理装置が除霜を要するものと判
断して、冷媒サイクルを切換えるとともに室外側
送風機を停止させた場合には上述したように、タ
イマに設定された時間T2が経過する以前に、室
外熱交換器圧力pおよび圧縮機電流Iが許容値を
超え極めて危険な状態を呈する。
By the way, if the central processing unit determines that defrosting is required even though there is no frost on the outdoor heat exchanger, and switches the refrigerant cycle and stops the outdoor fan, as described above, , before the time T 2 set on the timer elapses, the outdoor heat exchanger pressure p and the compressor current I exceed allowable values, creating an extremely dangerous situation.

この対策として、例えば、無着霜時の室外熱交
換器圧力p、または、圧縮機電流Iの上昇曲線を
予測し、これが許容範囲を超える以前、すなわち
T1時間でタイムアツプするもう1つのタイマを
設け、このタイマがタイムアツプする時刻t1にお
ける室内熱交換器温度Tが一定温度TLを超えて
いた場合に除霜停止信号を出力し、室外熱交換器
圧力pが許容圧力Pdhを超えないようにしている。
As a countermeasure for this, for example, the rising curve of the outdoor heat exchanger pressure p or the compressor current I in the non-frosting state is predicted, and before this exceeds the permissible range,
Another timer that times up at T 1 hour is provided, and if the indoor heat exchanger temperature T exceeds a certain temperature T L at time t 1 when this timer times up, a defrost stop signal is output and the outdoor heat exchanger is activated. The chamber pressure p is kept from exceeding the allowable pressure Pdh .

〔背景技術の問題点〕[Problems with background technology]

斯かる従来のヒートポンプ式空気調和機の制御
装置にあつては、時刻t1における室内熱交換器温
度Tが一定温度TL以上であるときに除霜を停止
して、無着霜時に起こる室外熱交換器圧力pの増
大を防いでいるが、第1図aからも明らかなよう
に、過大着霜時でも同様な作用が行なわれること
になる。このことは、さらに除霜動作を継続しな
ければならないにも拘わらず、その途中で除霜を
停止することに他ならず、これによつて十分な除
霜ができないという欠点があつた。
In the case of such a conventional control device for a heat pump air conditioner, defrosting is stopped when the indoor heat exchanger temperature T at time t1 is above a certain temperature T L , and the This prevents the heat exchanger pressure p from increasing, but as is clear from FIG. 1a, the same effect occurs even in the event of excessive frost formation. This means that even though the defrosting operation must be continued, the defrosting operation must be stopped midway through, and as a result, sufficient defrosting cannot be achieved.

また、着霜量の相異を考慮して、タイマの設定
時間T、および除霜されたか否かの一様の目安と
される一定温度TLが決められるが、これらを最
適に選定することがかなり難しいと言う欠点があ
つた。
In addition, taking into account differences in the amount of frost, the timer setting time T and the constant temperature T L , which is a uniform guide to whether or not defrosting has occurred, are determined, but these should be optimally selected. The drawback was that it was quite difficult.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされた
もので、着霜量が大きく異つた場合でも、室外熱
交換器圧力を許容範囲に保持し乍ら、確実な除霜
を行い得るヒートポンプ式空気調和機の制御装置
の提供を目的とする。
The present invention was made in order to eliminate the above-mentioned drawbacks, and even when the amount of frost formation differs greatly, the heat pump type air is capable of reliably defrosting while maintaining the outdoor heat exchanger pressure within an allowable range. The purpose is to provide a control device for harmonizers.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明のヒートポ
ンプ式空気調和機の制御装置は、冷媒循環用の圧
縮機駆動電動機の電流を検出する電流検出回路
と、室外熱交換器の許容冷媒圧力の上限に対応し
た電動機電流を設定する設定回路と、この設定回
路の出力と電流検出回路の出力とを比較し、検出
電流が設定電流を超えたとき、過大着霜に対応し
て定めた時間の経過に優先して除霜を終了させる
比較回路とを備えたものである。
In order to achieve the above object, the control device for a heat pump type air conditioner of the present invention includes a current detection circuit that detects the current of the compressor drive motor for refrigerant circulation, and an upper limit of the allowable refrigerant pressure of the outdoor heat exchanger. A setting circuit that sets the corresponding motor current is compared, and the output of this setting circuit and the output of the current detection circuit are compared, and when the detected current exceeds the set current, it It is equipped with a comparison circuit that finishes defrosting with priority.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の一実施例に
ついて説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第2図は本発明に係るヒートポンプ式空気調和
機の制御装置の構成を示すブロツク図で、室温お
よび室内熱交換器の温度を検出する温度センサ1
の出力信号がA−D変換器2を介して中央処理装
置3に取り込まれる。この中央処理装置3は上述
した設定時間T2を有するタイマの機能をも具え
ており、室外熱交換器の着霜量を判断するととも
に、除霜を要すると判断したときに除霜開始信号
を、除霜を開始してからT2時間を経過した時点
に除霜停止信号をそれぞれリレードライバ4を介
して四方弁リレー5および室外フアンリレー6に
加えている。ここで、四方弁リレー5は冷媒サイ
クルを切換える図示しない四方弁を動作させるも
の、室外フアンリレー6は室外熱交換器に通風す
る図示しない室外側送風機を動作させるものであ
る。
FIG. 2 is a block diagram showing the configuration of the control device for the heat pump type air conditioner according to the present invention, in which the temperature sensor 1 detects the room temperature and the temperature of the indoor heat exchanger.
The output signal is taken into the central processing unit 3 via the A-D converter 2. This central processing unit 3 also has the function of a timer with the above-mentioned set time T2 , and not only determines the amount of frost on the outdoor heat exchanger, but also issues a defrost start signal when it is determined that defrosting is necessary. When T 2 hours have passed since the start of defrosting, a defrost stop signal is applied to the four-way valve relay 5 and the outdoor fan relay 6 via the relay driver 4, respectively. Here, the four-way valve relay 5 operates a four-way valve (not shown) that switches the refrigerant cycle, and the outdoor fan relay 6 operates an outdoor blower (not shown) that ventilates the outdoor heat exchanger.

従来は略これだけの要素により、しかも、設定
時間T1を有するタイマの機能を中央処理装置3
に持たせて除霜制御していたが、ここでは新た
に、圧縮機電流Iを検出するとともに、この電流
値に応じた直流電圧信号を発生する電流検出回路
10と、室外熱交換器圧力が許容範囲を超えたと
きの圧縮機電流に対応した直流電圧信号を発生す
るレベル設定回路20と、これらの直流電圧信号
を相互に比較し、電流検出回路10の信号レベル
がレベル設定回路20の信号レベルよりも大きく
なつたときに除霜停止信号を出力する比較回路3
0とが付加されている。
Conventionally, the function of a timer with a set time T 1 was implemented by the central processing unit 3 using approximately these elements.
However, in this case, a current detection circuit 10 that detects the compressor current I and generates a DC voltage signal according to this current value, and a current detection circuit 10 that detects the compressor current I and generates a DC voltage signal according to this current value, and an outdoor heat exchanger pressure A level setting circuit 20 generates a DC voltage signal corresponding to the compressor current when the allowable range is exceeded, and these DC voltage signals are compared with each other, and the signal level of the current detection circuit 10 is determined to be equal to the signal of the level setting circuit 20. Comparison circuit 3 that outputs a defrost stop signal when the voltage exceeds the level
0 is added.

この中、電流検出回路10は、圧縮機電流に比
例した電流を抽出し得る変流器11と、この変流
器の電流を全波整流する整流回路12と、この整
流回路12の出力を平滑するコンデンサ14,1
5および抵抗13と、変流器11の出力電圧を安
定化させる抵抗16および整流回路12の出力電
圧を安定化させる抵抗17とで形成されている。
Among these, the current detection circuit 10 includes a current transformer 11 that can extract a current proportional to the compressor current, a rectifier circuit 12 that performs full-wave rectification of the current of this current transformer, and a rectifier circuit 12 that smoothes the output of this rectifier circuit 12. capacitor 14,1
5 and a resistor 13, a resistor 16 that stabilizes the output voltage of the current transformer 11, and a resistor 17 that stabilizes the output voltage of the rectifier circuit 12.

また、レベル設定回路20は抵抗21および2
2を直列接続し、この直列回路の両端間に図示し
ない電源の直流電圧を印加することによつて、抵
抗21および22の接続点aに直流電圧を発生さ
せるように講じられている。
The level setting circuit 20 also includes resistors 21 and 2.
By connecting the resistors 21 and 22 in series and applying a DC voltage from a power source (not shown) across the series circuit, a DC voltage is generated at the connection point a between the resistors 21 and 22.

次に、比較回路30は演算増幅器31と、この
演算増幅器31の出力端子および非反転入力端子
(+)間に接続された抵抗32と、一端が演算増
幅器31の非反転入力端子(+)に接続され、他
端が上記電流検出回路10およびレベル設定回路
の20の負極端子と共通に接地された可変抵抗3
2とで形成され、演算増幅器31の反転入力端子
(−)が抵抗21および22の接続点aに接続さ
れている。
Next, the comparison circuit 30 includes an operational amplifier 31, a resistor 32 connected between the output terminal and the non-inverting input terminal (+) of the operational amplifier 31, and one end connected to the non-inverting input terminal (+) of the operational amplifier 31. a variable resistor 3 which is connected and whose other end is commonly grounded with the negative terminals of the current detection circuit 10 and the level setting circuit 20;
2, and the inverting input terminal (-) of the operational amplifier 31 is connected to the connection point a of the resistors 21 and 22.

上記の如く構成された本発明のヒートポンプ式
空気調和機の制御回路の作用を以下に説明する。
The operation of the control circuit for the heat pump type air conditioner of the present invention configured as described above will be explained below.

先ず、中央処理装置3は温度センサ1の出力信
号に基いて着霜量を演算するとともに、除霜を要
する状態になると四方弁リレー5および室外フア
ンリレー6を動作せしめて除霜を開始し、T2
間(第1図)を経過した時点で四方弁リレー5お
よび室外フアンリレー6を復帰せしめて除霜を停
止する。
First, the central processing unit 3 calculates the amount of frost based on the output signal of the temperature sensor 1, and when a state requiring defrosting is reached, it operates the four-way valve relay 5 and the outdoor fan relay 6 to start defrosting. When T 2 hours (Fig. 1) have elapsed, the four-way valve relay 5 and the outdoor fan relay 6 are reset to stop defrosting.

次に、電流検出回路10は、除霜中の圧縮機電
流I(第1図)を変流器11によつて検出し、こ
の検出信号を整流回路12により全波整流し、続
いて抵抗13およびコンデンサ14,15よりな
る回路により平滑することによつて、抵抗13と
コンデンサ15との接続点bに圧縮機電流に応じ
た直流電圧信号を発生させるとともに、この直流
電圧信号を演算増幅器31の非反転入力端子
(+)に加える。
Next, the current detection circuit 10 detects the compressor current I (FIG. 1) during defrosting with the current transformer 11, full-wave rectifies this detection signal with the rectifier circuit 12, and then performs full-wave rectification with the resistor 13. By smoothing with a circuit consisting of capacitors 14 and 15, a DC voltage signal corresponding to the compressor current is generated at the connection point b between the resistor 13 and the capacitor 15, and this DC voltage signal is applied to the operational amplifier 31. Add to non-inverting input terminal (+).

また、レベル設定回路20は、抵抗21および
22の接続点aに、室外交換器圧力pが許容圧力
Pdhを超えたときの圧縮機電流IHに対応する直流
電圧信号を発生させるとともに、この直流電圧信
号を演算増幅器31の反転入力端子(−)に加え
る。
In addition, the level setting circuit 20 has a connection point a between the resistors 21 and 22 with the outdoor exchanger pressure p set to the allowable pressure.
A DC voltage signal corresponding to the compressor current IH when it exceeds P dh is generated, and this DC voltage signal is applied to the inverting input terminal (-) of the operational amplifier 31.

さらに、比較回路30では、接続点aの電圧信
号を基準信号とし、接続点bの電圧信号レベルが
この基準信号レベルを超えたときに演算増幅器3
1の回路状態が反転するように可変抵抗32が調
整されており、この反転によつて演算増幅器31
の出力信号レベルが「L」から「H」に変化す
る。
Further, in the comparison circuit 30, the voltage signal at the connection point a is used as a reference signal, and when the voltage signal level at the connection point b exceeds this reference signal level, the operational amplifier 3
The variable resistor 32 is adjusted so that the circuit state of the operational amplifier 31 is inverted.
The output signal level of changes from "L" to "H".

中央処理装置3は、演算増幅器31の出力すな
わち比較回路30の出力が「L」から「H」に変
化したとき、これを除霜停止信号として受け、こ
の除霜停止信号を四方弁リレー5および室外フア
ンリレー6に加える。
When the output of the operational amplifier 31, that is, the output of the comparison circuit 30 changes from "L" to "H", the central processing unit 3 receives this as a defrost stop signal, and sends this defrost stop signal to the four-way valve relay 5 and Add to outdoor fan relay 6.

しかして、除霜中に、室外熱交換器圧力pが許
容圧力Pdhを超えるようなことがあれば、その瞬
間に除霜動作が解除され、室外熱交換器圧力pが
許容圧力Pdhよりも低い値を維持している場合に
は、タイマに設定されたT2時間後に除霜動作が
解除される。
If the outdoor heat exchanger pressure p exceeds the allowable pressure P dh during defrosting, the defrosting operation is canceled at that moment, and the outdoor heat exchanger pressure p becomes lower than the allowable pressure P dh . If T remains at a low value, the defrost operation will be canceled after T 2 hours set in the timer.

一方、外部熱交換器に過大着霜した場合でも、
室外熱交換器圧力が著しく増大しない限り、T2
時間を経過するまで除霜動作が継続されるため
に、確実な除霜が可能になる。
On the other hand, even if excessive frost builds up on the external heat exchanger,
T 2 unless the outdoor heat exchanger pressure increases significantly
Since the defrosting operation continues until the time elapses, reliable defrosting is possible.

なお、上記実施例では電流検出回路10および
レベル設定回路20がそれぞれ直流電圧信号を出
力するとともに、比較回路30がこれらの電圧信
号のレベルを比較しているが、電流値を比較し得
る比較回路を用いる場合には、電流検出回路10
およびレベル設定回路20として、それぞれ直流
電流信号を出力するものを用いることも可能であ
る。
In the above embodiment, the current detection circuit 10 and the level setting circuit 20 each output a DC voltage signal, and the comparison circuit 30 compares the levels of these voltage signals. When using the current detection circuit 10
As the level setting circuit 20, it is also possible to use one that outputs a DC current signal.

また、上記実施例では、中央処理装置3がタイ
マの機能を有するものについて説明したが、中央
処理装置3の外部にタイマ若しくはこれと同様な
機能を有するタイマ回路を設けても上述したと同
様な作用を行なわせることができる。
Further, in the above embodiment, the central processing unit 3 has a timer function, but even if a timer or a timer circuit having a similar function is provided outside the central processing unit 3, the same effect as described above can be obtained. It can be made to perform an action.

〔発明の効果〕〔Effect of the invention〕

以上の説明によつて明らかな如く、本発明のヒ
ートポンプ式空気調和機の制御装置によれば、着
霜量が大きく異つた場合でも、室外熱交換器圧力
を許容範囲に保持し乍ら、確実に除霜することが
できる。
As is clear from the above explanation, according to the control device for a heat pump air conditioner of the present invention, even when the amount of frost formation varies greatly, the outdoor heat exchanger pressure can be maintained within the permissible range and can be reliably maintained. Can be defrosted.

また、従来装置にあつては、着霜量の相異を考
慮して、第1図に示した時間T1および除霜され
たか否かの一様の目安とされる一定温度TLを決
定していたが、本発明では過大着霜時を想定した
時間T2および室外熱交換器の許容圧力に対応す
る圧縮機電流を設定するだけでよく、空気調和機
据付時の調整が著しく単純化される。
In addition, in the case of conventional equipment, the time T 1 shown in Fig. 1 and the constant temperature T L , which is a uniform guide to whether or not defrosting has been completed, are determined by taking into account the difference in the amount of frost formed. However, with the present invention, it is only necessary to set the compressor current corresponding to the time T 2 assuming excessive frost formation and the allowable pressure of the outdoor heat exchanger, which greatly simplifies the adjustment when installing the air conditioner. be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式空気調和機の制
御装置の概要および作用を説明するためのタイム
チヤート、第2図は本発明に係るヒートポンプ式
空気調和機の制御装置の一実施例の構成を示すブ
ロツク図である。 1……温度センサ、2……A−D変換器、3…
…中央処理装置、4……リレードライバ、5……
四方弁リレー、6……室外フアンリレー、10…
…電流検出回路、11……変流器、12……整流
回路、13,16,17,21,22,33……
抵抗、20……レベル設定回路、30……比較回
路、31……演算増幅器、32……可変抵抗。
FIG. 1 is a time chart for explaining the outline and operation of a conventional control device for a heat pump type air conditioner, and FIG. 2 shows the configuration of an embodiment of the control device for a heat pump type air conditioner according to the present invention. It is a block diagram. 1...Temperature sensor, 2...A-D converter, 3...
...Central processing unit, 4...Relay driver, 5...
Four-way valve relay, 6...Outdoor fan relay, 10...
... Current detection circuit, 11 ... Current transformer, 12 ... Rectifier circuit, 13, 16, 17, 21, 22, 33 ...
Resistor, 20... Level setting circuit, 30... Comparison circuit, 31... Operational amplifier, 32... Variable resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 室内温度および室内熱交換器温度に基づいて
室外熱交換器の着霜量を判断し、熱交換を阻害す
る着霜量に到達すると除霜を開始し、過大着霜に
対応して定めた時間が経過すると除霜を終了する
ヒートポンプ式空気調和機の制御装置において、
冷媒循環用の圧縮機駆動電動機の電流を検出する
電流検出回路と、前記室外熱交換器の許容冷媒圧
力の上限に対応した電動機電流を設定する設定回
路と、この設定回路の出力と前記電流検出回路の
出力とを比較し、検出電流が設定電流を超えたと
き、前記過大着霜に対応して定めた時間の経過に
優先して除霜を終了させる比較回路とを備えたこ
とを特徴とするヒートポンプ式空気調和機の制御
装置。
1 The amount of frost on the outdoor heat exchanger is determined based on the indoor temperature and the temperature of the indoor heat exchanger, and when the amount of frost that inhibits heat exchange is reached, defrosting is started. In a control device for a heat pump air conditioner that ends defrosting after a certain period of time,
a current detection circuit that detects the current of a compressor drive motor for refrigerant circulation; a setting circuit that sets a motor current corresponding to the upper limit of allowable refrigerant pressure of the outdoor heat exchanger; and an output of this setting circuit and the current detection circuit. and a comparison circuit that compares the detected current with the output of the circuit and, when the detected current exceeds the set current, terminates defrosting with priority over the elapse of a predetermined time in response to the excessive frost formation. A control device for a heat pump type air conditioner.
JP57089263A 1982-05-26 1982-05-26 Controller for heat pump type air conditioner Granted JPS58205064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089263A JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089263A JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS58205064A JPS58205064A (en) 1983-11-29
JPH0230431B2 true JPH0230431B2 (en) 1990-07-06

Family

ID=13965863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089263A Granted JPS58205064A (en) 1982-05-26 1982-05-26 Controller for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS58205064A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190687A (en) * 1984-03-09 1985-09-28 Sanyo Electric Co Ltd Refrigeration cycle operation control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511872A (en) * 1978-07-12 1980-01-28 Takeshi Yoshikawa Method of making heattinsulating multilayer leaf with brilliant surface
JPS573958A (en) * 1980-06-04 1982-01-09 Kankiyou Kaihatsu Kouhan Kk Wall ground application and device
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511872A (en) * 1978-07-12 1980-01-28 Takeshi Yoshikawa Method of making heattinsulating multilayer leaf with brilliant surface
JPS573958A (en) * 1980-06-04 1982-01-09 Kankiyou Kaihatsu Kouhan Kk Wall ground application and device
JPS5714155A (en) * 1980-06-27 1982-01-25 Mitsubishi Electric Corp Heat pump type airconditioner

Also Published As

Publication number Publication date
JPS58205064A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US4196462A (en) Protective control circuit for induction motors
US6594554B1 (en) Apparatus and method for intelligent control of the fan speed of air-cooled condensers
US5054294A (en) Compressor discharge temperature control for a variable speed compressor
US4850200A (en) Refrigerating circuit device for air conditioning apparatus and control method thereof
US4215554A (en) Frost control system
JPH04257674A (en) Controlling device for refrigerator
JP3477013B2 (en) Air conditioner
KR100353025B1 (en) heating over-load control method of air conditoiner
JPH026990B2 (en)
US4735058A (en) Air conditioning apparatus
JP2000295839A (en) Power supply
JP3868265B2 (en) Air conditioner
JPH0230431B2 (en)
US4254633A (en) Control apparatus for an air conditioner
JPH0260942B2 (en)
JPH09273799A (en) Air conditioner
WO2008150816A1 (en) Air conditioning methods and apparatus
JPS61272555A (en) Air conditioner
JPH01240781A (en) Control method for air conditioner
GB2148553A (en) Heat pump system
JPH0157263B2 (en)
JPH0317165Y2 (en)
JPH0222600Y2 (en)
JPS6315715Y2 (en)
JPS63233257A (en) Compressor protective device for air conditioner