JPS6315715Y2 - - Google Patents

Info

Publication number
JPS6315715Y2
JPS6315715Y2 JP1983041485U JP4148583U JPS6315715Y2 JP S6315715 Y2 JPS6315715 Y2 JP S6315715Y2 JP 1983041485 U JP1983041485 U JP 1983041485U JP 4148583 U JP4148583 U JP 4148583U JP S6315715 Y2 JPS6315715 Y2 JP S6315715Y2
Authority
JP
Japan
Prior art keywords
temperature
indoor
heat exchanger
compressor
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983041485U
Other languages
Japanese (ja)
Other versions
JPS59148542U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4148583U priority Critical patent/JPS59148542U/en
Publication of JPS59148542U publication Critical patent/JPS59148542U/en
Application granted granted Critical
Publication of JPS6315715Y2 publication Critical patent/JPS6315715Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案は、能力可変圧縮機を備えたヒートポ
ンプ式の空気調和機に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a heat pump type air conditioner equipped with a variable capacity compressor.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、空気調和機にあつては、高圧圧力の異
常上昇に対して圧縮機を始めとする冷凍サイクル
機器の安全保護を計るため、高圧圧力に応動する
高圧スイツチを設け、高圧圧力が一定値以上にな
ると圧縮機の運転を停止するようにしている。
In general, air conditioners are equipped with a high-pressure switch that responds to high pressure in order to protect the compressor and other refrigeration cycle equipment from abnormal increases in high pressure. When this happens, compressor operation is stopped.

しかしながら、たとえば暖房運転時、外気温度
が高くしかも室内温度も高いような高負荷状態で
は高圧圧力の上昇が著じるしく、頻繁に高圧スイ
ツチが作動してその都度運転が停止してしまうと
いう欠点があつた。
However, during heating operation, for example, under high load conditions when the outside air temperature is high and the indoor temperature is also high, the high pressure rises significantly, and the high pressure switch is activated frequently, causing the operation to stop each time. It was hot.

そこで、能力可変圧縮機を備えた空気調和機の
場合、暖房運転時、高圧圧力に対応する凝縮温度
を検知し、凝縮温度が一定値T1以下であれば室
内温度と室内設定温度との差に応じて圧縮機の能
力を変化させ、これにより負荷に見合つた最適な
運転を行なうとともに、凝縮温度が上昇して設定
値T2(>T1)を越えると一定時間ごとに圧縮機の
能力を順次低下せしめて凝縮温度が設定値T2
下となるようにし、これにより高圧圧力の上昇を
極力抑えて高圧スイツチの頻繁な作動を防ぐよう
にしたものがある。
Therefore, in the case of an air conditioner equipped with a variable capacity compressor, during heating operation, the condensing temperature corresponding to the high pressure is detected, and if the condensing temperature is below a certain value T1 , the difference between the indoor temperature and the indoor set temperature is detected. The capacity of the compressor is changed according to the load, and the capacity of the compressor is changed at regular intervals when the condensing temperature rises and exceeds the set value T 2 (>T 1 ). There is a system in which the condensing temperature is lowered successively to a set value T2 or less, thereby suppressing the increase in high pressure as much as possible and preventing frequent activation of the high pressure switch.

しかして、この場合、凝縮温度をサーミスタな
どの温度センサで検知するようにしているが、高
負荷状態での暖房運転では凝縮温度の急な上昇に
対して温度センサの検知温度がうまく追従できな
いという問題がある。すなわち、第1図は高負荷
状態で暖房運転を行なつた場合の高圧圧力の変
化、凝縮温度の変化、および温度センサの検知温
度の変化をそれぞれ示したものであり、実際の凝
縮温度が設定値T2を越えても検知温度はまだ設
定値T2に達していないことが判かる。したがつ
て、圧縮機の能力を低下させるいわゆるレリース
制御の遅れを生じ、その遅れ分だけ高圧圧力が上
昇を続け、結局は高圧スイツチが作動して運転が
停止してしまうことがある。なお、第1図におい
て、設定値T1とT2との間にはある程度の温度差
をもたせているが、これは圧縮機能力の急激な変
化を防ぐためのものである。
However, in this case, the condensation temperature is detected by a temperature sensor such as a thermistor, but in heating operation under high load conditions, the temperature detected by the temperature sensor cannot track the sudden rise in condensation temperature. There's a problem. In other words, Figure 1 shows changes in high pressure, changes in condensing temperature, and changes in temperature detected by the temperature sensor when heating operation is performed under high load conditions. It can be seen that even after exceeding the value T2 , the detected temperature has not yet reached the set value T2 . Therefore, there is a delay in so-called release control that reduces the capacity of the compressor, and the high pressure continues to rise by the amount of delay, which may eventually cause the high pressure switch to operate and stop the operation. In FIG. 1, there is a certain degree of temperature difference between the set values T 1 and T 2 , but this is to prevent sudden changes in the compression function.

〔考案の目的〕[Purpose of invention]

この考案は上記のような事情に鑑みてなされた
もので、その目的とするところは、高圧スイツチ
の頻繁な作動を防ぐことができ、しかも省エネル
ギ効果をも得ることができる空気調和機を提供す
ることにある。
This idea was made in view of the above circumstances, and its purpose is to provide an air conditioner that can prevent frequent activation of the high pressure switch and also achieve energy saving effects. It's about doing.

〔考案の概要〕[Summary of the idea]

この考案は、暖房運転時、室内熱交温度センサ
の検知温度が設定値T1以下であれば室内温度と
室内設定温度との差に応じて圧縮機の能力を変化
させ、室内熱交温度センサの検知温度が設定値
T1とT2との間に至るとその時点の圧縮機の能力
を保持し、室内熱交温度センサの検知温度が設定
値T2以上であれば圧縮機の能力を一定時間ごと
に順次低下せしめるもので、設定値T1とT2との
間で圧縮機の能力を保持することにより、高圧圧
力の上昇を抑制するとともに凝縮温度の変化に対
して室内熱交温度センサの検知温度を十分に追従
させるものである。
During heating operation, if the temperature detected by the indoor heat exchanger temperature sensor is below the set value T1 , the compressor capacity is changed according to the difference between the indoor temperature and the indoor set temperature, and the indoor heat exchanger temperature sensor The detected temperature is the set value
When the temperature reaches between T 1 and T 2 , the compressor capacity at that point is maintained, and if the temperature detected by the indoor heat exchanger temperature sensor is higher than the set value T 2 , the compressor capacity is gradually reduced at regular intervals. By maintaining the compressor capacity between the set values T 1 and T 2 , it is possible to suppress the rise in high pressure and to ensure that the temperature detected by the indoor heat exchanger temperature sensor is sufficient against changes in condensing temperature. It is made to follow.

〔考案の実施例〕[Example of idea]

以下、この考案の一実施例について図面を参照
して説明する。
An embodiment of this invention will be described below with reference to the drawings.

第2図に示すように、能力可変圧縮機1、四方
弁2、室外熱交換器3、減圧装置たとえば膨張弁
4と逆止弁5,6,7,8とのブリツジ回路、お
よび室内熱交換器9などが順次連通され、ヒート
ポンプ式冷凍サイクルが構成される。こうして、
冷房運転時は図示実線矢印の方向に冷媒が流れ、
暖房運転時は四方弁2が切換わることにより図示
破線矢印の方向に冷媒が流れる。上記室外熱交換
器3には室外熱交換温度センサ(たとえばサーミ
スタ)10が取付けられる。室内熱交換器9には
室内熱交温度センサ11および吸込空気温度セン
サ12が取付けられる。また、圧縮機1の冷媒吐
出口に連通された高圧側配管には高圧スイツチ1
3が取付けられる。そして、室外熱交換器3の近
傍には室外フアン14が配設され、室内熱交換器
9の近傍には室内フアン15が配設される。
As shown in FIG. 2, a variable capacity compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing device such as a bridge circuit including an expansion valve 4 and check valves 5, 6, 7, 8, and an indoor heat exchanger are shown. The heat pump type refrigeration cycle is constructed by sequentially communicating the containers 9 and the like. thus,
During cooling operation, the refrigerant flows in the direction of the solid arrow in the diagram.
During heating operation, the four-way valve 2 is switched so that the refrigerant flows in the direction of the dashed arrow in the figure. An outdoor heat exchange temperature sensor (for example, a thermistor) 10 is attached to the outdoor heat exchanger 3. An indoor heat exchanger temperature sensor 11 and a suction air temperature sensor 12 are attached to the indoor heat exchanger 9. In addition, a high pressure switch 1 is connected to the high pressure side pipe connected to the refrigerant discharge port of the compressor 1.
3 is installed. An outdoor fan 14 is provided near the outdoor heat exchanger 3, and an indoor fan 15 is provided near the indoor heat exchanger 9.

第3図は制御回路である。20は室外ユニツト
に設けられる室外側制御部で、この室外側制御部
20は三相交流電源21のR,T相に接続され
る。そして、室外側制御部20には四方弁2の励
磁コイル2C、室外熱交温度センサ10、高圧ス
イツチ13、室外フアン14のフアンモータ14
Mなどが接続される。一方、22は室内ユニツト
に設けられる室内側制御部で、この室内側制御部
22は渡り線23a,23bを介して室外側制御
部20の電源ラインに接続される。そして、室内
側制御部22には室内熱交温度センサ11、吸込
空気温度センサ12、室外フアン14のフアンモ
ータ14M、運転操作部24などが接続される。
なお、室内側制御部22と室外側制御部20との
間にはたとえばシリアル転送方式による制御信号
供給用の渡り線25が接続される。
FIG. 3 shows the control circuit. Reference numeral 20 denotes an outdoor control section provided in the outdoor unit, and this outdoor control section 20 is connected to R and T phases of a three-phase AC power source 21. The outdoor controller 20 includes an excitation coil 2C of the four-way valve 2, an outdoor heat exchanger temperature sensor 10, a high pressure switch 13, and a fan motor 14 of the outdoor fan 14.
M etc. are connected. On the other hand, 22 is an indoor control section provided in the indoor unit, and this indoor control section 22 is connected to the power supply line of the outdoor control section 20 via crossover wires 23a and 23b. The indoor heat exchanger temperature sensor 11, the intake air temperature sensor 12, the fan motor 14M of the outdoor fan 14, the operation control section 24, and the like are connected to the indoor control section 22.
Note that a crossover wire 25 for supplying control signals using, for example, a serial transfer method is connected between the indoor side control section 22 and the outdoor side control section 20.

また、電源21には整流回路26を介してイン
バータ回路27が接続され、このインバータ回路
27の出力端には圧縮機1の駆動モータ1Mが接
続される。インバータ回路27は、室外側制御部
20に接続されており、整流回路26からの直流
電力を室外側制御部20からの指令に応じた周波
数および電圧レベルの交流電力に変換し、それを
圧縮機モータ1Mへ供給するものである。したが
つて、インバータ回路27の出力の周波数および
電圧レベルが変化すると、それに伴なつて圧縮機
モータ1Mの回転数が変化し、圧縮機1の能力が
変化するようになつている。
Further, an inverter circuit 27 is connected to the power source 21 via a rectifier circuit 26, and the drive motor 1M of the compressor 1 is connected to the output end of the inverter circuit 27. The inverter circuit 27 is connected to the outdoor control unit 20, converts the DC power from the rectifier circuit 26 into AC power at a frequency and voltage level according to the command from the outdoor control unit 20, and transfers it to the compressor. It is supplied to motor 1M. Therefore, when the frequency and voltage level of the output of the inverter circuit 27 change, the rotation speed of the compressor motor 1M changes accordingly, and the capacity of the compressor 1 changes.

しかして、室内制御部22および室外制御部2
0において、暖房運転時、室内熱交温度センサ1
1の検知温度が設定値T1以下のときに動作し室
内温度と室内設定温度との差に応じて圧縮機1の
能力を変化させる手段、暖房運転時、室内熱交温
度センサ11の検知温度が設定値T1とT2(>T1
との間のときに動作しその時点の圧縮機1の能力
を保持する手段、暖房運転時、室内熱交温度セン
サ11の検知温度が設定値T2以上のときに動作
し圧縮機1の能力を一定時間ごとに順次低下せし
める手段がそれぞれ構成されている。
Therefore, the indoor control section 22 and the outdoor control section 2
0, during heating operation, indoor heat exchanger temperature sensor 1
A means for changing the capacity of the compressor 1 according to the difference between the indoor temperature and the indoor set temperature, which operates when the detected temperature of the compressor 1 is lower than the set value T1, and the temperature detected by the indoor heat exchanger temperature sensor 11 during heating operation. are set values T 1 and T 2 (>T 1 )
A means for maintaining the current capacity of the compressor 1 during heating operation, which operates when the temperature detected by the indoor heat exchanger temperature sensor 11 is equal to or higher than the set value T2 , and maintains the capacity of the compressor 1 at that time. Means for sequentially lowering the value at fixed time intervals is respectively configured.

次に、上記のような構成において第4図を参照
しながら動作を説明する。
Next, the operation of the above configuration will be explained with reference to FIG.

いま、外気温度が高くしかも室内温度も高いよ
うな高負荷状態で暖房運転が開始されるものとす
る。しかして、運転が開始されると、高圧圧力が
急上昇し、それに伴なつて室内熱交換器9におけ
る凝縮温度も急上昇する。このとき、室内熱交温
度センサ11の検知温度は設定値T1以下である
ため、室内側制御部22は吸込空気温度センサ1
2で検知される室内温度と操作部24で予め設定
された室内設定温度とを比較し、その温度差に応
じた圧縮機1の能力を設定するべく室外側制御部
20へ指令を転送する。室外側制御部20は、転
送されてくる指令に基づいてインバータ回路27
を制御し、これにより圧縮機モータ1Mの回転数
を制御する。
It is now assumed that heating operation is started in a high load state where the outside air temperature is high and the indoor temperature is also high. When the operation is started, the high pressure rises rapidly, and the condensation temperature in the indoor heat exchanger 9 rises accordingly. At this time, since the temperature detected by the indoor heat exchanger temperature sensor 11 is below the set value T 1 , the indoor control section 22
The indoor temperature detected at 2 is compared with the indoor set temperature preset by the operation section 24, and a command is transferred to the outdoor control section 20 to set the capacity of the compressor 1 according to the temperature difference. The outdoor controller 20 controls the inverter circuit 27 based on the transferred command.
, thereby controlling the rotation speed of the compressor motor 1M.

室内熱交温度センサ11の検知温度が設定値
T1を越えて設定値T1とT2との間に至ると、室内
側制御部22はその時点の圧縮機1の能力を保持
するべく室外側制御部20へ指令を転送する。こ
うして、圧縮機1の能力は一定の状態に保持さ
れ、高圧圧力の上昇が抑制されるとともに、凝縮
温度の上昇も抑制され、この間に室内熱交温度セ
ンサ11の検知温度は凝縮温度に十分に追従する
ようになる。
The temperature detected by the indoor heat exchanger temperature sensor 11 is the set value
When the temperature exceeds T 1 and reaches between the set values T 1 and T 2 , the indoor controller 22 transfers a command to the outdoor controller 20 to maintain the current capacity of the compressor 1 . In this way, the capacity of the compressor 1 is maintained at a constant state, and a rise in high pressure is suppressed, and a rise in condensing temperature is also suppressed, and during this time, the temperature detected by the indoor heat exchanger temperature sensor 11 is sufficiently equal to the condensing temperature. will begin to follow.

そして、負荷の状況により凝縮温度が設定値
T1を越えると、それに追従して室内熱交温度セ
ンサ11の検知温度も設定値T1を越える。する
と、室内側制御部22は、圧縮機1の能力を一定
時間ごとに順次低下させるべく、室外側制御部2
0へ指令を転送する。こうして、インバータ回路
27から圧縮機モータ1Mへ供給される交流電力
の周波数および電圧レベルが一定時間ごとに順次
低下していき、圧縮機モータ1Mの回転数が徐々
に低下し、圧縮機1の能力が徐々に低下する。
Then, the condensing temperature changes to the set value depending on the load condition.
When T 1 is exceeded, the temperature detected by the indoor heat exchanger temperature sensor 11 also exceeds the set value T 1 . Then, the indoor side control section 22 causes the outdoor side control section 2 to sequentially reduce the capacity of the compressor 1 at regular intervals.
Transfer command to 0. In this way, the frequency and voltage level of the AC power supplied from the inverter circuit 27 to the compressor motor 1M gradually decrease at regular intervals, the rotation speed of the compressor motor 1M gradually decreases, and the capacity of the compressor 1 increases. gradually decreases.

室内熱交温度センサ11の検知温度が設定値
T2以下となつて設定値T2とT1との間に至ると、
室内側制御部22はその時点の圧縮機1の能力を
保持するべく室外側制御部20へ指令を転送す
る。以後、室内熱交温度センサ11の検知温度に
応じて同様の動作が繰り返される。
The temperature detected by the indoor heat exchanger temperature sensor 11 is the set value
When T becomes less than 2 and reaches between the set value T 2 and T 1 ,
The indoor side control section 22 transfers a command to the outdoor side control section 20 in order to maintain the capacity of the compressor 1 at that time. Thereafter, similar operations are repeated according to the temperature detected by the indoor heat exchanger temperature sensor 11.

このように、室内熱交温度センサ11の検知温
度が設定値T1とT2との間に至ると、その時点の
圧縮機1の能力を保持し、高圧圧力の上昇を抑制
するとともに、凝縮温度に対して室内熱交温度セ
ンサ11の検知温度を十分に追従させるようにし
たので、高圧スイツチの頻繁な作動を防ぐことが
できる。特に、高負荷状態では圧縮機1の能力が
低くてよいことを考えれば、設定値T1,T2間で
圧縮機1の能力を増大させずに保持することは省
エネルギ効果につながるものである。なお室内温
度が設定値に近づき能力を下げる条件となつた場
合は室内熱交換温度センサ11による制御に優先
して低下させるのは勿論である。
In this way, when the temperature detected by the indoor heat exchanger temperature sensor 11 reaches between the set values T1 and T2 , the capacity of the compressor 1 at that point is maintained, the increase in high pressure is suppressed, and the condensation Since the temperature detected by the indoor heat exchanger temperature sensor 11 is made to sufficiently follow the temperature, frequent activation of the high pressure switch can be prevented. In particular, considering that the capacity of the compressor 1 may be low under high load conditions, maintaining the capacity of the compressor 1 between the set values T 1 and T 2 without increasing it will lead to an energy saving effect. be. Note that when the indoor temperature approaches the set value and becomes a condition for lowering the capacity, it goes without saying that the control by the indoor heat exchange temperature sensor 11 is prioritized and the temperature is lowered.

なお、この考案は上記実施例に限定されるもの
ではなく、要旨を変えない範囲で種々変形実施可
能なことは勿論である。
It should be noted that this invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without changing the gist.

〔考案の効果〕[Effect of idea]

以上述べたようにこの考案によれば、高圧スイ
ツチの頻繁な作動を防ぐことができ、しかも省エ
ネルギ効果をも得ることができる空気調和機を提
供できる。
As described above, according to this invention, it is possible to provide an air conditioner that can prevent frequent activation of the high-pressure switch and can also achieve an energy-saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気調和機の動作を説明するた
めの図、第2図はこの考案の一実施例を示す冷凍
サイクルの構成図、第3図は同実施例における制
御回路の構成図、第4図は同実施例の動作を説明
するための図である。 1……能力可変圧縮機、11……室内熱交温度
センサ、13……高圧スイツチ、20……室外側
制御部、22……室内側制御部、27……インバ
ータ回路。
Fig. 1 is a diagram for explaining the operation of a conventional air conditioner, Fig. 2 is a block diagram of a refrigeration cycle showing an embodiment of this invention, and Fig. 3 is a block diagram of a control circuit in the same embodiment. FIG. 4 is a diagram for explaining the operation of the same embodiment. DESCRIPTION OF SYMBOLS 1... Variable capacity compressor, 11... Indoor heat exchanger temperature sensor, 13... High pressure switch, 20... Outdoor side control section, 22... Indoor side control section, 27... Inverter circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 能力可変圧縮機、四方弁、室外熱交換器、減圧
装置、室内熱交換器などを順次連通してなるヒー
トポンプ式冷凍サイクルと、この冷凍サイクルの
高圧圧力が一定値以上になると作動して運転を停
止させる高圧スイツチと、前記室内熱交換器に取
付けられた室内熱交温度センサと、暖房運転時、
前記室内熱交温度センサの検知温度が設定値T1
以下のときに動作し室内温度と室内設定温度との
差に応じて前記圧縮機の能力を変化させる手段
と、暖房運転時、前記室内熱交温度センサの検知
温度が設定値T1とT2(>T1)との間のときに動
作しその時点の前記圧縮機の能力を保持する手段
と、暖房運転時、前記室内熱交温度センサの検知
温度が設定値T2以上のときに動作し前記圧縮機
の能力を一定時間ごとに順次低下せしめる手段と
を具備したことを特徴とする空気調和機。
A heat pump type refrigeration cycle consists of a variable capacity compressor, a four-way valve, an outdoor heat exchanger, a pressure reduction device, an indoor heat exchanger, etc. that are connected in sequence, and when the high pressure of this refrigeration cycle exceeds a certain value, it is activated and starts operating. a high-pressure switch for stopping, an indoor heat exchanger temperature sensor attached to the indoor heat exchanger, and a heating operation;
The temperature detected by the indoor heat exchanger temperature sensor is the set value T 1
means for changing the capacity of the compressor according to the difference between the indoor temperature and the indoor set temperature ; and a means for changing the capacity of the compressor according to the difference between the indoor temperature and the indoor set temperature ; (>T 1 ) and maintains the current capacity of the compressor; and during heating operation, the means operates when the temperature detected by the indoor heat exchanger temperature sensor is equal to or higher than a set value T 2 . and means for sequentially reducing the capacity of the compressor at regular intervals.
JP4148583U 1983-03-23 1983-03-23 air conditioner Granted JPS59148542U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148583U JPS59148542U (en) 1983-03-23 1983-03-23 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148583U JPS59148542U (en) 1983-03-23 1983-03-23 air conditioner

Publications (2)

Publication Number Publication Date
JPS59148542U JPS59148542U (en) 1984-10-04
JPS6315715Y2 true JPS6315715Y2 (en) 1988-05-02

Family

ID=30172060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148583U Granted JPS59148542U (en) 1983-03-23 1983-03-23 air conditioner

Country Status (1)

Country Link
JP (1) JPS59148542U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678839B2 (en) * 1985-07-31 1994-10-05 株式会社東芝 Air conditioner
JP2600815B2 (en) * 1988-07-01 1997-04-16 ダイキン工業株式会社 Heat pump system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679615A (en) * 1979-12-04 1981-06-30 Takeda Chem Ind Ltd Toiletry
JPS5818046A (en) * 1981-07-24 1983-02-02 Toshiba Corp Current controlling method for air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54167541U (en) * 1978-05-16 1979-11-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679615A (en) * 1979-12-04 1981-06-30 Takeda Chem Ind Ltd Toiletry
JPS5818046A (en) * 1981-07-24 1983-02-02 Toshiba Corp Current controlling method for air conditioner

Also Published As

Publication number Publication date
JPS59148542U (en) 1984-10-04

Similar Documents

Publication Publication Date Title
JP3609286B2 (en) Air conditioning equipment
JPH026990B2 (en)
JPS6349640Y2 (en)
JPS6315715Y2 (en)
JP3526393B2 (en) Air conditioner
JP4259696B2 (en) Air conditioner test run judgment method
JPH07310959A (en) Air conditioner
JP2000097479A (en) Air conditioner
JP2001221484A (en) Air conditioner
JPS61246537A (en) Air conditioner
JPS59104051A (en) Air conditioner
JPH0222600Y2 (en)
JPH0639981B2 (en) Air conditioner
JPH0317165Y2 (en)
KR0177691B1 (en) Compresser operating control method
JP2001316046A (en) Air conditioner for elevator
JPS61272555A (en) Air conditioner
JPH0678839B2 (en) Air conditioner
JPH05346257A (en) Air conditioner
JPH0567858B2 (en)
JPH07305880A (en) Air conditioner
JPH0526426Y2 (en)
JPS61173046A (en) Air conditioner
JPS6278486A (en) Drive control circuit of compressor
KR19980028561A (en) Compressor Operation Control Method of Inverter Air Conditioner