JPS58204603A - Manufacture of waveguide - Google Patents

Manufacture of waveguide

Info

Publication number
JPS58204603A
JPS58204603A JP8755682A JP8755682A JPS58204603A JP S58204603 A JPS58204603 A JP S58204603A JP 8755682 A JP8755682 A JP 8755682A JP 8755682 A JP8755682 A JP 8755682A JP S58204603 A JPS58204603 A JP S58204603A
Authority
JP
Japan
Prior art keywords
waveguide
frp
melting point
metal
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8755682A
Other languages
Japanese (ja)
Other versions
JPS632481B2 (en
Inventor
Toshio Ono
利夫 小野
Hidetoshi Kitakoga
北古賀 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8755682A priority Critical patent/JPS58204603A/en
Publication of JPS58204603A publication Critical patent/JPS58204603A/en
Publication of JPS632481B2 publication Critical patent/JPS632481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides

Abstract

PURPOSE:To obtain easily a waveguide made of plastics reinforced with fiber with high quality, by using a core bar for the forming, made of an alloy having a low melting point applied with a metallic plating. CONSTITUTION:In manufacturing the waveguide made of plastic FRP reinforced with fiber, the core bar for the forming made of the alloy 4 having a low melting point is used. This core bar is applied with the metallic plating such as a copper film 2 and a gold film 3, and a cloth 5 made of carbon fibers is laminated on this plated surface while impregnating an epoxy resin. After it is heated and cured at a temperature below the melting point of the alloy 4, the alloy 4 only is heated and molten to obtain the waveguide made of the FRP having the copper film 2 and the gold film 3 at the inside surface of the waveguide. Thus, the waveguide made of FRP with high quality where the metal and the FRP are adhered strongly is obtained easily.

Description

【発明の詳細な説明】 この発明tよ、繊維強化ゲラステック(以下FRPと略
記する)製の導波管の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a waveguide made of fiber-reinforced gelastec (hereinafter abbreviated as FRP).

従来、航空、宇宙用に用いられる導波管は軽址であるこ
とが安来されるため、軽金j!14製のものが多く使用
されてきた。しかし、FRPが比強度。
Traditionally, waveguides used for aviation and space applications are known to be lightweight, so light metal j! 14 models have been widely used. However, FRP has specific strength.

比剛性が優れていること、および熱膨張係数が小さいこ
となどの理由から、最近、FRP製の導波管の開発が活
発化してきている。このようなFRP製の導波管では、
FRPの補強材として、たとえば屍*緻細のようなかな
シミ気伝導性の優れたものを使用したとしても、導波管
としての電気的要求特性を満足させることは困難であ、
!り、FRPの内面に金、鋼、銀などの導電性材料で層
を形成(メタライズ)させる必要がある。
Recently, FRP waveguides have been actively developed due to their excellent specific stiffness and low coefficient of thermal expansion. In such an FRP waveguide,
Even if we use a material with excellent air conductivity, such as Shishi*Sen, as a reinforcing material for FRP, it is difficult to satisfy the electrical requirements for a waveguide.
! Therefore, it is necessary to form (metallize) a layer of conductive material such as gold, steel, or silver on the inner surface of FRP.

FRP製の導波管にメタライズする方法としては、大別
して以下の4通りが考えられる。
The following four methods can be considered as methods for metalizing an FRP waveguide.

■ 無電解メッキ法・・・FRPに直接無電解メッキ(
通常は銅)1−行なう方法。
■ Electroless plating method: Electroless plating directly on FRP (
(Usually copper) 1-How to do it.

■ 気相メッキ法・・・FRPに金属の直接蒸着、イオ
ングレーティング、スパッタリングを行なう方法、 ■ 金属箔接着法・・・金属箔を接着剤でFRPに接着
するかまたは成形用芯金に金属箔を貼付けた後、FRP
′fr積層する方法、 ■ 金輌面転写法・・・芯金にアルミニウムを用い。
■ Vapor phase plating method: A method of directly vapor depositing metal on FRP, ion grating, or sputtering. ■ Metal foil adhesion method: Gluing metal foil to FRP with an adhesive or attaching metal foil to a core metal for molding. After pasting, FRP
'fr Lamination method: ■ Metal surface transfer method... Aluminum is used as the core metal.

この芯金に銅や金をメッキしてFRPを積層成形した後
、アルミニウムをアルカリ溶液で溶解する方法、 が考えられる。
One possible method is to plate this core metal with copper or gold, layer it with FRP, and then dissolve the aluminum in an alkaline solution.

しかし、上Me無電解メッキ、気相メッキ法では、引き
剥がし強度(90°T字型引き剥がし法)が0.5 k
g / cm以下というきわめて密着力の弱い%性しか
得られない欠点がある。また、金@箔接着法では、複雑
な形状の導波管に金属箔を貼ト1けるに当り、金属箔に
つなぎ目を設けずVC貼付に−jたり、均一にしわなど
を発生させずに貼付けることは非常に困難である。さら
に、上記金属面転写法でtま、芯金のアルミニウムをア
ルカリ溶液で溶解させる際にFRPがアルカリ溶液で侵
されたり、また芯金のメッキ面のピンホールからアルカ
リ溶液がFRP面に授透し、メッキ面とFRP面との間
に剥離が生じる危険性があるという欠点がある。これら
のため、航空、宇宙などの苛酷な環境条件下で十分に耐
えられるようなFRP製の4波官が得られていないのが
現状である。
However, in the upper Me electroless plating and vapor phase plating methods, the peel strength (90° T-shaped peel method) is 0.5 k.
It has the disadvantage that only an extremely weak adhesive strength of less than g/cm can be obtained. In addition, with the gold@foil adhesion method, when attaching metal foil to a waveguide with a complex shape, there is no seam in the metal foil, making it difficult to attach VC, and it is possible to apply it uniformly without creating wrinkles. It is very difficult to paste. Furthermore, when using the metal surface transfer method described above, the FRP may be attacked by the alkaline solution when the aluminum of the core metal is dissolved with an alkaline solution, or the alkaline solution may permeate the FRP surface through pinholes on the plated surface of the core metal. However, there is a drawback that there is a risk of peeling between the plated surface and the FRP surface. For these reasons, it is currently not possible to obtain a four-wave plate made of FRP that can sufficiently withstand the harsh environmental conditions of aviation, space, and the like.

この発明は、上述のような従来の製造方法の欠点を除去
しようとするものであって、FRP製の導波管の製造に
当り、導波管の成形用芯金として、積層成形されたF’
 RPが芯金溶融時に著しく変形させられたり、分解さ
せられない福度の融点を有する低融点合金、好ましくは
融点が200〜250℃の合金を用い、さらにこの低融
点合金の芯金に、電気伝導性の優れた銅、金、銀などの
金属をメッキし、この金属メッキ面にガラス繊維、炭素
繊維。
This invention aims to eliminate the drawbacks of the conventional manufacturing method as described above, and when manufacturing an FRP waveguide, a laminated FRP is used as a core metal for forming the waveguide. '
A low melting point alloy with a melting point that will not cause RP to be significantly deformed or decomposed during melting of the core metal, preferably an alloy with a melting point of 200 to 250°C, is used, and the core metal of this low melting point alloy is further heated with electricity. Plated with highly conductive metals such as copper, gold, and silver, and coated with glass fiber and carbon fiber on this metal plating surface.

アラミツド繊維などの繊維に熱硬化性樹脂を含浸させて
積層し、低融点合金の融点以下の温度で加熱、加圧して
硬化させた彼、芯金の低融点合金のみを加熱溶融させて
FRP製の導波管の内面に上記金属メッキ面を残すこと
により、電気的にも、金属とFRPとの密着強度の点か
らも、十分に満足できるFRP製の導波管の製造方法を
提供することを目的としている。
FRP is made by laminating fibers such as aramid fibers impregnated with thermosetting resin and hardening them by heating and pressurizing them at a temperature below the melting point of the low melting point alloy, and by heating and melting only the low melting point alloy of the core metal. To provide a method for manufacturing an FRP waveguide that is fully satisfactory both electrically and in terms of adhesion strength between the metal and the FRP by leaving the metal plated surface on the inner surface of the waveguide. It is an object.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例の製造方法で得た炭素繊
維強化プラスチック(以下CFRPと略記する)製の導
波管の概略断面図であシ、CFRPIの内面に、銅膜2
および銅の腐食防止用保護膜として金膜3を設けである
。第2図は、この実施例に使用される低融点合金(融点
120℃)4を導波管の内面形状に合せて加工した後、
銅2および金3をメッキした状態の芯金の概略断面図で
ある。。
FIG. 1 is a schematic cross-sectional view of a waveguide made of carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) obtained by a manufacturing method according to an embodiment of the present invention.
A gold film 3 is also provided as a protective film for preventing corrosion of copper. Figure 2 shows that after processing the low melting point alloy (melting point 120°C) 4 used in this example to match the inner shape of the waveguide,
FIG. 2 is a schematic cross-sectional view of a core metal plated with copper 2 and gold 3. FIG. .

そして、CFRP製の導波管を製造するにFよ、まず第
3図に示すように、第2図の芯金に炭素繊維からなる布
5をこれにエポキシ樹脂6を含浸させながら積層する。
To manufacture a CFRP waveguide, first, as shown in FIG. 3, a cloth 5 made of carbon fiber is laminated on the core metal shown in FIG. 2 while being impregnated with an epoxy resin 6.

次に、第4図に示すように、檀j−物上面に全面真空バ
ック成形用フィルム7を被ぶせて成形盤8に載せ、上記
フィルム7の周辺部をシール材9でシールして真空に引
き、オートクレー7’IOに入れて100℃程度に加熱
しかつ加圧して硬化させる。硬化後、オートクレーブか
ら取り出し、第5図に示すように恒温槽11に入れ、約
130℃の雰囲気中で芯金の低融点合金4のみ全溶融し
て、第1図に示すように、CFRPIO内面に銅膜2お
よび金膜3が残された導波管を得る。
Next, as shown in FIG. 4, the entire surface of the wooden piece is covered with a vacuum bag molding film 7, placed on a molding plate 8, the periphery of the film 7 is sealed with a sealing material 9, and the film 7 is placed in a vacuum. It is then placed in an autoclay 7'IO and heated to about 100°C and pressurized to harden it. After hardening, it is taken out of the autoclave and placed in a constant temperature bath 11 as shown in Figure 5, where only the low melting point alloy 4 of the core bar is completely melted in an atmosphere of about 130°C, and the inner surface of the CFRPIO is heated as shown in Figure 1. A waveguide in which the copper film 2 and gold film 3 are left is obtained.

上述したように、この発明の実施例の製造方法で製造し
たFRP製の4v管は、FRP成形に用いられるエポキ
シ樹脂でメタライズ層が接着されているため、従来の製
造方法の無電解メッキ法、気相メッキ法などのように硬
化後に金XをFRPに付着させたのとは異なり、十分な
密着強度が得られ、′まだ従来の製造方法のアルカリ溶
液を用いて芯金のアルミニウムのみを溶解する化学的な
金@l転写法とは異なシ、薬品によるFRPの劣化、F
 RPとメタライズ層間の劣化などの恐れもなく、きわ
めて高品質で、信頼性の高いFRP製の導波′#金膜製
造きる。また、上述した実施例では直線状の矩形導波管
について説明したが、この発明は、分岐した形状の導波
管、ねじり型の導波管、円形導波管、円形と矩形が結合
されたようなきわめて複雑な形状の導波管も容易に製造
でき、むしろこのような芯金の脱型が不可能な形状の導
波管などに非常に有効な製造方法である。
As mentioned above, the FRP 4V tube manufactured by the manufacturing method of the embodiment of the present invention has a metallized layer bonded with the epoxy resin used for FRP molding, so it cannot be used with the electroless plating method of the conventional manufacturing method. Unlike the vapor phase plating method, which attaches Gold Unlike the chemical gold transfer method, deterioration of FRP due to chemicals,
There is no fear of deterioration between the RP and metallized layers, and extremely high quality and reliable FRP waveguide gold films can be manufactured. Further, in the above embodiments, a linear rectangular waveguide was explained, but the present invention can be applied to a branched waveguide, a twisted waveguide, a circular waveguide, and a combination of circular and rectangular waveguides. It is possible to easily manufacture waveguides with such extremely complicated shapes, and it is a very effective manufacturing method for waveguides with shapes such as this in which the metal core cannot be removed from the mold.

以上説明したように、この発明の導波管の製造方法によ
れば、電気的にも、金属とF RPとの密  す。
As explained above, according to the method for manufacturing a waveguide of the present invention, the metal and FRP can be brought into close contact with each other electrically as well.

着強度についても十分に満足でき、高品質で信ね性の高
いFRP製の導波管を、その形状が複雑なものでも容易
に製造できるという効果が得られる。
It is possible to easily manufacture a high-quality and highly reliable FRP waveguide with a sufficiently satisfactory adhesion strength even if the shape is complex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の製造方法によって得た導
波管の概略縦断面図、第2図は低融点合金製芯金に銅お
よび金をメッキした芯金の概略縦断面図、第3図は芯金
にFRPを槓1d成形した状態を示す概略縦断面図、第
4図はFRP?f−積層成形しオートクレーブeC入れ
てFRP製の導波管を加熱加圧し硬化している状態を示
す概略横断面図、第5図は芯金の低融点合金を加熱溶融
している状態に示す概略横断面図である。 1・・・CFRP、2・・・銅膜、3・・・金膜、4・
−・芯金の低融点合金、5・・・炭素繊維布、6・・・
エポキシ樹脂。 7・・・真空バック成形用フィルム、8・・・成形盤、
9・・・シール材、10・・・オートクレーブ、11・
・・恒温槽O なお、図中同一符号は同一または相当部分を示代理人 
  葛  野  信  − 第1図 第2図 第3図 箔4図
FIG. 1 is a schematic vertical cross-sectional view of a waveguide obtained by a manufacturing method according to an embodiment of the present invention, FIG. 2 is a schematic vertical cross-sectional view of a core metal made of a low melting point alloy plated with copper and gold, Figure 3 is a schematic vertical cross-sectional view showing a state in which FRP is molded onto the core metal, and Figure 4 is FRP? f- A schematic cross-sectional view showing the state in which the FRP waveguide is heated and pressurized and hardened after being laminated and placed in an autoclave eC. Figure 5 shows the state in which the low melting point alloy of the core metal is heated and melted. It is a schematic cross-sectional view. 1... CFRP, 2... Copper film, 3... Gold film, 4...
-・Low melting point alloy of core bar, 5...Carbon fiber cloth, 6...
Epoxy resin. 7... Vacuum back molding film, 8... Molding machine,
9...Sealing material, 10...Autoclave, 11.
・・Thermostat O
Shin Kuzuno - Fig. 1 Fig. 2 Fig. 3 Fig. 4 Haku

Claims (1)

【特許請求の範囲】 緻細強化グラスチック製の導波Vを製造するに当り、導
波管の成形用芯金として融点の低い低融点合金を用い、
さらに低融点合金の芯金に金属をメッキし、この金属メ
ッキ面に無aiIまたは有機線維に樹脂を含反させて積
層し、上記低融点合金の融点以下の温贋で加熱加圧【7
て硬化させた後、芯金の低融点合金のみを加熱溶融させ
て線維強化グラスチック製の導波管の内面に上記金属メ
ンキ面を残して導波管とすることを特徴とする導波管の
製造方法。
[Claims] In manufacturing the waveguide V made of finely reinforced glass, a low melting point alloy with a low melting point is used as the core metal for forming the waveguide,
Furthermore, a metal is plated on a core metal of a low melting point alloy, and on this metal plated surface, aiI-free or organic fibers impregnated with resin are laminated, and heated and pressed at a temperature below the melting point of the low melting point alloy.
A waveguide characterized in that, after being hardened by heating, only the low melting point alloy of the core metal is heated and melted to leave the metal tinted surface on the inner surface of the fiber-reinforced glass waveguide to form a waveguide. manufacturing method.
JP8755682A 1982-05-24 1982-05-24 Manufacture of waveguide Granted JPS58204603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8755682A JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8755682A JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Publications (2)

Publication Number Publication Date
JPS58204603A true JPS58204603A (en) 1983-11-29
JPS632481B2 JPS632481B2 (en) 1988-01-19

Family

ID=13918256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8755682A Granted JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Country Status (1)

Country Link
JP (1) JPS58204603A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605607A (en) * 1983-06-24 1985-01-12 Nippon Telegr & Teleph Corp <Ntt> Flanged waveguide and its manufacture
JPS60185404A (en) * 1984-03-05 1985-09-20 Shimada Phys & Chem Ind Co Ltd Manufacture of waveguide
US5714920A (en) * 1992-06-01 1998-02-03 Poseidon Scientific Instruments Pty Ltd. Dielectrically loaded cavity resonator
CN108486570A (en) * 2018-01-26 2018-09-04 中国电子科技集团公司第三十八研究所 A kind of surface metalation processing method of the carbon fibre composite of thin-walled chamber fissured structure
KR20190004804A (en) * 2016-09-16 2019-01-14 데쿠세리아루즈 가부시키가이샤 Fuse element, fuse element, protection element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605607A (en) * 1983-06-24 1985-01-12 Nippon Telegr & Teleph Corp <Ntt> Flanged waveguide and its manufacture
JPH0574241B2 (en) * 1983-06-24 1993-10-18 Nippon Telegraph & Telephone
JPS60185404A (en) * 1984-03-05 1985-09-20 Shimada Phys & Chem Ind Co Ltd Manufacture of waveguide
JPH0234523B2 (en) * 1984-03-05 1990-08-03 Shimada Rika Kogyo Kk
US5714920A (en) * 1992-06-01 1998-02-03 Poseidon Scientific Instruments Pty Ltd. Dielectrically loaded cavity resonator
US5990767A (en) * 1992-06-01 1999-11-23 Poseidon Scientific Instruments Pty Ltd Dielectrically loaded cavity resonator
KR20190004804A (en) * 2016-09-16 2019-01-14 데쿠세리아루즈 가부시키가이샤 Fuse element, fuse element, protection element
CN108486570A (en) * 2018-01-26 2018-09-04 中国电子科技集团公司第三十八研究所 A kind of surface metalation processing method of the carbon fibre composite of thin-walled chamber fissured structure

Also Published As

Publication number Publication date
JPS632481B2 (en) 1988-01-19

Similar Documents

Publication Publication Date Title
US4407685A (en) Metallized film transfer process
US20110297315A1 (en) Method for producing resin-based composite
US2826524A (en) Method of forming wave guides
CN111674057A (en) Forming method of heat insulation preventing layer of cabin section
JPS58204603A (en) Manufacture of waveguide
WO2022028072A1 (en) Housing structure, preparation method therefor, and electronic device
JPH0439011A (en) Composite printed wiring board and its manufacture
JPS5946771B2 (en) Molding and electrodeposition method for fiber-reinforced plastic composites
CN113715367B (en) Tubular beam part and preparation process thereof
JPS62275727A (en) Manufacture of electromagnetic wave shielding molded item
JP2007035835A (en) Manufacturing method of inner tub of cryostat
US11277909B2 (en) Three-dimensional circuit assembly with composite bonded encapsulation
JPH0659004B2 (en) Waveguide manufacturing method
JPS6245315B2 (en)
JPH0419111A (en) Surface reinforcing method for molding tool made of concrete
CN216992830U (en) Anti-deformation injection molding mobile phone rear cover
JPH10278142A (en) Sandwich structure
JPS62256969A (en) Forming and electrodepositing method for fiber-reinforced type metallic composite material
JPS63175502A (en) Manufacture of waveguide
JPS62118611A (en) Manufacture of antenna reflection mirror panel
CN114872329A (en) Method for connecting integrally-formed composite material skin and framework
JPH0445601A (en) Manufacture of waveguide using fiber reinforced plastic as main material
JPS61287735A (en) Fiber reinforced plastic
JPH09294009A (en) Production of curved-surface antenna
JPS63224910A (en) Manufacture of plastic pipe whose inside is coated with metal