JPS582032A - Organic thin film formation - Google Patents

Organic thin film formation

Info

Publication number
JPS582032A
JPS582032A JP56099764A JP9976481A JPS582032A JP S582032 A JPS582032 A JP S582032A JP 56099764 A JP56099764 A JP 56099764A JP 9976481 A JP9976481 A JP 9976481A JP S582032 A JPS582032 A JP S582032A
Authority
JP
Japan
Prior art keywords
thin film
substrate
reactor
organic thin
plasma polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56099764A
Other languages
Japanese (ja)
Inventor
Tateo Kitamura
健郎 北村
Yasuhiro Yoneda
泰博 米田
Jiro Naito
内藤 次郎
Toshisuke Kitakoji
北小路 俊右
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56099764A priority Critical patent/JPS582032A/en
Publication of JPS582032A publication Critical patent/JPS582032A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Abstract

PURPOSE:To improve the adhesive force of an organic thin film onto a surface of a substrate, by exposing the surface of the substrate to the plasma of non thin film forming gas in a device used for plasma polymerization process before the process. CONSTITUTION:After the Si substrate is washed by ultrasonic wave with trichloroethylene, it is contained in a reactor for plasma polymerization for exhaust to a fixed value of vacuum degree in the reactor. CF4 gas is introduced into this reactor for a fixed internal pressure, then to impress high frequency power on the electrode in the reactor. Thereafter, the reactor is exhausted again to a fixed value of vacuum degree for plasma polymerization.

Description

【発明の詳細な説明】 本発明は有機薄膜形成法に関′シ、さらに詳しく述べる
と、形成される有機薄膜の基板に対する密着力がすぐれ
て良好な、プラズマ重合法による有機薄膜形成法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an organic thin film, and more specifically, to a method for forming an organic thin film by plasma polymerization, in which the formed organic thin film has excellent adhesion to a substrate.

各抛電子デバイス、光学部品等の製造において、基板上
への有機薄膜の形成方法のひとつとしてプラズマ重合法
が用いられていることは周知の通シである。プラズマ重
合法は、一般に1有機薄膜形成のための追歯なモノマー
のガスをグロー放電によシ励起し、よって、その七ツマ
−を重合させることからなっている。しかしながら、こ
のようにしてポリマーの有機薄膜を基板上に被着せしめ
た場合、従来の方法では基板に対する有機薄膜の密着力
が悪い場合が生ずることが判明している。かかる密着力
低下の原因としては、先ず、プラズマ重合工程に先がけ
て行なわれる基板表面の洗浄工が考えられる。なぜなら
、基板の表面に付着している各糧の汚染、たとえば、油
膜、塵埃、手垢ガどを除去するために例えばアセトンな
どのような有機溶剤による洗浄又は例えば界面活性剤な
どのような洗剤による洗浄が行なわれているけれども、
このような洗浄では付着した汚染を完全に除去し難いか
らである。基板の密着力低下は、すなわち、歩留りの低
下をも意味している。
It is well known that plasma polymerization is used as one of the methods for forming organic thin films on substrates in the manufacture of electronic devices, optical components, and the like. The plasma polymerization method generally consists of exciting a monomer gas by glow discharge to form an organic thin film, thereby polymerizing the monomer. However, it has been found that when an organic thin film of a polymer is deposited on a substrate in this manner, the adhesion of the organic thin film to the substrate may be poor in the conventional method. One of the possible causes of such a decrease in adhesion is the cleaning process performed on the substrate surface prior to the plasma polymerization process. This is because cleaning with an organic solvent such as acetone or a detergent such as a surfactant is necessary to remove contamination such as oil film, dust, hand grime, etc. adhering to the surface of the substrate. Although cleaning is being carried out,
This is because it is difficult to completely remove adhered contamination with such cleaning. A decrease in adhesion of the substrate also means a decrease in yield.

本発明者らは、上述のような欠点を伴なう従来の洗浄法
に代るかもしく癲それを補完し得る新しい前処理方法を
開発すべく研究金行なった結果、引き続くプラズマ重合
工程と同一の装置内で実施することのできる新しい夛イ
グの前処理方法を見い出した。この本発明による方法は
、基板上に有機薄膜を形成するためにプラズマ重合を行
なう場合、その重合工程に先がけて、但し、それと同一
の装置内で、前記基板の表thlを非薄膜形成性のガー
スのプラズマにさらすことからなっている。ζこで、′
非薄膜形成性”とは、その用語を本龜明細書において用
いた場合、基板の表面に薄膜を形成し得ないかもしくは
むしろその表面をエツチングし得ることを指してiる。
The present inventors have conducted research to develop a new pretreatment method that can replace and complement the conventional cleaning method, which has the drawbacks mentioned above. We have discovered a new pre-treatment method for chemical treatment that can be carried out in the same equipment. In the method according to the present invention, when plasma polymerization is performed to form an organic thin film on a substrate, prior to the polymerization step, but in the same apparatus, the surface thl of the substrate is treated with a non-thin film-forming material. Consists of exposure to Garth's plasma. ζHere,′
"Non-film-forming", as that term is used herein, refers to the inability to form a thin film on the surface of a substrate, or rather the ability to etch the surface.

本発明を実施する場合、グッズマ化するガスとしてプラ
ズマエツチング又はヌパッタエッt ン/に常用されて
いるエッチングガーxt−有利に利用することができる
(本発明による前処理工程は洗浄工程のなかに従来のグ
ッズマエッチング又#iヌパッタエッチングの思想を導
入したものであるから)。
When carrying out the present invention, an etching gas commonly used in plasma etching or nupatta etching can be advantageously used as a gas for converting into a product (the pretreatment process according to the present invention is included in the cleaning process). This is because it introduced the idea of Goodsma Etching and #i Nupatta Etching).

具体的には、非薄膜形成性のガスとして、cr4 。Specifically, cr4 is used as a non-thin film forming gas.

CFA  十 02  m  02 1  F2  e
  CxWb  r  ClF5  e  C11F1
゜CClF5 −’  CCl2F3   、  CC
l3  a  BCl2   e  PCti  @A
r  などt−あげることができる。このよりなガスは
、使用する基板の性質及び引き続いて実施するfラズT
重合工程の詳細などを考慮して、適宜選択して使用する
ことができる。例えば、CF4ガスの場合、シリコン基
板では、次のような反応が進行してシリコン基板表面の
清浄化とその表面の軽度の二ッ−チングとが同時に達成
されるものと考えられる。
CFA 10 02 m 02 1 F2 e
CxWb r ClF5 e C11F1
゜CClF5 −' CCl2F3, CC
l3 a BCl2 e PCti @A
You can give t- such as r. This specific gas depends on the nature of the substrate used and the subsequent f-raz temperature.
They can be appropriately selected and used in consideration of the details of the polymerization process. For example, in the case of CF4 gas, it is thought that the following reaction progresses on a silicon substrate to simultaneously achieve cleaning of the surface of the silicon substrate and slight bifurcation of the surface.

CF4→CFy、 十F 81  +  4F−+  SiF4   ↑さらに1
本発明において、基板の種類は少しも問題ではない。し
たがって、例えばgl e 8102 *At + C
r t Au * Ti  、 W * GaAs 、
各種ガラスなどのような各種の基板に本発明を適用する
ことができる。なお、基板の表面を非薄膜形成性のがス
のプラズマにさらす際の条件であるが、先に述べたよう
なグラズマエッチング又は2ノ量ツタエツチングの条件
に準じて、但し、過度のエツチングが行なわれないよう
に考慮して、決定することができる。
CF4 → CFy, 10F 81 + 4F-+ SiF4 ↑further 1
In the present invention, the type of substrate does not matter at all. So, for example gl e 8102 *At + C
r t Au*Ti, W*GaAs,
The present invention can be applied to various substrates such as various types of glass. The conditions for exposing the surface of the substrate to non-thin film-forming gas plasma are similar to those for the above-mentioned glazma etching or double-volume ivy etching, provided that excessive etching is not possible. It is possible to consider and decide not to do so.

本発明に従うと、基板上に付着してい友汚染物をプラズ
マ重合工程に先がけて完全に除去することができるので
基板表面上への有機薄膜の密着力を著しく改良すること
ができ、また、このような汚染除去のための装置として
引き続いて実施するプラズマ重合のためのそれを利用す
ることができるのでかかる前処理工程を簡便化すること
ができる。結果として、得られる製品の信頼性及び生産
性を大幅に高めることができる。
According to the present invention, since contaminants adhering to the substrate can be completely removed prior to the plasma polymerization process, the adhesion of the organic thin film to the substrate surface can be significantly improved. Since it can be used as a contamination removal device for subsequent plasma polymerization, the pretreatment process can be simplified. As a result, the reliability and productivity of the resulting product can be significantly increased.

次に、下記の実施例によって本発明をさらに峰しく説明
する。
Next, the present invention will be further explained with reference to the following examples.

例1: 本例ではSt基板の洗浄について説明する。Example 1: In this example, cleaning of the St substrate will be explained.

準備したSt基板をトリクロロエチレンにより10分間
にわたって超音波洗浄した後、引き続くグッズマ重合用
の反応器に収容した。反応器内の真空度が10”’ T
orrになるまで排気し、そして次にこの反応器にCF
4ガスを導入して器内圧を0.5Torr とした。引
き続いて、反応器内のRF電極に13.56 MHzの
高周波を印加電力100Wで20分間にわたって印加し
た。その後、反応器内の真空度が10−’ Torr 
Icなるように再び排気し、そして次に常法に従いプラ
ズマ重合を実施した。本例では、薄膜形成のためのモノ
マーとしてスチレンを使用し、器内圧が0.4Torr
になるまでこれを導入し、そしてRF電極に再び13.
56MHzの高周波を印加電力30Wで30分間にわた
って印加した。プラズマ1:合の完了後、膜厚1μln
のポリメチレンの!膜が形成された。
After the prepared St substrate was ultrasonically cleaned with trichlorethylene for 10 minutes, it was placed in a reactor for subsequent Goodsma polymerization. The degree of vacuum inside the reactor is 10''T
evacuate to orr and then charge the reactor with CF
4 gases were introduced to bring the internal pressure to 0.5 Torr. Subsequently, a high frequency of 13.56 MHz was applied to the RF electrode in the reactor at an applied power of 100 W for 20 minutes. After that, the vacuum inside the reactor was reduced to 10-' Torr.
The reactor was evacuated again so that Ic was reached, and then plasma polymerization was carried out according to a conventional method. In this example, styrene was used as the monomer for forming the thin film, and the internal pressure was 0.4 Torr.
and then the RF electrode again until 13.
A high frequency of 56 MHz was applied at an applied power of 30 W for 30 minutes. Plasma 1: After completion of the process, the film thickness is 1μln.
of polymethylene! A film was formed.

比較のため、81基板の表面をCF4ガスのプラズマに
さらすことなく上述の手法を繰り返した。このようにし
て得られたIリスチレンの薄膜の密着性を上述の本発明
方法による薄膜のそれと比較した。にとで、密着性の評
価のため、薄膜の剥離の程度と剥離に使用した、荷重と
の関係からそれを求めるいわゆる引剥し法を使用した。
For comparison, the above procedure was repeated without exposing the surface of the 81 substrate to the CF4 gas plasma. The adhesion of the I-restyrene thin film thus obtained was compared with that of the thin film produced by the method of the present invention described above. To evaluate the adhesion, a so-called peeling method was used, which is determined from the relationship between the degree of peeling of the thin film and the load used for peeling.

比較試験の結果、本発明方法による薄膜の密着性は上述
の従来技術によるそれのほぼ2倍であることが判明した
Comparative tests have shown that the adhesion of the thin film produced by the method of the present invention is approximately twice that of the prior art described above.

例2: 本例では膜厚1μmo8302膜を有するSt基板の洗
浄について説明する。
Example 2: In this example, cleaning of an St substrate having a 1 μmo8302 film with a film thickness will be explained.

警備した5so2膜付の81基板をトリクロロエチレン
によシ10分間にわたって超音波洗浄した後、引き続く
グラズマ重合用の反応器に収容した。反応器内の62度
が10−’Torr  になるまで排気し、そして次に
この反応器にCF4及び02の混合ガス(混合比90:
10)を導入して器内圧を0.4Torr とした。引
き続いて、反応器内のRF[極に13、56 MHXの
高周波を印加電力150Wで30分間にわたって印加し
た。その後、反応器内の真空度が10−’Torr  
となるように再び器内を排気し、そして次に常法に従っ
てプラズマ重合を実りした。本例でケよ、薄膜形成のた
めの七ツマ−としてメタクリル酸メチルを使用し、器内
圧が0.2Torrになるまでこれを導入し、そしてR
F電極に再び13.56 kn(zO高周波を印加電力
20Wで30分間にわたって印加した。プラズマ重合の
完了後、膜厚1μmのポリメタクリル酸メチルの薄膜が
形成された。
The guarded 81 substrate with the 5so2 film was ultrasonically cleaned with trichlorethylene for 10 minutes, and then placed in a reactor for subsequent glazma polymerization. The reactor was evacuated until the temperature at 62 degrees became 10-' Torr, and then a mixed gas of CF4 and 02 (mixture ratio 90:
10) was introduced to bring the internal pressure to 0.4 Torr. Subsequently, a high frequency of 13,56 MHX was applied to the RF [electrode] in the reactor at an applied power of 150 W for 30 minutes. After that, the vacuum inside the reactor was reduced to 10-'Torr.
The inside of the vessel was evacuated again, and then plasma polymerization was carried out according to a conventional method. In this example, methyl methacrylate was used as a seven-layer for forming a thin film, and it was introduced until the pressure inside the chamber reached 0.2 Torr, and then R
A high frequency wave of 13.56 kn (zO) was again applied to the F electrode at an applied power of 20 W for 30 minutes. After the plasma polymerization was completed, a thin film of polymethyl methacrylate with a thickness of 1 μm was formed.

比較のため、5i02に付の1基藁の表面をCF4 +
 02の混合ガスにさらすことなく上述の手法を繰シ返
した。得られたポリメタクリル酸メチルの薄膜の密層性
試験から、本発明方法による薄膜の密着性はこの従来法
によるそれのほぼ2,5@であることが判明した。
For comparison, the surface of one straw attached to 5i02 was treated with CF4 +
The above procedure was repeated without exposure to the 02 gas mixture. The adhesion test of the obtained thin film of polymethyl methacrylate revealed that the adhesion of the thin film obtained by the method of the present invention was approximately 2.5@ compared to that obtained by this conventional method.

特許出願人 富士通株式会社 特許出願代理人 弁理士 富 木   朗 弁理士 西 罐 和 之 弁理士 内 1)幸 男 弁理士 山 口 餡 之patent applicant Fujitsu Limited patent application agent Patent attorney Tomiki Akira Patent Attorney Kazuyuki Nishi Patent attorney 1) Yukio Patent Attorney Yamaguchi An

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマ重合法によシ基板上に有機薄膜を形成する
に当り、プラズマ重合工程の前、その工程に用いられる
ものと同一の装置内において前記基板の表面を非薄膜形
成性のガスのfラズマにさらすことを特徴とする有機薄
膜形成法。
1. When forming an organic thin film on a substrate by the plasma polymerization method, before the plasma polymerization step, the surface of the substrate is heated with a non-thin film forming gas in the same equipment used in that step. An organic thin film formation method characterized by exposure to plasma.
JP56099764A 1981-06-29 1981-06-29 Organic thin film formation Pending JPS582032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099764A JPS582032A (en) 1981-06-29 1981-06-29 Organic thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099764A JPS582032A (en) 1981-06-29 1981-06-29 Organic thin film formation

Publications (1)

Publication Number Publication Date
JPS582032A true JPS582032A (en) 1983-01-07

Family

ID=14256037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099764A Pending JPS582032A (en) 1981-06-29 1981-06-29 Organic thin film formation

Country Status (1)

Country Link
JP (1) JPS582032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169761A (en) * 1983-03-15 1984-09-25 Koyo Seiko Co Ltd Super-finishing method for ball bearing track surface and device thereof
JPS60211073A (en) * 1984-03-16 1985-10-23 アメリカン・サイアナミド・カンパニー Substrate coated by plasma increasing chemical vapor deposition, and apparatus and method for producing the same
JPH0749419A (en) * 1993-01-28 1995-02-21 Gold Star Co Ltd Preparation of hologram optical device
WO2004075279A1 (en) * 2003-02-18 2004-09-02 Konica Minolta Holdings, Inc. Organic thin-film transistor device and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169761A (en) * 1983-03-15 1984-09-25 Koyo Seiko Co Ltd Super-finishing method for ball bearing track surface and device thereof
JPH0424186B2 (en) * 1983-03-15 1992-04-24 Koyo Seiko Co
JPS60211073A (en) * 1984-03-16 1985-10-23 アメリカン・サイアナミド・カンパニー Substrate coated by plasma increasing chemical vapor deposition, and apparatus and method for producing the same
JPH0749419A (en) * 1993-01-28 1995-02-21 Gold Star Co Ltd Preparation of hologram optical device
WO2004075279A1 (en) * 2003-02-18 2004-09-02 Konica Minolta Holdings, Inc. Organic thin-film transistor device and method for manufacturing same
JPWO2004075279A1 (en) * 2003-02-18 2006-06-01 コニカミノルタホールディングス株式会社 Organic thin film transistor element and method for manufacturing the same
US7645630B2 (en) 2003-02-18 2010-01-12 Konica Minolta Holdings, Inc. Manufacturing method for thin-film transistor
JP4892973B2 (en) * 2003-02-18 2012-03-07 コニカミノルタホールディングス株式会社 Method for manufacturing organic thin film transistor element

Similar Documents

Publication Publication Date Title
JP2674488B2 (en) Dry etching chamber cleaning method
JP3923097B2 (en) Cleaning device
JP2004513515A (en) Amorphous carbon layer for improved adhesion of photoresist
JPS5812343B2 (en) Plasma etching technology that prevents erosion of plasma-etched aluminum films after etching
CN111900071A (en) Regeneration method of silicon electrode component of etching device of semiconductor equipment
JPH04286117A (en) Method of etching pattern in metal layer
JPS582032A (en) Organic thin film formation
JP3801366B2 (en) Cleaning method for plasma etching apparatus
JP4398091B2 (en) Cleaning solution and cleaning method for parts of semiconductor processing equipment
JPH0936089A (en) Ashing method and device
JP2837087B2 (en) Thin film formation method
JPS63271938A (en) Cleaning of hard surface
JP3250240B2 (en) Method for manufacturing semiconductor device
WO2001071790A1 (en) Method of manufacturing semiconductor device
JPH03170678A (en) Method for cleaning reaction vessel
RU2406785C2 (en) Method of removing organic residue from piezoelectric substrates
JP7304557B2 (en) Plasma etching method and device chip manufacturing method
JP3256082B2 (en) Plasma cleaning method
JPH01306582A (en) Method for cleaning deposited film forming device
JP2002184698A (en) Method of manufacturing electronic component
JPH10172957A (en) Dry etching gas for oxide film, its etching method and cleaning method for silicon
JPS6243331B2 (en)
RU1762727C (en) Method of manufacture of ground acoustical wave resonators
CN114464528A (en) Fluorine removal method based on silicon nitride dry etching process
JPH0277579A (en) Method for cleaning deposited film forming device