JPS5820309B2 - Catalyst composition for reduction and removal of NO↓x in exhaust gas - Google Patents

Catalyst composition for reduction and removal of NO↓x in exhaust gas

Info

Publication number
JPS5820309B2
JPS5820309B2 JP51064738A JP6473876A JPS5820309B2 JP S5820309 B2 JPS5820309 B2 JP S5820309B2 JP 51064738 A JP51064738 A JP 51064738A JP 6473876 A JP6473876 A JP 6473876A JP S5820309 B2 JPS5820309 B2 JP S5820309B2
Authority
JP
Japan
Prior art keywords
catalyst
component
mol
nitrate
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51064738A
Other languages
Japanese (ja)
Other versions
JPS52147588A (en
Inventor
岡田信彦
末利銕意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP51064738A priority Critical patent/JPS5820309B2/en
Publication of JPS52147588A publication Critical patent/JPS52147588A/en
Publication of JPS5820309B2 publication Critical patent/JPS5820309B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、各種燃焼炉、内燃機関、硝酸塩及び亜硝酸塩
を使用する装置等から放出される排ガス中の窒素酸化物
(以下NOxと記す)をアンモニア、水素、一酸化炭素
、炭化水素、硫化水素等の還元性ガスの存在下に窒素に
還元分解する為の触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention converts nitrogen oxides (hereinafter referred to as NOx) in exhaust gases emitted from various combustion furnaces, internal combustion engines, devices using nitrates and nitrites into ammonia, hydrogen, and monoxide. This invention relates to a catalyst for reducing and decomposing nitrogen into nitrogen in the presence of reducing gases such as carbon, hydrocarbons, and hydrogen sulfide.

最近環境汚染に於けるNOxの役割が明らかにされるに
伴って、NOx低減の最も有効な手段として脱硝技術の
更に一層の発展が望まれている。
As the role of NOx in environmental pollution has recently become clearer, further development of denitrification technology is desired as the most effective means for reducing NOx.

脱硝法には種々の方法があり、乾式法及び湿式法に大別
されるが、その中でも乾式法に属する還元法がNOxを
無害な窒素にかえる為二次公害を生ずることなく、シか
も経済的であることから特に注目されている。
There are various methods for denitrification, and they can be roughly divided into dry methods and wet methods. Among them, the reduction method, which belongs to the dry method, converts NOx into harmless nitrogen, so it does not cause secondary pollution and is economical as well. It is attracting particular attention because of its popularity.

この還元法に於ては、還元剤としてNH3,H2,CO
2炭化水素、H2S等のガス、炭酸アンモニウム、蓚酸
アンモニウム等のアンモニウム塩、尿素、ヒドラジン等
のアミン類等が用いられている。
In this reduction method, NH3, H2, and CO are used as reducing agents.
2 hydrocarbons, gases such as H2S, ammonium salts such as ammonium carbonate and ammonium oxalate, and amines such as urea and hydrazine.

従来NOxの選択還元用触媒としては、いくつかのもの
が知られているが、これ等はいづれも満足すべきものと
はいえない。
Several catalysts for selective reduction of NOx have been known in the past, but none of them can be said to be satisfactory.

例えば、白金等の貴金属系の触媒は、100〜200℃
程度の低温で脱硝を行ない得る利点を有するが、他方で
は以下の如き種々の欠点をも有している。
For example, noble metal catalysts such as platinum can be heated at 100 to 200°C.
Although it has the advantage of being able to perform denitrification at a relatively low temperature, it also has the following various drawbacks.

:(イ)SOxに対する耐性が低い;(ロ)100〜2
00°Cの低温に於て被、処理ガス中の803と還元剤
であるNH3との反応により析出する硫安及び/又は酸
性硫安が触媒層或いはその近傍の配管に固着して、活性
劣化、配管閉塞等を生ずる;(/→説硝温度が200℃
を上回ると還元剤であるNH3が燃焼し、却ってNOx
75≦発生する;に)笑気ガス(N20)が発生される
;(羽価格が高く、資源的にも限られている。
: (a) Low resistance to SOx; (b) 100-2
Ammonium sulfate and/or acidic ammonium sulfate, which are precipitated by the reaction between 803 in the process gas and NH3 as a reducing agent at a low temperature of 00°C, stick to the catalyst layer or the piping in its vicinity, causing activity deterioration and piping. Occurrence of blockage, etc.; (/→The temperature is 200℃.
If the value exceeds the
75≦Generated;) Laughing gas (N20) is generated; (Feather price is high and resources are limited.

一方銅系触媒(米国特許第3449063号、第359
9427号等)及び鉄系触媒(西独特許第125368
5号、米国特許第3008796号等)は、活性が不十
分であり、特に経済的に活性が低下するので実用上安定
した触媒とは言い難1Q 本発明は、以上の諸点に鑑み、従来公知の触媒の欠点を
解消すること、即ち低温から高温までの広い温度域で高
い活性を示し、SOx及び熱に対する耐久性に優れ、経
済的にも活性の安定した、しかも安価な触媒を提供する
ことを目的としてなされたものである。
On the other hand, copper-based catalysts (U.S. Pat. Nos. 3,449,063 and 359)
9427, etc.) and iron-based catalysts (West German Patent No. 125368, etc.)
No. 5, U.S. Pat. No. 3,008,796, etc.) have insufficient activity, and in particular, the activity decreases economically, so it cannot be said to be a practically stable catalyst.1Q In view of the above points, the present invention has been made to In other words, to provide a catalyst that exhibits high activity in a wide temperature range from low to high temperatures, has excellent durability against SOx and heat, has stable activity economically, and is inexpensive. This was done for the purpose of

本発明触媒組成物は、(aXり鉄、その酸化物及びそれ
の他の化合物からなる群から選ばれた少なくとも1種又
はこれに更に([1)原子番号24及び27〜29まで
の元素、それ等の酸化物及びそれ等の他の化合物からな
る群から選ばれた少なくとも1種を併用した混合物と(
b)希土類元素、それ等の酸化合物及びそれ等の他の化
合物からなる群から選ばれた少なくとも1種との焼成物
を含有し、前者(a)成分中の元素と後者(b)成分中
の希土類元素との比が原子比で1:0.025〜5であ
ることにより特徴づけられる。
The catalyst composition of the present invention comprises (at least one selected from the group consisting of aX ferric iron, its oxide, and other compounds thereof, or in addition to this, ([1) elements with atomic numbers of 24 and 27 to 29, A mixture containing at least one selected from the group consisting of these oxides and other compounds;
b) Contains a fired product of at least one selected from the group consisting of rare earth elements, acid compounds thereof, and other compounds thereof, the element in the former component (a) and the element in the latter component (b). is characterized by an atomic ratio of 1:0.025 to 5 with respect to rare earth elements.

上記(a)成分は、それ自身単独でもある程度の脱硝活
性を有しているが、単独では使用可能温度域が狭く、被
毒物質特にSOxに対する耐久性が著るしく低く、高温
で急速に失活する等の欠点がある。
Component (a) above has a certain degree of denitrification activity even when used alone, but when used alone, the usable temperature range is narrow, the durability against poisonous substances, especially SOx, is extremely low, and it is rapidly lost at high temperatures. There are disadvantages such as lack of performance.

従って、(a)成分単独のものは、燃焼排ガスの如く温
度変化が大きく且つ被毒物質を多量に含むガス用の脱硝
触媒としては、実用性に乏しい。
Therefore, component (a) alone has poor practicality as a denitrification catalyst for gases such as combustion exhaust gas, which have large temperature changes and contain large amounts of poisonous substances.

しかるにこの様な(a)成分に対し前記(b)成分を特
定の割合で添加使用する場合には、最適使用温度域が広
くなり、SOX等の被毒物質に対する耐久性が増大し、
かなりの高温に於ても活性を保持する、安定な実用的触
媒が得られる。
However, when component (b) is added to component (a) in a specific ratio, the optimum operating temperature range becomes wider, and the durability against poisonous substances such as SOX increases.
A stable practical catalyst is obtained that retains its activity even at considerably high temperatures.

本発明に於て使用する(a)成分を構成する元素は、原
子状態(単体)でも酸化物状態でもその他の化合物状態
でも良い。
The elements constituting component (a) used in the present invention may be in an atomic state (single substance), an oxide state, or another compound state.

原料として使用する炭酸塩、硝酸塩、有機酸塩等は焼成
することにより比較的低温で酸化物状態となるのに対し
、硫酸塩等は焼成によっても完全な酸化物状態とはなり
難いが、いづれも同等に使用し得る。
Carbonates, nitrates, organic acid salts, etc., used as raw materials, become oxides at relatively low temperatures when fired, while sulfates, etc., are difficult to completely change to oxides even after firing, but eventually may equally be used.

本発明に於て(b)成分として使用する希土類元素とは
、ランタニド元素と称される原子番号57〜71までの
15の元素、原子番号21のスカンジウム及び原子番号
39のイツリウムをいい、(a)成分の場合と同様にこ
れ等は原子状態(単体)でも酸化物状態でもその他の化
合物状態でも良い。
In the present invention, the rare earth elements used as component (b) refer to 15 elements with atomic numbers 57 to 71 called lanthanide elements, scandium with atomic number 21, and ythurium with atomic number 39, and (a ) As in the case of the components, these may be in an atomic state (single substance), an oxide state, or another compound state.

例えば、希土類元素源として使用される炭酸塩、硝酸塩
、有機酸塩等は、触媒組成物製造時の焼成により比較的
低温で酸化物状態となるのに対し、硫酸塩はかなりの高
温まで硫酸塩の状態を保持し、完全な酸化物状態とはな
り難い。
For example, carbonates, nitrates, organic acid salts, etc. used as sources of rare earth elements become oxides at relatively low temperatures during calcination during the production of catalyst compositions, whereas sulfates remain in the sulfate state at relatively high temperatures. It remains in this state and is difficult to become a complete oxide state.

しかしながらいづれの状態でも(a)成分との共存下に
同様の優れた効果を発揮する。
However, in either state, the same excellent effects are exhibited in coexistence with component (a).

希土類元素は、その性質が互に類似しているので単離す
ることが困難な場合が多し)。
Rare earth elements are often difficult to isolate because their properties are similar.

従って、例えばモナザイト鉱、バストネザイト鉱、セラ
イト鉱、ゼノタイム鉱等の鉱石から各希土類元素を単離
する過程で得られる粗製の希土類元素の混合化合物を本
発明(b)成分の希土類元素源として使用しても良い。
Therefore, for example, a crude mixed compound of rare earth elements obtained in the process of isolating each rare earth element from ores such as monazite, bastonezite, celite, and xenotime ores may be used as the rare earth element source of component (b) of the present invention. It's okay.

本発明に於ては、(a)成分と(b)成分との比が原子
比で1:0.025〜5の範囲にあることを必要とする
The present invention requires that the ratio of component (a) to component (b) be in the range of 1:0.025 to 5 in terms of atomic ratio.

この比が0.002未満では、(a)成分単独使用の場
合の欠点が十分には改善されず、一方原子比が5を上回
っても効果の顕著なる改善は認められない。
If this ratio is less than 0.002, the disadvantages of using component (a) alone will not be sufficiently improved, while if the atomic ratio exceeds 5, no significant improvement will be observed.

(b)成分の量があまり過大となると、むしろ活性が低
下する傾向がある。
If the amount of component (b) is too large, the activity tends to decrease.

より好ましくは(a)成分と(b)成分の比を原子比で
1:0.05〜3とする。
More preferably, the ratio of component (a) to component (b) is 1:0.05 to 3 in atomic ratio.

本発明の触媒は、含浸法、沈澱法、混線法等の従来公知
の方法により製造され得る。
The catalyst of the present invention can be produced by conventionally known methods such as an impregnation method, a precipitation method, and a crossing method.

含浸法によれば、例えば、上ea)成分化合物及び(b
)成分化合物を、水、酸水溶液、アルカリ水溶液、有機
溶媒等に溶解させた後、該溶液に多孔性担体を浸漬させ
るか又は多孔性担体に該溶液を撒布し、次いで該多孔性
担体を乾燥し、250〜600℃程度で1〜10時間焼
成する。
According to the impregnation method, for example, the above ea) component compound and (b)
) After dissolving the component compound in water, an acid aqueous solution, an alkali aqueous solution, an organic solvent, etc., a porous carrier is immersed in the solution or the solution is spread on the porous carrier, and then the porous carrier is dried. Then, it is baked at about 250 to 600°C for 1 to 10 hours.

或いは、(a)成分及び(b)成分のいづれか一方の単
独水溶液に担体を浸漬し、これを乾燥及び焼成した後、
他の成分の単独水溶液に該焼成担体を浸漬し、これを再
び乾燥及び焼成しても良い。
Alternatively, after immersing the carrier in a single aqueous solution of either component (a) or component (b), drying and baking it,
The fired carrier may be immersed in a single aqueous solution of other components, and then dried and fired again.

多孔性担体としては、例えばアルミナ、シリカ、マグネ
シア等の公知の担体を使用するが、アルミナ特に活性ア
ルミナが好ましい。
As the porous carrier, known carriers such as alumina, silica, and magnesia are used, and alumina, particularly activated alumina, is preferred.

担体形状は、用途に応じて円柱状、球状、ラシヒリング
状等の粒状成いはハニカム状等の多孔板状等を任意に選
択することが出来る。
The shape of the carrier can be arbitrarily selected from granular shapes such as cylindrical, spherical, and Raschig ring shapes, or porous plate shapes such as honeycomb shapes, depending on the purpose.

沈澱法としては、例えば、2以上の活性成分溶液を混合
し、活性成分を共沈させる方法;担体成分溶液と活性成
分溶液とを混合し、担体と活性成分とを共沈させる方法
;微小担体成分上に活性成分を沈着させる方法等がある
Precipitation methods include, for example, a method in which two or more active ingredient solutions are mixed and the active ingredient is coprecipitated; a carrier component solution and an active ingredient solution are mixed and the carrier and the active ingredient are coprecipitated; a microcarrier Methods include depositing the active ingredient onto the ingredient.

次いで沈澱物を押出成型法、打錠成型法、転勤造粒法等
の公知の方法により成型し、乾燥後250〜600℃程
度で1〜10時間程時間酸して触媒とする。
Next, the precipitate is molded by a known method such as an extrusion molding method, a tablet molding method, a transfer granulation method, etc., and after drying, it is acidified at about 250 to 600° C. for about 1 to 10 hours to obtain a catalyst.

又、混練法としては、例えば、担体粉末に活性成分溶液
を加えて十分混練するか、或いは(a)成分の沈澱物に
(b)成分の溶液を加えて十分に混練するか、或いは(
b)成分の沈澱物に(a)成分の溶液を加えて十分に混
練する等の方法により粘性大なるペースト状物とし、こ
れを沈澱法の場合と同様にして成型、乾燥及び焼成して
触媒とする。
Further, as a kneading method, for example, the active ingredient solution is added to the carrier powder and kneaded thoroughly, or the solution of component (b) is added to the precipitate of component (a) and kneaded thoroughly, or (
The solution of component (a) is added to the precipitate of component b) and thoroughly kneaded to form a highly viscous paste, which is then molded, dried and calcined in the same manner as in the precipitation method to form a catalyst. shall be.

一般に沈澱法及び混練法による触媒は、含浸法による触
媒に比して活性成分濃度をより均一 とすることが出来
るのみならず、活性成分濃度をより高くすることが出来
るので、より高活性となる。
In general, catalysts made by the precipitation method and kneading method not only have a more uniform concentration of active ingredients than catalysts made by the impregnation method, but also have a higher activity because they can have a higher concentration of active ingredients. .

従って、以下の実施例に於て含浸法による触媒が良好な
結果を示している場合には、沈澱法及び混練法によれば
性能のより優れた触媒が得られる。
Therefore, in the following examples, where the impregnation method shows good results with the catalyst, the precipitation method and kneading method yield catalysts with better performance.

尚、本発明で使用する(a)成分及び(b)成分の原料
中、炭酸塩及び硫酸塩中には焼成工程を省略出来る場合
もある。
Incidentally, in some cases, the firing step can be omitted for carbonates and sulfates among the raw materials for components (a) and (b) used in the present invention.

この様な炭酸塩としては、炭酸鉄、炭酸銅、炭酸ニッケ
ル、炭酸ランタン、炭酸セリウム等があり、硫酸塩とし
ては硫酸鉄、硫酸銅、硫酸バナジウム、硫酸ランタン、
硫酸セリウム等がある。
Such carbonates include iron carbonate, copper carbonate, nickel carbonate, lanthanum carbonate, cerium carbonate, etc., and sulfates include iron sulfate, copper sulfate, vanadium sulfate, lanthanum sulfate,
Examples include cerium sulfate.

本発明の触媒を使用する排ガスの処理方法は、排ガスと
触媒とを効率良く接触させる方法であれば良く、例えば
触媒を充填した反応管の一端から他端に向けてNH3等
の還元性ガスの存在下に被処理ガスを流す方法を挙げる
ことが出来る。
The exhaust gas treatment method using the catalyst of the present invention may be any method as long as the exhaust gas and the catalyst are brought into contact with each other efficiently. A method of flowing a gas to be treated in the presence of the gas can be mentioned.

処理温度は、触媒の組成、被処理ガスの組成等により異
なるが、通常150〜550°C程度である。
The treatment temperature varies depending on the composition of the catalyst, the composition of the gas to be treated, etc., but is usually about 150 to 550°C.

被処理ガスの空間温度は、処理温度、触媒粒径、単位体
積当りの触媒外表面積等にも・よるが、通常は標準状態
換算で1000〜100000Hr−1、好ましくは3
000〜50000Hr−1である。
The spatial temperature of the gas to be treated depends on the treatment temperature, catalyst particle size, catalyst external surface area per unit volume, etc., but is usually 1,000 to 100,000 Hr-1, preferably 3
000 to 50000 Hr-1.

以下実施例及び比較例により本発明の特徴とするところ
を更に一層間らかにする。
The features of the present invention will be further clarified by Examples and Comparative Examples below.

実施例 1 硝酸ランタン0.15モル(65,0g)と硫酸第1鉄
0.15モル(41,7g)とを温水に溶解して全体を
200rrLlとする。
Example 1 0.15 mol (65.0 g) of lanthanum nitrate and 0.15 mol (41.7 g) of ferrous sulfate are dissolved in warm water to make a total of 200 rrLl.

この水溶液に7〜14メツシユに破砕した活性アルミナ
(充填比重0.5)200mlを浸漬し、該水溶液が十
分に内部に浸透するまで放置する。
200 ml of activated alumina crushed into 7 to 14 meshes (filling specific gravity: 0.5) is immersed in this aqueous solution, and left until the aqueous solution permeates into the inside.

ついで約120℃、空気中で十分に乾燥する。It is then thoroughly dried in air at about 120°C.

この触媒6mlを内径28mmの反応管に充填し、45
0℃で3時間焼成し、ランタンと鉄の原子比=5:5な
る触媒を得る。
Fill a reaction tube with an inner diameter of 28 mm with 6 ml of this catalyst, and
Calcinate at 0°C for 3 hours to obtain a catalyst with an atomic ratio of lanthanum and iron = 5:5.

50000Hr’の空間速度(標準状態換算)で第1表
の組成を有するガスにNH3を200容量卿加えて該反
応管を通過させる。
200 volumes of NH3 is added to the gas having the composition shown in Table 1 at a space velocity of 50,000 Hr' (converted to standard conditions), and the mixture is allowed to pass through the reaction tube.

入口および出口のNOx濃度を化学発光分析計で測定し
、下式により脱硝率を求めた。
The NOx concentrations at the inlet and outlet were measured using a chemiluminescence spectrometer, and the denitrification rate was determined using the following formula.

結果を第2表に示す。The results are shown in Table 2.

脱硝率(%)=(1−天石Nδ璽1X100出口NOx
濃度 実施例 2 硝酸ランタン0.03モル(13,0g)と硫酸第1鉄
0.27モル(71,,59)を温水に溶解する。
Denitrification rate (%) = (1-Tenshi Nδ 1X100 outlet NOx
Concentration Example 2 0.03 mol (13.0 g) of lanthanum nitrate and 0.27 mol (71,59) of ferrous sulfate are dissolved in warm water.

以下実施例1と同様の操作でランタンと鉄の原子比=1
:9なる触媒を得る。
The atomic ratio of lanthanum and iron = 1 by the same operation as in Example 1.
:9 catalyst was obtained.

以下実施例1と同様の操作で脱硝率を求めた。Thereafter, the denitrification rate was determined in the same manner as in Example 1.

結果を第2表に示す。比較例 1 硫酸第1鉄0.30モル(s3.41を温水に溶解する
The results are shown in Table 2. Comparative Example 1 0.30 mol of ferrous sulfate (s3.41) is dissolved in warm water.

以下実施例1と同様の操作で脱硝率を求めた。Thereafter, the denitrification rate was determined in the same manner as in Example 1.

結果を第2表に示す。比較例 2 硝酸ランタン0.30モル(129,9g)を温水に溶
解する。
The results are shown in Table 2. Comparative Example 2 0.30 mol (129.9 g) of lanthanum nitrate is dissolved in hot water.

以下実施例1と同様の操作で脱硝率を求めた。Thereafter, the denitrification rate was determined in the same manner as in Example 1.

結果を第2表に示す。第2表から明らかなように、本発
明触媒(実施例1及び2)は、比較例1及び2に比して
優れた脱硝活性を示している。
The results are shown in Table 2. As is clear from Table 2, the catalysts of the present invention (Examples 1 and 2) exhibit superior denitrification activity compared to Comparative Examples 1 and 2.

実施例 3 硝酸ランタン0.75モル(324,8g)と硫酸第1
鉄0.75モル(2os、5g)を温水に溶解する。
Example 3 0.75 mol (324.8 g) of lanthanum nitrate and 1st sulfuric acid
0.75 moles (2 os, 5 g) of iron are dissolved in hot water.

この水溶液をアンモニア水中に除々に滴下すればランタ
ンと鉄との共沈澱物が生成する。
If this aqueous solution is gradually dropped into aqueous ammonia, a coprecipitate of lanthanum and iron is produced.

この際アンモニア溶液のpHが7以下にならないように
適宜アンモニアを加える。
At this time, ammonia is added as appropriate so that the pH of the ammonia solution does not become 7 or less.

この沈澱物を水でよく洗滌した後渥過し、ついで約12
0℃、空気中で十分に乾燥する。
This precipitate was thoroughly washed with water and filtered, and then
Dry thoroughly in air at 0°C.

これにグラファイトを2重量係加え、十分に混練し、成
型圧力0.5m/iで成型する。
Two parts by weight of graphite are added to this, thoroughly kneaded, and molded at a molding pressure of 0.5 m/i.

この成型品を空気中で450°C,3時間焼成し、ラン
タンおよび鉄の原子比=5;5なる触媒を得る。
This molded product is calcined in air at 450° C. for 3 hours to obtain a catalyst with an atomic ratio of lanthanum and iron=5:5.

これを7〜14メツシユに破砕し、実施例1と同様の操
作で脱硝率を求めた。
This was crushed into 7 to 14 meshes, and the denitrification rate was determined in the same manner as in Example 1.

その結果を実施例1の結果と対比して第3表に示す。The results are shown in Table 3 in comparison with the results of Example 1.

実施例 4 酸化ランタン0.375モル(122,21を粉砕し、
これに硫酸第1鉄0.75モル(208,5g)りを加
え、さらに水を加えて十分に混合して泥状にした後約1
20℃、空気中で十分に乾燥する。
Example 4 0.375 mol of lanthanum oxide (pulverized 122,21,
Add 0.75 mol (208.5 g) of ferrous sulfate to this, and then add water and mix thoroughly to make a slurry.
Dry thoroughly in air at 20°C.

これにポリビニルアルコール1重量%を水と共に加え湿
式磨砕後押出成型する。
To this, 1% by weight of polyvinyl alcohol was added together with water, and after wet grinding, extrusion molding was performed.

この成型品を空気中、450°C,3時間焼成し、ラン
タンと鉄の原子比5:5なる触媒を得る。
This molded product is fired in air at 450°C for 3 hours to obtain a catalyst with an atomic ratio of lanthanum and iron of 5:5.

これを7〜14メツシユに破砕し、実施例1と同様の操
作で脱硝率を求めた。
This was crushed into 7 to 14 meshes, and the denitrification rate was determined in the same manner as in Example 1.

結果を第3表に示す。第3表から明らかなように、実施
例3及び4は、実施例1よりも250〜400℃の温度
範囲で優れた脱硝活性を示している。
The results are shown in Table 3. As is clear from Table 3, Examples 3 and 4 exhibit superior denitrification activity than Example 1 in the temperature range of 250 to 400°C.

共沈あるいは混線によって製造した触媒は、共沈澱物あ
るいは混練物粒子が十分に微細化されているので、含浸
によって製造した触媒よりも活性金属濃度も高く、脱硝
活性も優れている。
Catalysts produced by coprecipitation or cross-mixing have sufficiently fine particles of the coprecipitate or kneaded material, so they have a higher active metal concentration and superior denitrification activity than catalysts produced by impregnation.

以後製造が簡単な含浸法についての実施例のみを示すが
、いずれの実施例も共沈あるいは混練によってより脱硝
活性の優れた触媒を製造し得る。
Hereinafter, only examples relating to the impregnation method, which is easy to produce, will be shown, but in any of the examples, a catalyst with better denitrification activity can be produced by coprecipitation or kneading.

実施例 5 硝酸イツトリウム0.15モルと硫酸第1鉄0.15モ
ルとを使用する以外は、実施例1と同様にして触媒を製
造し、脱硝率を求めた結果を第4表に示す。
Example 5 A catalyst was produced in the same manner as in Example 1 except that 0.15 mol of yttrium nitrate and 0.15 mol of ferrous sulfate were used, and the results of determining the denitrification rate are shown in Table 4.

実施例 6 硝酸セリウム0.15モルと硫酸第1鉄0.15モルと
を使用する以外は実施例1と同様にして触媒を製造した
Example 6 A catalyst was produced in the same manner as in Example 1 except that 0.15 mol of cerium nitrate and 0.15 mol of ferrous sulfate were used.

脱硝率を第4表に示す。実施例 7 モナザイト鉱から得られた混合希土類元素硝酸塩0.1
5モル(65,:l)と硫酸第1鉄0.15モル(41
,7g)とを使用する以外は実施例1と同様にして触媒
を得た。
Table 4 shows the denitrification rate. Example 7 Mixed rare earth element nitrate obtained from monazite ore 0.1
5 mol (65,: l) and 0.15 mol (41,: l) of ferrous sulfate.
, 7g) was used in the same manner as in Example 1 to obtain a catalyst.

脱硝率を第4表に示す。尚、混合希土類元素硝酸塩の組
成は下記の通りであった。
Table 4 shows the denitrification rate. The composition of the mixed rare earth element nitrate was as follows.

比較例 3〜IO 下記の(a)成分のみを使用する以外は、実施例1と同
様にして触媒を製造し、夫々の脱硝率を求めた。
Comparative Example 3 to IO Catalysts were produced in the same manner as in Example 1, except that only component (a) below was used, and the denitrification rates of each catalyst were determined.

結果は第5表に示した。比較例 (a)
成 分3 四塩化チタン (0
,15モル)4 メタバナジン酸アンモニウム (0
,30モル)5 硝酸クロム (0,3
0モル)比較例 (a) 成 分6
硝酸マンガン (0,30モル)7 硝酸コ
バルト (0,30モル)8 硝酸ニッケル
(0,30モル)9 硝酸銅 (0,3
0モル)10 硫酸銅 (0,30モル)尚
、比較例4に於ては、メタバナジン酸アンモニウムはモ
ノメタノールアミンに溶解した。
The results are shown in Table 5. Comparative example (a)
Component 3 Titanium tetrachloride (0
, 15 mol) 4 Ammonium metavanadate (0
,30 mol)5 Chromium nitrate (0,3
0 mol) Comparative example (a) Component 6
Manganese nitrate (0.30 mol) 7 Cobalt nitrate (0.30 mol) 8 Nickel nitrate
(0,30 mol)9 Copper nitrate (0,3
0 mol) 10 Copper sulfate (0.30 mol) In Comparative Example 4, ammonium metavanadate was dissolved in monomethanolamine.

実施例 8〜11 下記の(a)成分及び(b)成分の組合せを使用するし
外は、実施例1と同様にして触媒を製造し、実加例1と
同様の操作により夫々の脱硝率を求めた。
Examples 8 to 11 Catalysts were produced in the same manner as in Example 1, except that the following combinations of components (a) and (b) were used, and the respective denitrification rates were determined by the same operations as in Production Example 1. I asked for it.

結果は第6表に示す通りである。The results are shown in Table 6.

実施例 (a)成分原料(モル)(b)成分原料(モル
)硫酸第1鉄(0,24) 8 + 硝酸ランタン(0,
03)硝酸クロム(0,03) 硫酸第1鉄(0,24) 9 + 硝酸ランタン(0,
03)儲酸銅 (0,03) 硫酸第1鉄(0,24) 10 + 硝酸ランタン(0,
03)・硝酸コバルト(0,03) 実施例 (a)成分原料(モル)(b)成分原料(モル
)硫酸第1鉄(0,24) 11 + 硝酸ランタン(0,
03)硝酸ニッケル(0,03) 比較例 11〜12 下記の(a)成分及び(b)成分の組合せを使用する以
外は実施例1と同様にして触媒を製造し、実施例1と同
様の操作により夫々の脱硝率を求めた。
Examples (a) Component raw material (mol) (b) Component raw material (mol) Ferrous sulfate (0,24) 8 + Lanthanum nitrate (0,
03) Chromium nitrate (0,03) Ferrous sulfate (0,24) 9 + Lanthanum nitrate (0,
03) Copper acid (0,03) Ferrous sulfate (0,24) 10 + Lanthanum nitrate (0,
03) Cobalt nitrate (0,03) Example (a) Component raw material (mol) (b) Component raw material (mol) Ferrous sulfate (0,24) 11 + Lanthanum nitrate (0,
03) Nickel nitrate (0,03) Comparative Examples 11-12 A catalyst was produced in the same manner as in Example 1, except that the following combination of components (a) and (b) was used; The denitrification rate of each was determined by the operation.

結果を第6表に併記した。The results are also listed in Table 6.

(a)成分原料(モル)(b)成分原料(モル)11
硝酸ニッケル(0,27) 硝酸ランタン(0,0
3)12 硝酸コバルト(0,27) 硝酸ランタ
ン(0,03)比較例 13 ヘキサクロロ白金酸(H2PtC4・6H20)0.3
モルに相当するその水溶液を温水に溶解し、実施例1と
同様にして白金担持触媒を得た。
(a) Component raw material (mol) (b) Component raw material (mol) 11
Nickel nitrate (0,27) Lanthanum nitrate (0,0
3) 12 Cobalt nitrate (0,27) Lanthanum nitrate (0,03) Comparative example 13 Hexachloroplatinic acid (H2PtC4 6H20) 0.3
A molar amount of the aqueous solution was dissolved in hot water, and the same procedure as in Example 1 was carried out to obtain a platinum-supported catalyst.

その脱硝率を前記実施例2の結果と併せて第7表に示す
The denitrification rate is shown in Table 7 together with the results of Example 2.

第7表に示す結果から、本発明触媒が白金触媒よりも広
い温度域で高い脱硝活性を示すことが明らかである。
From the results shown in Table 7, it is clear that the catalyst of the present invention exhibits higher denitrification activity over a wider temperature range than the platinum catalyst.

実施例 1 実験例8で得た触媒を使用し、S V= 5000Hr
−1とする以外は実施例1と同様にして触媒活性を調べ
た結果を第8表に示す。
Example 1 Using the catalyst obtained in Experimental Example 8, SV=5000Hr
Table 8 shows the results of examining the catalyst activity in the same manner as in Example 1 except that -1 was used.

第8表の結果から、300℃に於て5V=50000H
r ’では脱硝率は58%と低いが、5V=5000H
r−1では84チにまで上昇することが明らかである。
From the results in Table 8, 5V = 50000H at 300℃
At r', the denitrification rate is low at 58%, but at 5V=5000H
It is clear that at r-1, it increases to 84 inches.

実験例 2 実験例2で得た触媒を使用し、前記第1表に示す被処理
ガスにNH3200容量ppm及び5O2200容量p
pmを加えたガスを5V=50000Hr” 、温度3
50℃の条件下に長期にわたり処理して、脱硝率の経時
変化を調べた。
Experimental Example 2 Using the catalyst obtained in Experimental Example 2, NH3200 volume ppm and 5O2200 volume p were added to the gas to be treated shown in Table 1 above.
5V=50000Hr”, temperature 3
The samples were treated at 50° C. for a long period of time to examine changes in the denitrification rate over time.

その結果を第9表に示す。The results are shown in Table 9.

第9表から本発明触媒が優れた耐久性を有していること
が明らかである。
It is clear from Table 9 that the catalyst of the present invention has excellent durability.

実施例 12 実施例1の硫酸第1鉄の代りに硝酸第1鉄を使用する以
外は、実施例1と同様にして触媒を製造した。
Example 12 A catalyst was produced in the same manner as in Example 1, except that ferrous nitrate was used in place of the ferrous sulfate in Example 1.

触媒有効成分をX線回折法により分析した結果、硝酸塩
はすべて分解し、鉄及びランタンともに酸化物の形態で
あった。
Analysis of the active components of the catalyst by X-ray diffraction revealed that all nitrates were decomposed and both iron and lanthanum were in the form of oxides.

この触媒を用いて実施例1と同様の操作により脱硝率を
求めた結果を第10表に示す。
Table 10 shows the results of determining the denitrification rate using this catalyst in the same manner as in Example 1.

実施例 13 実施例12の触媒を更に水素気流中で450℃、3時間
還元し、有効成分をX線回折法により分析した結果、約
半量は金属鉄、ランタンに還元されていることが認めら
れた。
Example 13 The catalyst of Example 12 was further reduced in a hydrogen stream at 450°C for 3 hours, and the active ingredients were analyzed by X-ray diffraction. As a result, it was found that about half of the catalyst was reduced to metallic iron and lanthanum. Ta.

この触媒を用いて実施例1と同様の操作により脱硝率を
求めた結果を第10表に示す〇
Table 10 shows the results of determining the denitrification rate using this catalyst in the same manner as in Example 1.

Claims (1)

【特許請求の範囲】 1(a)鉄、その酸化物及びそれの他の化合物からなる
群から選ばれた少なくとも1種、及び(b) 希土類
元素、それ等の酸化物及びそれ等の他の化合物からなる
群から選ばれた少なくとも1種 の焼成物を含有し、(a)成分と(b)成分との比が原
子比で1:0.002〜5であることを特徴とする排ガ
ス中のNOx還元除去用触媒組成物。 2 (a) (り 鉄、その酸化物及びそれの他
の化合物からなる群から選ばれた少なくとも1種、(i
l)原子番号24及び27〜29までの元素、それ等の
酸化物及びそれ等の他の化合物からなる群から選ばれた
少なくとも1種、及び(b) 希土類元素、それ等の
酸化物及びそれ等の他の化合物からなる群から選ばれた
少なくとも1種 の焼成物を含有し、(a)成分と(b)成分との比が原
子比で1:0.002〜5であることを特徴とする排ガ
ス中のNOx還元除去用触媒組成物。
[Scope of Claims] 1 (a) at least one element selected from the group consisting of iron, oxides thereof, and other compounds thereof; and (b) rare earth elements, oxides thereof, and other compounds thereof. An exhaust gas containing at least one fired product selected from the group consisting of compounds, characterized in that the ratio of component (a) to component (b) is 1:0.002 to 5 in atomic ratio. A catalyst composition for reducing and removing NOx. 2 (a) At least one member selected from the group consisting of iron, its oxides and other compounds thereof, (i
l) At least one element selected from the group consisting of elements with atomic numbers 24 and 27 to 29, oxides thereof, and other compounds thereof, and (b) rare earth elements, oxides thereof, and other compounds thereof. It contains at least one type of fired product selected from the group consisting of other compounds such as, etc., and is characterized in that the ratio of component (a) to component (b) is 1:0.002 to 5 in atomic ratio. A catalyst composition for reducing and removing NOx in exhaust gas.
JP51064738A 1976-06-02 1976-06-02 Catalyst composition for reduction and removal of NO↓x in exhaust gas Expired JPS5820309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51064738A JPS5820309B2 (en) 1976-06-02 1976-06-02 Catalyst composition for reduction and removal of NO↓x in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51064738A JPS5820309B2 (en) 1976-06-02 1976-06-02 Catalyst composition for reduction and removal of NO↓x in exhaust gas

Publications (2)

Publication Number Publication Date
JPS52147588A JPS52147588A (en) 1977-12-08
JPS5820309B2 true JPS5820309B2 (en) 1983-04-22

Family

ID=13266779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51064738A Expired JPS5820309B2 (en) 1976-06-02 1976-06-02 Catalyst composition for reduction and removal of NO↓x in exhaust gas

Country Status (1)

Country Link
JP (1) JPS5820309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611067A (en) * 1979-07-04 1981-02-04 Kuraray Co Method and device for treating laughing gas in excessive anesthetic gas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493891A (en) * 1972-05-02 1974-01-14
JPS4940287A (en) * 1972-08-25 1974-04-15
JPS49123473A (en) * 1973-04-03 1974-11-26
JPS506589A (en) * 1973-05-22 1975-01-23
JPS5045793A (en) * 1973-08-27 1975-04-24
JPS5054586A (en) * 1973-09-14 1975-05-14
JPS5064164A (en) * 1973-10-11 1975-05-31
JPS5092859A (en) * 1973-12-20 1975-07-24
JPS5157689A (en) * 1974-11-15 1976-05-20 Osaka Gas Co Ltd
JPS5187486A (en) * 1975-01-31 1976-07-31 Kobe Steel Ltd Haigasuchuno chitsusosankabutsujokyoyoshokubai

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493891A (en) * 1972-05-02 1974-01-14
JPS4940287A (en) * 1972-08-25 1974-04-15
JPS49123473A (en) * 1973-04-03 1974-11-26
JPS506589A (en) * 1973-05-22 1975-01-23
JPS5045793A (en) * 1973-08-27 1975-04-24
JPS5054586A (en) * 1973-09-14 1975-05-14
JPS5064164A (en) * 1973-10-11 1975-05-31
JPS5092859A (en) * 1973-12-20 1975-07-24
JPS5157689A (en) * 1974-11-15 1976-05-20 Osaka Gas Co Ltd
JPS5187486A (en) * 1975-01-31 1976-07-31 Kobe Steel Ltd Haigasuchuno chitsusosankabutsujokyoyoshokubai

Also Published As

Publication number Publication date
JPS52147588A (en) 1977-12-08

Similar Documents

Publication Publication Date Title
US4952545A (en) Process for removing nitrogen oxides from exhaust gases
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
WO2020103848A1 (en) Environmentally-friendly high-temperature denitration catalyst and preparation method therefor
JPH0586258B2 (en)
JPH0638915B2 (en) New catalysts for selective reduction of nitrogen oxides
JP3483190B2 (en) Nitrogen oxide removal catalyst and method for producing the same
JPH0312936B2 (en)
JPS5820309B2 (en) Catalyst composition for reduction and removal of NO↓x in exhaust gas
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3027219B2 (en) How to remove nitrogen oxides
JP2547124B2 (en) Method for reducing and removing nitrogen oxides
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH0838888A (en) Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
US4105745A (en) Catalyst and process for reducing nitrogen oxides
CN105727968B (en) Low-temperature denitration catalyst and its preparation method and application in a kind of composite oxides containing magnetic
US3928534A (en) Catalyst useful at higher temperatures, especially for purification of exhaust gases from motor vehicles and industrial plants
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JPS63147546A (en) Method for removing nitrogen oxide in exhaust gas
JPH06296869A (en) Catalyst for exhaust gas purification
WO2024203020A1 (en) Nitrous oxide decomposition catalyst and method for decomposing nitrous oxide
JPH04210241A (en) Catalyst for cleaning exhaust gas
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
JP3265605B2 (en) Exhaust gas purification catalyst carrier and method for producing the same
JPS6219895B2 (en)