JPS58202915A - Manufacture of pipe and bar by cold drawing - Google Patents

Manufacture of pipe and bar by cold drawing

Info

Publication number
JPS58202915A
JPS58202915A JP8616382A JP8616382A JPS58202915A JP S58202915 A JPS58202915 A JP S58202915A JP 8616382 A JP8616382 A JP 8616382A JP 8616382 A JP8616382 A JP 8616382A JP S58202915 A JPS58202915 A JP S58202915A
Authority
JP
Japan
Prior art keywords
temperature
treatment
straightening
pipe
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8616382A
Other languages
Japanese (ja)
Other versions
JPH0353045B2 (en
Inventor
Takashi Morikawa
隆 森川
Mitsuhiro Suzuki
三博 鈴木
Tadahisa Kudo
工藤 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8616382A priority Critical patent/JPS58202915A/en
Publication of JPS58202915A publication Critical patent/JPS58202915A/en
Publication of JPH0353045B2 publication Critical patent/JPH0353045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To eliminate annealing and relubrication treatment and reduce manufacturing cost, by straightening a pipe or bar material continuously and in sequence, directly after its cold drawing, at the temperature higher than its transition temperature of brittleness. CONSTITUTION:When a material is drawn through a die, the temperature of the material rises due to a working heat, resulting from the deformation of the material and the friction between the material and tools, to the temperature higher than its transition temperature of brittleness. Accordingly, when the drawn material is straightened continuously in sequence directly after its drawing, the processing is performed naturally in the temperature region higher than its transition temperature of brittleness, and the annealing and relubrication treatment of the material can be eliminated.

Description

【発明の詳細な説明】 この発明は、冷間でダイ7の中を引抜いて所要寸法の管
棒材を得る冷間引抜き加工にょる管棒材の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a tube bar by cold drawing through a die 7 to obtain a tube bar of desired dimensions.

たとえばこの方法で管を製造する場合、1回の引抜きに
許容される加工度は、棒材の減面率に相当する外周の断
面積比(以下これを単に加工度と称す)で表わして、4
5%が限度とされている。
For example, when manufacturing a pipe using this method, the degree of work allowed for one drawing is expressed as the ratio of the cross-sectional area of the outer periphery (hereinafter referred to simply as the degree of work), which corresponds to the area reduction rate of the bar material. 4
The limit is set at 5%.

したがって、素材と製品の寸法差が小さい場合には1回
の引抜きで加工を終了できることもあるが、一般には加
工を複数回に分け、材料寸法を段階的に製品寸法に近づ
けてゆくことが行われる。引抜き加工を複数回に分けて
行う場合の作業順序を第1図に例示する。
Therefore, if the dimensional difference between the material and the product is small, it may be possible to complete the process in one drawing process, but in general, the process is divided into multiple steps to gradually bring the material dimensions closer to the product dimensions. be exposed. FIG. 1 shows an example of the work order when the drawing process is performed in multiple steps.

引抜き加工を複数回に分けて行う場合、加工毎に材料に
加工硬化と曲りが生じる。
When the drawing process is performed in multiple steps, work hardening and bending occur in the material each time the drawing process is performed.

加工硬化に対しては、これを放置すると、次回の引抜き
が困難となるので、加工を終えてから次の加工までの間
に途中焼鈍と呼ばれる軟化焼鈍を行うのがよいとされて
いる(第1図参照)。
Regarding work hardening, if left untreated, the next drawing process will become difficult, so it is said that it is better to perform a softening annealing called intermediate annealing between the end of processing and the next processing. (See Figure 1).

曲りについては、材料に曲フが生じると、■その取り扱
いが困難になる。■途中焼鈍や成品熱処理において炉内
に材料がうまく整列せず、炉の収容効率を悪化させる。
Regarding bending, if a bend occurs in the material, ■ it becomes difficult to handle it. ■Materials are not properly aligned in the furnace during intermediate annealing or heat treatment of finished products, which deteriorates the storage efficiency of the furnace.

0曲りが蓄積された場合には、成品熱処理後の精整作業
において材料に苛酷な加工が加わり、製品の降伏強度(
Y、 P )の低下や硬度上昇を招き、寸法変化が生じ
ることもある。
If zero bending is accumulated, the material will be subjected to severe processing during finishing work after heat treatment of the finished product, and the yield strength (
This may lead to a decrease in Y, P) and an increase in hardness, resulting in dimensional changes.

このようなことから、1回の引抜き加工を終える毎に材
料に曲シ矯正を行うのが通例となっている(第1図参照
)。
For this reason, it is customary to straighten the material after each drawing process (see Figure 1).

ところが、この曲り矯正においては材料にしばしば内面
割れか生じる。
However, this straightening process often causes internal cracks in the material.

本発明の目的は、この曲り矯正に伴う管材の内面割れを
防止し、合せて引抜き加工間の途中焼鈍を不要ならしめ
るとともに、途中焼鈍の後で行われる管材表面の再清浄
処理や再潤滑処理を不要ならしめる管材の製造方法を提
供することにるる。
The purpose of the present invention is to prevent inner surface cracking of the pipe material caused by straightening the bend, and also to eliminate the need for intermediate annealing between drawing processes, as well as to perform recleaning and relubrication treatment on the surface of the pipe material after the intermediate annealing. The purpose of the present invention is to provide a method of manufacturing a pipe material that eliminates the need for.

なお、棒材においては管材のような内面割れは生じない
。しかしながら、割れに至らないまでも棒材が曲り矯正
によって加工硬化を起すことは事実である。
It should be noted that internal cracks do not occur in bar materials as they do in tube materials. However, it is true that work hardening of the bar material occurs due to bending straightening even if it does not lead to cracking.

本発明の今1つの目的は、この曲り矯正に伴う棒材の加
工硬化および/または脆性破壊を防止して、棒材の途中
焼鈍と再清浄処理、再潤滑処理とを不要ならしめる棒材
の製造方法を提供することにある。
Another object of the present invention is to prevent work hardening and/or brittle fracture of the bar material caused by straightening the bending material, thereby eliminating the need for intermediate annealing, recleaning treatment, and relubrication treatment of the bar material. The purpose is to provide a manufacturing method.

以下、本1発明を管材について詳説する。Hereinafter, the first invention will be explained in detail regarding the tube material.

従来の管材の内面割れに引抜き加工後の曲り矯正加工で
起る。この加工は、従来はもっばら冷間で行われていた
。それは□・;従来の冷間引抜き加工による管材の製造
方法がバッチ式であったことによる。すなわち、従来に
おいては、所定本数の材料を引抜いた後、これらを−ま
とめにして曲り矯正工程に送るため、引抜きによって昇
温した材料が曲、り矯正までに冷却され、結果的に冷間
で曲り矯正を受けることになるのである。ところが、引
抜き加工を受けた材料は、その加工により脆性遷移温度
を上昇させ、常温では非常に脆くなっている。従来の曲
ル矯正において材料が内面割れを起すのは、材料が常温
で非常に脆くなっていること、この脆い常温域で曲り矯
正が行われることの2点が原因である。そうして、この
内面割れは、強度の引抜き加工を受けた材料はど発生し
ゃすい。
This occurs when conventional pipe materials undergo bend straightening after drawing. This processing has conventionally been carried out mostly cold. This is because the conventional manufacturing method for pipe materials by cold drawing was a batch method. In other words, in the past, after drawing a predetermined number of materials, they were bundled together and sent to the bend straightening process, so the material heated up by drawing was cooled down before bend straightening, and as a result, it was The bend will be corrected. However, materials that have been subjected to drawing processing have a brittle transition temperature raised by the processing, making them extremely brittle at room temperature. The reason that internal cracks occur in the material during conventional bend straightening is that the material is extremely brittle at room temperature, and the bend straightening is performed in this brittle room temperature range. This inner surface cracking is more likely to occur in materials that have undergone intense drawing processing.

一方、引抜き加工の加工1回当、りの加工度は、前述し
たとおり、45%が限度である。その理由は、硬さ等の
いわゆる一般加工性が関与していることも事実であるが
、もっばら上記内面割れにあるとされている。すなわち
、45%を超える引抜き加工を受けた材料は、途中焼鈍
なしでは、曲り矯正を受けることによって内、面割れを
生じる危険111.1 性が極めて高いのである。言いかえれば、途中焼鈍は、
本来的には材料の加工硬化を取り除いてその加工性を高
めることを目的とするが、冥際的、直接的には材料の内
面割れを防止する役割を果しているのである。そうだと
すると、材料の内面割れを途中焼鈍以外の手段で防止す
ることができれば、実際上、途中焼鈍は不要となる。
On the other hand, the degree of processing per drawing process is limited to 45% as described above. Although it is true that the so-called general workability such as hardness is involved, the reason for this is mainly due to the above-mentioned internal cracking. In other words, materials that have undergone a drawing process of more than 45% have an extremely high risk of causing internal surface cracks when subjected to bend straightening without intermediate annealing. In other words, the intermediate annealing is
Its original purpose is to remove the work hardening of the material and improve its workability, but directly, it plays the role of preventing internal cracks in the material. If this is the case, if internal cracking of the material can be prevented by means other than intermediate annealing, intermediate annealing will actually become unnecessary.

本発明者らは、斯かる前提に立って、種々の笑験研究を
行った結果、冷間引抜き加工後の曲シ矯正を当該材料の
保有する脆性遷移温度以上の温度域で行って、当該材料
の内面割れさえ防止すれば、当該材料の途中焼鈍が省略
でき、合せて途中焼鈍に伴う材料表面の再清浄処理と再
潤滑処理が省略できることを知見した。
Based on this premise, the present inventors conducted various experimental studies, and as a result, the present inventors performed straightening of curvature after cold drawing in a temperature range above the brittle transition temperature of the material, and It has been found that as long as the inner surface cracks of the material are prevented, intermediate annealing of the material can be omitted, and at the same time, recleaning and relubrication of the material surface accompanying intermediate annealing can be omitted.

本発明の方法は、上記知見に基づきなされたもので、冷
間引抜き加工後の曲り矯正を当該材料の保有する脆性遷
移温度以上の温度域で行い、これによって管材にあって
は曲り矯正に伴う内面W’lれを防止し、棒材にあって
は曲り矯正に伴う加工硬化を防止し、これによってこれ
ら材料の途中焼鈍を不要ならしめるとともに、途中焼鈍
に伴う材料表面の再清浄処理と再潤滑処理とを不要なら
しめる冷間引抜き加工による管棒材の製造方法である。
The method of the present invention has been made based on the above knowledge, and involves straightening the bend after cold drawing in a temperature range above the brittle transition temperature of the material, thereby making it possible to straighten the bend of the pipe material. This prevents the inner surface W'l from warping and prevents the work hardening of bar materials due to bend straightening, thereby eliminating the need for intermediate annealing of these materials, as well as re-cleaning and re-cleaning the material surface due to intermediate annealing. This is a method for manufacturing tube and bar materials by cold drawing that eliminates the need for lubrication treatment.

本発明の方法において、材料表面の再清浄処理と再潤滑
処理とが省略できる理由は次のとおりである。
The reason why the recleaning treatment and relubrication treatment of the material surface can be omitted in the method of the present invention is as follows.

冷間引抜き加工による管棒材の製造方法においては、途
中焼鈍や曲り矯正とは別に潤滑処理が打付われる(第1
図参照)。これは、ダイヌ寿命を高め、更にに製品の品
質を高めるため、管材の内外面や棒材の外面に焼酸塩皮
膜、蓚酸塩皮膜等を下地としだ化成処理皮膜を形成する
もので、引抜き前に行われる。材料表面に形成された皮
膜は、例えば燐酸塩皮膜の場合で8回程度の引抜きに耐
えると系れているが、従来においては、引抜き間に途中
焼鈍を行うため、その都度、皮膜を形成しなおさなけれ
ばならなかった。これが再潤滑処理である。また、潤滑
処理の前には材料表面の清浄処理が必要でめり、再潤滑
処理の前には必ず再清浄処理が行われる(第1図参照)
。しかるに途中焼鈍が省略されると、皮膜を形成しなお
す必要が ・なくなる。その結果、再潤滑処理は不要と
なり、これに伴って再清浄処理も不要となるのである。
In the manufacturing method of pipe and bar materials by cold drawing, lubrication treatment is applied separately from intermediate annealing and bend straightening (first step).
(see figure). This is a process in which a chemical conversion coating is formed on the inner and outer surfaces of the pipe material and the outer surface of the bar using a sintered salt film, oxalate film, etc. as a base, in order to extend the lifespan of the pipe and further improve the quality of the product. done before. The film formed on the surface of the material, for example, in the case of a phosphate film, is said to be able to withstand about 8 drawings, but in the past, intermediate annealing was performed between drawings, so the film was formed each time. I had to fix it. This is the relubrication process. In addition, it is necessary to clean the material surface before lubrication treatment, and recleaning treatment is always performed before relubrication treatment (see Figure 1).
. However, if intermediate annealing is omitted, there is no need to re-form the film. As a result, re-lubrication treatment is no longer necessary, and accordingly, re-cleaning treatment is also no longer necessary.

そうしてこの、途中焼鈍の省略に伴って化成処理皮膜の
寿命が最大限活用できるようになる点は、途中焼鈍を省
略できる点と並んで本発明の大きな特徴の1つである。
The fact that the lifetime of the chemical conversion coating can be maximized by omitting intermediate annealing is one of the major features of the present invention, as well as the ability to omit intermediate annealing.

なお、管棒材の冷間引抜きでは、化成処理被膜による潤
滑処理に代えて、引抜き中に潤滑油を材料表面に直接供
給することが行われるが、この潤滑処理を行う場合にあ
っても本発明は適用可能である。この場合、潤滑処理は
省略できないが、本発明の効果は何もこの潤滑処理の省
略に止まるものではなく、他に多くの効果を有し、これ
らの効果は潤滑油による潤滑処理の場合にあっても確笑
に得られるものである。
In addition, in cold drawing of tube and bar materials, lubricating oil is supplied directly to the material surface during drawing instead of lubrication treatment using a chemical conversion coating, but even when this lubrication treatment is performed, the main The invention is applicable. In this case, the lubrication treatment cannot be omitted, but the effects of the present invention are not limited to the omission of this lubrication treatment, but have many other effects, and these effects are not present in the case of lubrication treatment using lubricating oil. It's definitely something you can get a laugh out of.

本発明の方法において、曲り矯正を当該材料の保有する
脆性遷移温度以上の温度域で行うには、引抜き後の材料
を強制加熱する、引抜きによって生じた加工熱を利用す
るす□法が可能であるが、熱経済からしても、また作業
能率面から考えても後者の方法のほうが好ましい。
In the method of the present invention, in order to straighten the bend in the temperature range above the brittle transition temperature of the material, it is possible to forcibly heat the material after drawing, or use the processing heat generated by drawing. However, the latter method is preferable in terms of thermal economy and work efficiency.

すなわち、ダイスの中を材料が引抜かれると、材料の変
形、材料と工具との摩擦等による加工熱によって材料温
度が上る。第2図は、外径が8411肉厚8.5Wの低
炭素鋼からなる素管を引抜いた場合の、加工度と材料温
度との関係を、当該材料の保有する脆性遷移温度ととも
に図示したものである。この図面によると、引抜きを受
けた材料は、その脆性遷移温度よ、り高い材料温度を保
有しているという、極めて興味ある事実のあることがわ
かる。したがって、引抜かれた材料を順次連続的に曲り
矯正すれば、自然とその脆性遷移温度以上の温度域で加
工が行われ、しかもこの種の製造方法の連続化が実現さ
れるのである。このことが従来知見されていなかったの
は、冷間引抜き加工による管棒材の製造方法が、前述し
たとおり、もつばらバッチ式で行われていたためと考え
られる。
That is, when the material is drawn through the die, the temperature of the material increases due to processing heat due to deformation of the material, friction between the material and the tool, and the like. Figure 2 shows the relationship between workability and material temperature when a raw tube made of low carbon steel with an outer diameter of 8411 and a wall thickness of 8.5W is drawn, together with the brittle transition temperature of the material. It is. This figure reveals the very interesting fact that a material that has undergone pultrusion has a material temperature that is higher than its brittle transition temperature. Therefore, if the drawn material is straightened one after another, processing will naturally occur in a temperature range above its brittle transition temperature, and this type of manufacturing method can be made continuous. The reason why this has not been known in the past is thought to be because the method of manufacturing tube and bar materials by cold drawing was carried out in a batch-wise manner, as described above.

そうしてこの点、すなわち、何ら熱源を要することなく
材料がその脆性遷移温度以上で曲り矯正され、合せて製
造方法が連続化される点も、本発      1・明の
大きな特徴である。
This point, that is, the fact that the material can be straightened at temperatures above its brittle transition temperature without requiring any heat source, and that the manufacturing method can be made continuous is also a major feature of the present invention.

第8図は、引抜き加工熱を利用して曲り矯正を行う場合
の抽伸機、曲り矯正機間の設備例をボしたので、(1)
は抽伸機フレーム、(2)はキャリッジを表わしている
。抽伸機において引抜きを完了した材料は、キャリッジ
(2)のりクラフトテーブル(3)で受ケられ1.、デ
リバリ−チェーントランスファー(4)で横送りされる
。次いで、トレイトランスファー(5)で曲り矯正機(
6)の入口チープルにすくい上げられ、横送りチェーン
(7)で材料温度かその脆性遷移温度を下回らない間に
曲り矯正機(6)の装入口に運ばれる。
Figure 8 shows an example of the equipment between the drawing machine and the bend straightening machine when straightening the bend using drawing process heat, so (1)
(2) represents a drawing machine frame, and (2) a carriage. The material that has been drawn in the drawing machine is received by the carriage (2) and the glue craft table (3).1. , and then traversed by the delivery chain transfer (4). Next, the tray transfer (5) is used to straighten the bend (
It is scooped up into the inlet cheeple of 6) and conveyed by a cross-feeding chain (7) to the charging port of the straightener (6) while the material temperature does not fall below the material temperature or its brittle transition temperature.

なお、材料の加工熱を利用する場合にあってもその温度
低下を阻止するために補助熱源の使用を妨げないことは
言うまでもない。
It goes without saying that even when processing heat of the material is used, an auxiliary heat source may be used to prevent the temperature from decreasing.

なおまた、引抜き後の材料を強制加熱する場合にあって
は、当然にバッチ式の製造方法が可能である。
Furthermore, in the case of forcibly heating the material after drawing, a batch-type manufacturing method is of course possible.

本発明の方法において、曲り矯正加工温度の上限は30
0℃程度とする。
In the method of the present invention, the upper limit of the bend straightening processing temperature is 30
The temperature should be around 0℃.

これより高温に材料を加熱すると、潤滑皮膜の熱分解が
起り、途中焼鈍を行うのと差がなくなるからでおる。
This is because if the material is heated to a higher temperature than this, thermal decomposition of the lubricating film will occur, and there will be no difference from performing intermediate annealing.

他の製造条件については、この種の製造方法の一般条件
に準じて定めればよい。
Other manufacturing conditions may be determined according to general conditions for this type of manufacturing method.

次に、本発明の実施例を従来例と比較して説明する。Next, an embodiment of the present invention will be described in comparison with a conventional example.

〔比較試験1〕 外径84fi、肉厚8.5fiの低炭素Si、−Atキ
ルドm鋼管を素管として、従来法、比較法および本発明
法により、外径19.05ff、肉厚2.11四の一般
熱交換チューブを製造した。各法の製造手順および製造
結果を第1表に示す。
[Comparative Test 1] A low carbon Si, -At killed m steel pipe with an outer diameter of 84fi and a wall thickness of 8.5fi was used as a raw pipe, and was tested by the conventional method, the comparative method, and the method of the present invention to have an outer diameter of 19.05ff and a wall thickness of 2.5fi. 114 general heat exchange tubes were manufactured. The manufacturing procedure and manufacturing results of each method are shown in Table 1.

従来法においては、素管を清浄処理、潤滑処理した後、
1回目の引抜き加工を行った。この加工における加工度
は37%で、加工後の材料寸法は外径26u、肉厚2.
9flであった。次いで、この引抜き加工で生じた曲り
を取、り除くため、冷間で曲り矯正を行い、しかる後、
途中焼鈍と再清浄処理、再潤滑処理とを行い、2回目の
引抜き加工により製品寸法を得た。2回目の引抜き加工
における加工度は48%で、1回目の引抜き加工からの
通算加工度は63%であった。2回目の引抜き加工を終
えた材料には、「冷間」で曲り矯正を行った後、成品熱
処理、精整を行った。
In the conventional method, after cleaning and lubricating the raw pipe,
The first drawing process was performed. The processing degree in this processing is 37%, and the material dimensions after processing are outer diameter 26u and wall thickness 2.
It was 9fl. Next, in order to remove the bends caused by this drawing process, the bends are straightened by cold, and after that,
Intermediate annealing, recleaning treatment, and relubrication treatment were performed, and product dimensions were obtained by the second drawing process. The working degree in the second drawing process was 48%, and the total working degree from the first drawing process was 63%. After the second drawing process, the material was straightened by a "cold" process, and then heat treated and refined.

1回目と2回目の引抜き加工における加工度を45%以
下に抑え、かつ両加工間で途中焼鈍を行っているため、
材料に内面割れは生じなかったが、この途中焼鈍、およ
びこれによって失われた化成処理被膜を形成しなおすた
めの再清浄処理、再潤滑処理には、冷間作業コストの2
0%が費された。
Because the degree of work in the first and second drawing processes is kept to 45% or less, and annealing is performed in between the two processes,
Although no internal cracks occurred in the material, the intermediate annealing, as well as the recleaning and relubrication treatments to re-form the chemical conversion coating that was lost due to this, required 20% of the cold work cost.
0% spent.

比較法においては、1回目の引抜き加工を終えた材料に
「冷間」で曲、り矯正を行い、その後、途中焼鈍、再清
浄処理、再潤滑処理を省略して直接2回目の引抜き加工
を行い、更にその後、「冷間」で2回目の曲り矯正を行
った。
In the comparative method, after the first drawing process, the material is straightened by "cold" and then directly subjected to the second drawing process, omitting intermediate annealing, recleaning, and relubrication. After that, a second bend straightening was performed in a "cold" manner.

1回目の引抜き加工における加工度を45%以下に抑え
ていることから、1回目の曲り矯正では内面割れが生じ
なかったが、その後の途中焼鈍を省略して2回目の引抜
き加工を行い、途中焼鈍のない状態で加工度が64%と
なって45%を超えたために、2回目の曲り矯正の際に
内面割れを生じた。
Since the degree of work in the first drawing process was kept to 45% or less, no internal cracks occurred in the first bend straightening process, but after that, the intermediate annealing was omitted and the second drawing process was performed. Since the workability was 64% without annealing and exceeded 45%, internal cracking occurred during the second bend straightening.

本発明法においては、途中焼鈍と再清浄処理、再潤滑処
理とを省略するとともに、2回の曲り矯正を、当該材料
の脆性遷移温度である95℃を超えた130℃で行った
。その結果、1回目の曲り矯正は勿論のこと、途中焼鈍
を省略した2回目の曲り矯正においても内面割れを先じ
なかった。そして、途中焼鈍および再清浄処理、再潤滑
処理を省略できたことにより、冷間作業コストを従来例
と較べて20%節減できた。
In the method of the present invention, intermediate annealing, recleaning treatment, and relubrication treatment were omitted, and the bending straightening was performed twice at 130°C, which exceeded 95°C, which is the brittle transition temperature of the material. As a result, not only the first bend correction, but also the second bend correction in which the intermediate annealing was omitted, did not cause any internal cracks. Furthermore, by omitting intermediate annealing, recleaning treatment, and relubrication treatment, cold work costs could be reduced by 20% compared to the conventional example.

1 第   1   表 第   2   表 〔比較試験2〕 外径42.7m、肉厚3.21の低伏素Atキルド鋼管
を素管として、従来法、比較法および本発明法により、
外径25.4a、肉厚2.114の低温用熱交換チュー
ブを製造した、 各法の製造手順および製造結果を第2表に示すが、この
比較試験においても本発明法は、途中焼鈍を省略してい
るにもかかわらず内面割れが生じず、製造コスト面で著
しく優れることを確認した、。
1 Table 1 Table 2 [Comparative Test 2] A low iron killed steel pipe with an outer diameter of 42.7 m and a wall thickness of 3.21 mm was used as a base pipe, and the conventional method, the comparative method, and the method of the present invention were used.
Table 2 shows the manufacturing procedure and manufacturing results of each method that produced a low-temperature heat exchange tube with an outer diameter of 25.4a and a wall thickness of 2.114mm.In this comparative test, the method of the present invention also showed that the method of the present invention did not require intermediate annealing. Despite the omission, no internal cracking occurred and it was confirmed that it was significantly superior in terms of manufacturing cost.

なお、本発明者は、冷間引抜き加工による棒材の製造方
法において、材料の曲り矯正をその脆性遷移温度以上で
行うことにより、途中焼鈍、史には再清浄処理、再潤滑
処理を省略できることも確認している。
In addition, the present inventor has discovered that in a method for manufacturing a bar material by cold drawing, by straightening the material at a temperature above its brittle transition temperature, intermediate annealing, recleaning treatment, and relubrication treatment can be omitted. has also been confirmed.

以上の説明から明らかなように、本発明は冷間引抜き加
工による管棒材の製造において、■途中:1′: 焼鈍、再潤滑処理等を省略せしめ、これによって製造コ
ストの大巾低減を図る。■曲げ矯正に伴う材料の内面割
れや加工硬化が防止きれ、材料の加工度を大きくとるこ
とができる。■曲げ矯正に際して材料の加熱源が不要で
、しかも製造工程の連続化が突環される。■潤滑処理の
回数が減少することから、引抜き加工後の化成処理被膜
の残り量が減少し、成品の表面清浄度を向上させる等、
工業上多大の効果を奏するものでろ、6゜
As is clear from the above description, the present invention eliminates intermediate steps such as annealing, relubrication, etc. in the production of pipe and bar materials by cold drawing, thereby significantly reducing manufacturing costs. . ■Inner surface cracking and work hardening of the material due to bending correction can be prevented, and the degree of processing of the material can be increased. ■No heating source is required for the material during bend straightening, and the manufacturing process can be made continuous. ■Since the number of lubrication treatments is reduced, the amount of chemical conversion coating remaining after drawing process is reduced, improving the surface cleanliness of the finished product, etc.
It will have a great industrial effect, 6゜

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷間引抜き加工による管材製造方法の作業順序
を例示するフローシート、第2図は管を引抜き加工した
場合の加工度と材料温度との関係を、当該材料の脆性遷
移温度とともに示すグラフ、第8図は引抜き加工熱を利
用して曲り矯正を行う場合の抽伸機、曲り矯正機間の設
備例を示す模式図中、l:抽伸機フレーム、2:キャリ
ッジ、8:リフラフトテーブル、4:デリバリ−チェー
ントランスファ−15:トレイトフンヌファー、6:曲
り矯正機、7:横送りチェーン。 (5 第  11!l 第  2!I 第3図
Figure 1 is a flow sheet illustrating the work order of a method for manufacturing pipe materials by cold drawing, and Figure 2 shows the relationship between the degree of work and material temperature when a pipe is drawn, together with the brittle transition temperature of the material. Graph, Figure 8 is a schematic diagram showing an example of equipment between a drawing machine and a bend straightening machine when straightening a bend using drawing process heat, l: drawing machine frame, 2: carriage, 8: refraft table. , 4: Delivery chain transfer 15: Trait funnel, 6: Straightening machine, 7: Transverse feed chain. (5 11!l 2!I Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)冷間引抜き加工後の曲、り矯正を当該材料の保有
する脆性遷移温度以上の温度域で行うことを特徴とする
冷間引抜き加工にょる管棒材の製造方法。
(1) A method for producing a pipe bar material by cold drawing, characterized in that straightening of the bend after cold drawing is performed in a temperature range equal to or higher than the brittle transition temperature of the material.
JP8616382A 1982-05-20 1982-05-20 Manufacture of pipe and bar by cold drawing Granted JPS58202915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8616382A JPS58202915A (en) 1982-05-20 1982-05-20 Manufacture of pipe and bar by cold drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8616382A JPS58202915A (en) 1982-05-20 1982-05-20 Manufacture of pipe and bar by cold drawing

Publications (2)

Publication Number Publication Date
JPS58202915A true JPS58202915A (en) 1983-11-26
JPH0353045B2 JPH0353045B2 (en) 1991-08-13

Family

ID=13879073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8616382A Granted JPS58202915A (en) 1982-05-20 1982-05-20 Manufacture of pipe and bar by cold drawing

Country Status (1)

Country Link
JP (1) JPS58202915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962273A (en) * 2012-11-23 2013-03-13 中材科技(南通)有限公司 Method for manufacturing cold-drawing ultrathin seamless steel tube for vehicle glass fiber fully-wrapping gas cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962273A (en) * 2012-11-23 2013-03-13 中材科技(南通)有限公司 Method for manufacturing cold-drawing ultrathin seamless steel tube for vehicle glass fiber fully-wrapping gas cylinder

Also Published As

Publication number Publication date
JPH0353045B2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
JPWO2009051037A1 (en) Manufacturing method of steel pipe with inner rib and steel pipe with inner rib
CN106944494A (en) A kind of preparation method of heavy caliber thick wall seamless titanium alloy barrel body
CN112453298B (en) Cold working method of high-temperature alloy rod and wire for fastener
CN114737132A (en) N06600 iron-nickel base alloy hot continuous rolling plate coil production process
CN111809080B (en) Preparation method of TC2 alloy thin-wall extruded section
JPS58202915A (en) Manufacture of pipe and bar by cold drawing
CN105080971B (en) The method for preparing titanium alloy seamless pipe
CN114669623B (en) Forming method of oval-section thin-wall non-magnetic stainless steel vacuum pipeline
CN104152746A (en) Manufacturing technique for improving longitudinal plastic strain ratio of titanium plate
CN114346605A (en) Anti-cracking machining process for F91 large valve body die forging
JPH05230547A (en) Production of oil tempered wire for spring
CN113414545A (en) Fine and bright flat steel processing method
CN105648176A (en) Hot processing technique for restraining martensite phase transformation during austenitic stainless steel deformation
JP2862947B2 (en) Manufacturing method of high speed tool steel wire rod
CN110964881A (en) Process for straightening by utilizing internal stress of heat treatment
KR100259983B1 (en) Method for minimizing thermal deformation of metal
CN112058938B (en) Preparation method of molten salt corrosion resistant nickel-molybdenum-chromium alloy pipe fitting
JP3970678B2 (en) Surface treatment tool
JP2002212640A (en) Method for producing angular steel tube
CN109719154A (en) A kind of processing technology of band steel
JPS62161918A (en) Heat treatment line for steel pipe
JP4213567B2 (en) Wire manufacturing method
CN113500095A (en) Single-sided composite plate coil hot rolling and production process thereof
CN112176278A (en) Surface treatment technology for TD-H superhard die
CN118023863A (en) Titanium 3D curved surface profiling material processing technology