JPS58202870A - Measurement of trace gas component by gas chromatograph - Google Patents

Measurement of trace gas component by gas chromatograph

Info

Publication number
JPS58202870A
JPS58202870A JP8622982A JP8622982A JPS58202870A JP S58202870 A JPS58202870 A JP S58202870A JP 8622982 A JP8622982 A JP 8622982A JP 8622982 A JP8622982 A JP 8622982A JP S58202870 A JPS58202870 A JP S58202870A
Authority
JP
Japan
Prior art keywords
gas
component
gas component
trace
separation tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8622982A
Other languages
Japanese (ja)
Inventor
Toshihiro Ishida
利博 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP8622982A priority Critical patent/JPS58202870A/en
Publication of JPS58202870A publication Critical patent/JPS58202870A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing
    • G01N2030/407Flow patterns using back flushing carrying out another separation

Abstract

PURPOSE:To enable a highly accurate estimation of trace gas component B by a method wherein a sample gas to containing a trace gas component B in a gas component A flows to first column and immediately before the outflow of the component B, a carrier gas is reversed to the first column and sent to the second column. CONSTITUTION:When first and second columns 2 and 3 are used to analyze a sample gas containing a trace gas component B in a gas component A, first, the sample gas 6 is introduced to the first column to release the component A previously flowing out until the time immediately before the component B is allowed to flow out. Then, a carrier gas is reversed to the column 2 from a tube 8 and introduced to the second column 3 from a pipe 9 so that the peak of the component B following the component A previously flowing is set at the valley 14. This enables clear separation and detection to improve the limit to the estimation of the trace component B to 2ppm from 10ppm.

Description

【発明の詳細な説明】 本発明はガスクロマトグラフを用いて、ガス成分A中に
含まれている微量ガス成分Bにつき、その定量分析を行
なうことができる測定方法に関する◎ 従来から用いられているこの種の測定方法は、81図に
示す如きガスクロマトグラフaを用いて行なわれている
が、当該ガスクロマトグラフaはキャリヤーガスボンベ
bから圧力調整器Cを介して一定流量のキャリヤーガス
dt送出すると共に、試料導入口eから瞬時だけ試料ガ
スfを流入させることにより、当該ガスft上記キャリ
ヤーガスdによって、選定された充填物の詰められてい
る分離管gに導入し得るよ・う構成されている。
[Detailed Description of the Invention] The present invention relates to a measurement method capable of quantitatively analyzing trace gas component B contained in gas component A using a gas chromatograph. The method for measuring the species is carried out using a gas chromatograph a as shown in Fig. By momentarily injecting the sample gas f from the inlet e, the sample gas f can be introduced into the separation tube g filled with a selected filler by means of the carrier gas d.

次に導入された試料ガスfは、当該分離管g内にあって
キャリヤーガスdにより展開され、試料ガスfの各成分
が、上記充填物に対する吸着性の違いによって生じた移
動速度の差異によって、夫々の成分に分離されること\
なり、この分離されたガス成分を検出器りによって検知
し、当該検出器りから発せられる検出電気信号を測定回
路iに導入し、これにより当該ガス成分の定性、定量分
析が既知の通快行なわれるのであり、図中3は恒温槽、
kは測定回路iに接続した記録計である。
The sample gas f introduced next is expanded by the carrier gas d in the separation tube g, and each component of the sample gas f is moved at different speeds due to differences in adsorption to the filling material. To be separated into each component\
Then, this separated gas component is detected by a detector, and the detected electric signal emitted from the detector is introduced into the measurement circuit i, whereby qualitative and quantitative analysis of the gas component can be performed using known conventional methods. 3 in the figure is a constant temperature bath,
k is a recorder connected to the measuring circuit i.

ところが上記通常の測定方法によるときは、試料ガスf
が、主要成分であるガス成分A中にPPMオーダの微量
ガス成分Bを含んでいるような場合、すなわちガス成分
Aが微量ガス成分Bに比し非常に多いとき、両成分を完
全に分離することができず、記録計kに表示される第2
図げ)のガスクロマドグラスから明らかな通り、微量ガ
ス成分Bがガス成分Aの後方位に重畳した集積状態とし
て流出してくるため、当該微量ガス成分Bの定量分析が
不能となってしまう〇そこで分離管gを長くして分離を
充分に行なわせるようにすることも考えられるが、この
場合には分析時間が長くなるだけでなく、これでも完全
な分離はできず、しかも同図の(ロ)に示す如く両ガス
戊分のピークの高さが低くなって、時間T方向の巾が大
きくな抄、このような配慮では微量ガス成分Bを測定す
ることができない。
However, when using the above-mentioned normal measurement method, the sample gas f
However, when gas component A, which is the main component, contains trace gas component B of PPM order, that is, when gas component A is much larger than trace gas component B, the two components are completely separated. The second one displayed on the recorder k
As is clear from the gas chromad glass shown in Fig. 1, the trace gas component B flows out as a superimposed accumulation behind the gas component A, making quantitative analysis of the trace gas component B impossible. It may be possible to make the separation tube g longer to ensure sufficient separation, but in this case not only would the analysis time become longer, but even this would not result in complete separation; ), the heights of the peaks of both gases are low and the width in the time T direction is large, and with such consideration it is not possible to measure the trace gas component B.

そこで上記通常方法の欠陥を解消するため、既にプレカ
ット法と呼ばれる手段が実施されている。
Therefore, in order to eliminate the deficiencies of the above-mentioned conventional method, a means called a pre-cut method has already been implemented.

当該方法は第3図に示す通り、前記のよう番こ分離管g
に試料ガスfを導入した後、間管gから先行して流出し
てくるガス成分への大量部分を、分離管gの放出管路t
から放出してしまい、微量ガス成分Bもガス成分人と共
に流出してくるようになる直前にあって、放出管路tを
閉じ、爾後流出してくる同図のmに示された後続試料ガ
スな、第2の分離管g′に導入するのである。
As shown in Fig. 3, the method is as follows:
After introducing the sample gas f into the separation tube g, a large portion of the gas components flowing out from the separation tube g is transferred to the discharge tube t of the separation tube g.
Just before the trace gas component B begins to flow out together with the gas component, the release pipe t is closed, and the subsequent sample gas shown in m in the same figure flows out. In other words, it is introduced into the second separation tube g'.

このよう番こすることにより確かに後続試料ガスmの微
量ガス成分Bに対するガス成分Aのガス量が低下し、こ
の結果分析効率を向上できること\なるが、この場合で
も分析可能な微量ガス成分は10 PPM程度までソあ
って、そわよりも微量であるときは第3図のnに示す分
離試″1・・。
By rubbing in this way, the amount of gas component A relative to trace gas component B in the subsequent sample gas m is certainly reduced, and as a result, the analysis efficiency can be improved. However, even in this case, the trace gas components that can be analyzed are If the amount is up to about 10 PPM, and the amount is smaller than the amount of foam, perform the separation test "1" shown in Figure 3, n.

料ガスの如く、そのガスクロマトグラフはガス成分・A
のテーリング上に微量ガス成分Bが重畳されて、同成分
Bの正しい測定はできなくなる。
Like a raw gas, the gas chromatograph detects the gas component A.
The trace gas component B is superimposed on the tailing of the gas, making it impossible to measure the same component B correctly.

また上記プレカット法と共に、既に実施されている測定
手段にバックフラッシュ法がわるO上記バックフラッシ
ュ法は第4図に示す如く試料ガスfが、ガス成分Aより
も分離管gにおける通過速度の速い微量ガス成分Bと、
上記入よ塾も通過速度の遅い第3ガス成分Cとの混合ガ
スであるような場合に採択して好適な測定手段であり、
この場合には前記のように分離管gに試料ガスfを導入
後、間管・gから先行して流出してくる微量ガス成分B
と、後続流出するガス成分Aの少量が通過した時点で、
キャリヤーガスを逆送路0から分離管gの逆方向へ流入
し、第4図のpに示したガスクロマトグラλにあって、
一点鎖線qの左側に示されている残留ガス、すなわちガ
ス成分Aの大量部分と第3ガス臨分Cとを、分離管gの
入口側に設けられた逆流放出路rから放出してしまい、
上記一点鎖線の右側に示され部分すなわち図中Sだけを
、第2の分離管g′に導入するので6る0 従って上記分離管g′に導入される試料ガスは、その微
量ガス成分Bと少量としたガス成分Aとに完全に分離さ
れ、当該成分Bの定量分析を可能とするとと\なるので
おるが、当該バンクフラッシュ法により分析効率を向上
し得るのは、上記の如き特殊な成分をもつ試料ガスの場
合だけであり、前記プレカット法につき説示したような
試料ガスに対しては無力となってしまうO 本発明は上記の諸問題に鑑み検討されたもので、前記し
たプレカット法とバックフラッシュ法における手法の一
部を採択するのであるが、プレカット法によりガス成分
人の大量部分を放出した後、分離管の残留ガスを第2の
分離管に送致することなく、バックフラッシュ法のよう
に、当該残留ガスを逆流させるのであり、しかもこの逆
流ガスを放出してしまうのではなく、当該逆流ガスを第
2の分離管に導入させることにエリ、2PPM程度まで
の微量ガス成分につきその測定を可能にしようとするも
のである。
In addition to the above-mentioned pre-cut method, the backflush method replaces the measurement means already in use.As shown in FIG. gas component B;
The above-mentioned Iryojuku is also a suitable measurement means to be adopted when the gas is mixed with the third gas component C, which has a slow passage speed.
In this case, after introducing the sample gas f into the separation tube g as described above, the trace gas component B flows out from the separation tube g in advance.
When a small amount of gas component A subsequently flows out,
The carrier gas flows in the opposite direction of the separation tube g from the reverse feed path 0, and is placed in the gas chromatograph λ shown at p in FIG.
The residual gas shown on the left side of the dashed line q, that is, a large portion of gas component A and a third portion of gas C, is released from the backflow discharge path r provided on the inlet side of the separation tube g.
Since only the portion shown on the right side of the dashed-dotted line, that is, S in the figure, is introduced into the second separation tube g', the sample gas introduced into the separation tube g' is equal to its trace gas component B. Although it is possible to completely separate gas component A into a small amount and quantitatively analyze component B, it is possible to improve the analysis efficiency by using the bank flush method for special components such as those mentioned above. The present invention was developed in view of the above-mentioned problems, and is only applicable to sample gases having a A part of the backflush method is adopted, but after releasing a large portion of the gas component by the pre-cut method, the backflush method is used without sending the residual gas in the separation tube to the second separation tube. In this way, the residual gas is caused to flow back, and instead of being released, the backflow gas is introduced into the second separation tube. The aim is to make measurements possible.

本発明を第5図によって詳記すれば、前記従来例と同じ
くガスクロマトグラフ(1)には第1分離管(2)と第
2分離管(3)を具備させると共に、第1分離管(2)
の入口側からは、試料導入口(4)にあって、キャリヤ
ーガス(5)に混入された試料ガス(6)が導入される
が、当該第1分離管(2)の出口側には放出管路(7)
とキャリヤーガス逆流路(8)とが設けられており、さ
らに前記ガスクロマトグラフと相違する点は、第1分離
管(2)の入口側に設けられた逆流送致路(9)が、前
記第2分離管(3)の入口側に連結されていることでお
る。
The present invention will be described in detail with reference to FIG. 5. Like the conventional example, the gas chromatograph (1) is equipped with a first separation tube (2) and a second separation tube (3). )
The sample gas (6) mixed with the carrier gas (5) is introduced into the sample introduction port (4) from the inlet side of the first separation tube (2), but the sample gas (6) mixed with the carrier gas (5) is introduced into the sample introduction port (4). Pipeline (7)
and a carrier gas backflow path (8), which is different from the gas chromatograph described above in that the backflow delivery path (9) provided on the inlet side of the first separation tube (2) is provided with a carrier gas backflow path (8). It is connected to the inlet side of the separation pipe (3).

上記のガスクロマトグラフ(1)を用いて本発明全実施
するには、従来例と同じく第1分離管(2)に、ガス成
分人と微量ガス成分Bとからなる試料ガス(6)を、キ
ャリヤーガス(5)の定量供給によって導入し、間管(
2)から先行して流出してくるガス成分Aを放出管路(
9)から放出する。
To fully carry out the present invention using the above gas chromatograph (1), the sample gas (6) consisting of gas components and trace gas component B is placed in the first separation tube (2) as in the conventional example, and the carrier The gas (5) is introduced by quantitatively supplying the gas (5), and the
2) Gas component A flowing out in advance from the discharge pipe (
9).

1: 上記放出は、図示のガスクロマトグラムalにあって一
点鎖線Iの右側部分におけるガス成分Aを流出させ左側
部分のガス成分Aと微量ガス成分Bが第1分離管(2)
に残留ガスとして残置されるまで継続される。
1: In the gas chromatogram al shown in the figure, the gas component A on the right side of the dashed line I flows out, and the gas component A and trace gas component B on the left side are transferred to the first separation tube (2).
This continues until it is left behind as a residual gas.

すなわちガス成分Aの大量部分を第1分離管(2)から
放出してしまい、微量ガス成分Bもガス成分Aと共に流
出してくるようになる直前で放出管路(7)を閉じる。
That is, a large amount of gas component A is released from the first separation pipe (2), and the release pipe (7) is closed just before the trace gas component B starts to flow out together with gas component A.

次にガス逆流路(8)からキャリヤーガスを送り込んで
、第1分離管(2)の逆流方向へ当該キャリヤーガスを
流すことにより、前記の残留ガスを間管(2)の入口側
から前記逆流送致管(9)によって第2分離管(3)へ
導入するのである。
Next, a carrier gas is sent from the gas reverse flow passage (8) and is caused to flow in the reverse flow direction of the first separation pipe (2), thereby removing the residual gas from the inlet side of the intermediate pipe (2) through the reverse flow. It is introduced into the second separation tube (3) by means of a delivery tube (9).

上記手法により残留ガスは当該逆流の行程によって、図
中のガスクロマトグラムazに示す通りガス成分Aの略
垂直に近いピーク部α3の右側に微量ガス成分Bが表わ
れる如き状態となり、か\る試料ガスが第2分離管(3
)を通過すること\なるから、同図0CA4に示すガス
クロマトグラへの如く、記録計には先行流出のガス成分
Aと微量ガス成分Bとが分離状態となって、その分析結
果が示されることになり、微量ガス成分Bの測定が可能
となる。
Through the above method, the residual gas is brought into a state where the trace gas component B appears on the right side of the almost vertical peak α3 of the gas component A, as shown in the gas chromatogram az in the figure, and the sample The gas passes through the second separation tube (3
), the gas component A and the trace gas component B of the preceding outflow are separated on the recorder, and the analysis results are displayed on the recorder, as shown in Figure 0CA4. This makes it possible to measure the trace gas component B.

本発明は上記のように、アルゴンとか酸素等のガス成分
Aに、窒素等の微量ガス成分Bが含まれている試料ガス
(6)を、キャリヤーガス(5)によりガスクロマトグ
ラフ(1)の第1分離管(2)に導入して、当該第1分
離管(2)から先行して分離流出されるガス成分Aを、
前記微量ガス成分Bが流出される直前まで放出させた後
、上記第1分離管(2)に残留しているガス成分人と微
量ガス成分Bとを、キャリヤーガスにより逆流させて第
2分離管(3)に導入し、当該第2分離管(3)からガ
ス成分Aの流出後に流出されてくる微貴ガス成分Bを検
出するようにしたから、試料ガス中に分離管内での通過
速度が遅い微量ガス成分Bが含まれている場合でも、ガ
ス成分Aと微量ガス成分とを分離することができ、これ
により従来法では10 PPMとされていた定量限界に
つき、5倍の精度で2PPMtで定量できることを確認
することができた。
As described above, in the present invention, a sample gas (6) containing a gas component A such as argon or oxygen and a trace gas component B such as nitrogen is transferred to the gas chromatograph (1) using a carrier gas (5). The gas component A is introduced into the first separation tube (2) and separated and discharged from the first separation tube (2) in advance,
After the trace gas component B is released until just before it is discharged, the gas components remaining in the first separation tube (2) and the trace gas component B are made to flow back through the second separation tube using a carrier gas. (3) to detect the slightly noble gas component B that flows out after the gas component A flows out from the second separation tube (3), so that the passage speed within the separation tube increases in the sample gas. Even if slow trace gas component B is included, gas component A and trace gas component can be separated, and the quantification limit, which was 10 PPM in conventional methods, can be reduced to 2 PPMt with five times the accuracy. We were able to confirm that it could be quantified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスクロマトグラフの説明図、第2図は従来の
微量ガス成分測定法により分析したガスクロマドグラス
を示し、頓は通常の長さによる分離管、(→は長尺分離
管を夫々用いた場合の分析結果を表わし、第3図は既知
のプレカット法を示す原理説明図、第4坦は既知のパッ
クフラッシュ法を示す原理説明図1.第5図は本発明に
係る微量ガス成分測定方法を示す原理説明図である。 +1)−・−・・ガスクロマトグラフ (2)・・・・・第1分離管 (3)・・・・・第2分離管 (5)@・・・・キャリヤーガス (6)・・・・・試料ガス A・・・・・ガス成分 B・・・・・微量ガス成分 特許出願人 代理人 弁理士  井 藤   誠
Figure 1 is an explanatory diagram of a gas chromatograph, and Figure 2 shows a gas chromatograph analyzed using the conventional trace gas component measurement method. Figure 3 is a principle explanatory diagram showing the known pre-cut method, Figure 4 is a principle explanatory diagram showing the known pack flush method, and Figure 5 is a trace gas component measuring method according to the present invention. It is a principle explanatory diagram showing the following. +1) -... Gas chromatograph (2)... First separation tube (3)... Second separation tube (5) @... Carrier Gas (6)...Sample gas A...Gas component B...Trace gas component Patent applicant representative Patent attorney Makoto Ifuji

Claims (1)

【特許請求の範囲】[Claims] ガス成分Aに微量ガス成分Bが含まれている試料ガスを
、キャリヤーガスによ抄ガスクロマトグラフの第1分離
管に導入して、当該第1分離管から先行し1分離流出さ
れるガス成分Aを、前記微量ガス成分Bが流出される直
前まで放出させた後、上記第1分離管に残留しているガ
ス成分Aと微量ガス成分Bとを、キャリヤーガスによ抄
逆流させて第2分離管に導入し、当該第2分離管からガ
ス成分Aの流出後に流出されてくる微量ガス成分Bを検
出するようにしたことを特徴とするガスクロマトグラフ
による微量ガス成分の測定方法。
A sample gas containing trace gas component B in gas component A is introduced into a first separation tube of a paper gas chromatograph using a carrier gas, and gas component A is extracted from the first separation tube by one separation. is released until just before the trace gas component B flows out, and then the gas component A and the trace gas component B remaining in the first separation tube are reverse-flowed by a carrier gas to perform a second separation. A method for measuring a trace gas component using a gas chromatograph, characterized in that the trace gas component B is introduced into a second separation tube and flows out after the gas component A flows out from the second separation tube.
JP8622982A 1982-05-21 1982-05-21 Measurement of trace gas component by gas chromatograph Pending JPS58202870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8622982A JPS58202870A (en) 1982-05-21 1982-05-21 Measurement of trace gas component by gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8622982A JPS58202870A (en) 1982-05-21 1982-05-21 Measurement of trace gas component by gas chromatograph

Publications (1)

Publication Number Publication Date
JPS58202870A true JPS58202870A (en) 1983-11-26

Family

ID=13880958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8622982A Pending JPS58202870A (en) 1982-05-21 1982-05-21 Measurement of trace gas component by gas chromatograph

Country Status (1)

Country Link
JP (1) JPS58202870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208928A1 (en) * 2019-04-12 2020-10-15 オルガノ株式会社 Gas separation device and gas separation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208928A1 (en) * 2019-04-12 2020-10-15 オルガノ株式会社 Gas separation device and gas separation method
JP2020171894A (en) * 2019-04-12 2020-10-22 オルガノ株式会社 Gas separator and gas separation method

Similar Documents

Publication Publication Date Title
EP0024566B1 (en) An apparatus for the analysis of oxygen, nitrogen and hydrogen contained in metals
US3285701A (en) Process and apparatus for separating and analyzing a fluid mixture
US3790348A (en) Apparatus for determining the carbon monoxide, methane and total hydrocarbons content in air
JPS58135455A (en) Method and apparatus for analysis of anion
EP0385797A3 (en) A method and apparatus for detecting transition and rare earth elements in a matrix
US3535084A (en) Automatic and continuous analysis of multiple components
US5047073A (en) Sorption separation apparatus and methods
US3800602A (en) Multi-stream gas chromatographic method and apparatus
JPS58202870A (en) Measurement of trace gas component by gas chromatograph
JP2000275150A (en) Device for analyzing gas dissolved in oil
US4319479A (en) Method and an apparatus for detecting leakage of cooling water by measuring dissolved CO amount
JP2000206103A (en) Chromatographic mass spectrometer
JPH11125624A (en) Liquid chromatograph
JPH10206406A (en) Device for measuring non-methane hydrocarbon
EP1408330A4 (en) Liquid chromatograph and analyzing system
US3545929A (en) Measurement of trace amounts of carbon monoxide in water solution
US3319458A (en) Chromatographic apparatus for measuring hydrogen components
EP0406757A2 (en) Method for chromatographic separation
JPH06258306A (en) Gas chromatograph
EP0821239A3 (en) Method for measuring an amount of LDL-cholesterol
JPS6276458A (en) Method for automatic inspecting column
Cuddeback et al. Calibration of a gas sampling valve for gas chromatography
JPS5653460A (en) Analyzing method for constituent of low molecular weight
JPS5621063A (en) Method and device for identifying substance by gas chromatography
JPS593352A (en) Gas chromatograph