JPS58202430A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS58202430A
JPS58202430A JP8596682A JP8596682A JPS58202430A JP S58202430 A JPS58202430 A JP S58202430A JP 8596682 A JP8596682 A JP 8596682A JP 8596682 A JP8596682 A JP 8596682A JP S58202430 A JPS58202430 A JP S58202430A
Authority
JP
Japan
Prior art keywords
incident
optical
light
emitted
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8596682A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8596682A priority Critical patent/JPS58202430A/en
Publication of JPS58202430A publication Critical patent/JPS58202430A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To increase a switching speed, and also to realize a long life and stability of operation, by simple constitution which uses a polarizer of the incident side and the emitting side, consisting of a crystal plate of a high refractive index, and a polarizing rotating element, and has no mechanical movable part. CONSTITUTION:Light emitted from an incident side optical fiber 1 becomes an optical beam 10, is made incident to a polarizer 3 and is separated into a P wave 12 and an S wave 11. As for the incident face of a polarizing rotating element 4, an angle theta of the incident face is set in advance so that the P wave 12 and the S wave 11 which reach there are refracted and become parallel, and also an angle of the emitting end face is set in advance so that two optical beams 13, 14 emitted from the polarizing rotating element 4 cross each other at the same angle theta as the time of incidence. The same polarizer 5 as the polarizer 3 of the incident side is placed at a position where the emitted beams 13, 14 cross each other, and in accordance with a state of the outside field applied to the polarizing rotating element 4, the emitted beam of the incident optical fiber 1 is switched to one of an emitted optical fiber 8 or 9, as an optical beam 15 or 16.

Description

【発明の詳細な説明】 本発明は7アイパを伝わる光ビームの光路を切換える光
フアイバスイッチ、と<K!i械的可動部をもたない、
電子式の光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical fiber switch for switching the optical path of a light beam transmitted through a 7-eyeper, and <K! i has no mechanically moving parts,
Regarding electronic light switches.

光フアイバ通信システムにおいては、回線の信頼性を高
め、保守を容易にするために、常用・予備の回線の切換
や光部品の切換え、また測定用などに広く光スィッチが
用いられている。また遠地間の通信システムのみならず
、限定された地域内での情報処理機器間を結んだデータ
の伝送システムいわゆる光データへイウェイにおける、
へイヘイと端末との接続ノードなどにも光スィッチが利
用されている。すなわち、特定の端末を回避する必要が
ある場合、たとえば端末の故障、保守点検無使用時など
には光スィッチにょづて経路をバイパスする。
In optical fiber communication systems, optical switches are widely used for switching between regular and backup lines, switching optical components, and for measurement in order to improve line reliability and facilitate maintenance. In addition to communication systems between long distances, there are also optical data transmission systems that connect information processing devices within a limited area.
Optical switches are also used as connection nodes between Heihei and terminals. That is, when it is necessary to avoid a specific terminal, for example, when the terminal is out of order or not being used for maintenance or inspection, the optical switch is used to bypass the route.

このような目的に合った光スィッチとして開発されてき
ているものの1つは、プリズムやミラーを電磁的に変位
させるものである。すなわち、光フアイバ出射光を平行
ビームに変換し、この光路中にプリズムやミラーを挿入
することによって光路を空間的に変化させて、再び集光
される光ファイバを選択するものである。この方式の光
スィッチは高いクロストークと低い光挿入損の特性を有
し、利用しやすいものであるが、機械的可動機構を有す
るため、速い切換速度を得ることが困難であり、切換回
数にだいする寿命や、極〈間隔の長い動作に対する信頼
性に不安がある。たとえば、長期間にわたってほとんど
固定的に或状態を保持し、咬時突然スイッチ動作を行な
わせたときに正しく動作をしないという不安定さが存在
する。したがって素子の交換や点検が困難な光海底中継
器などへの利用は困難である。
One type of optical switch that has been developed for this purpose is one that electromagnetically displaces a prism or mirror. That is, the light emitted from an optical fiber is converted into a parallel beam, and a prism or mirror is inserted into this optical path to spatially change the optical path to select the optical fiber on which the light is focused again. This type of optical switch has the characteristics of high crosstalk and low optical insertion loss, and is easy to use. However, because it has a mechanical movable mechanism, it is difficult to obtain a fast switching speed, and the number of switching is limited. There are concerns about its lifespan and reliability for operation with long distances between poles. For example, there is instability in that the device maintains a certain state almost fixedly for a long period of time and does not operate correctly when suddenly switched during bite. Therefore, it is difficult to use it in optical submarine repeaters, etc., where it is difficult to replace or inspect elements.

機械的な可動部を有することなく、電子的にファイバ光
をスイッチする素子としては次のようなものも知られて
いる。透過光の偏光方向を電圧まだは電流の印加によっ
て90回転させる機能をもった偏光変換素子に入射光を
透過させ、この後、光の偏光方向によって光路の方向を
異ならしめる偏光素子を透過させることによって異なる
光7アイバに光を導びくものである。偏光変換素子とし
ては、電気光学結晶や液晶などの電気光学材料、鉄ガー
ネツト結晶や高濃度鉛ガラスなどのような磁気光学材料
が用いられている。従来のこの種の光スィッチには難点
がいくつかある。そのひとつは構成する偏光素子が高価
である必もしくは特性が不十分である点である。上に述
べた光の偏光方向によって光路を変える偏光素子として
は、古くから知られている複屈折の大きな材料である方
解石を使った偏光プリズムや、やはり複屈折の大きな材
料であるルチル結晶をプリズム状に成形研磨したもの、
ガラスで作った全反射プリズムの反射面上に誘電体の三
層膜を形成し損光素子とするものなどがある。方解石は
自然石であって高価であること、ルチルプリズムも結晶
材料自体が高価であるとともに、高い屈折率を有するた
めにプリズム入射面には良好な燦反射膜を形成する必要
があること、ガラス材料に誘電体多層膜を設けた偏光素
子では、多層膜の入射光にたいする波長特性が敏感であ
るため、設計波長よりずれた波長の光の入射にだいして
偏光特性が劣化するなどの難点を有する。
The following devices are also known as devices that electronically switch fiber optics without having mechanically movable parts. The incident light is transmitted through a polarization conversion element that has the function of rotating the polarization direction of the transmitted light by 90 degrees by applying a voltage or current, and then transmitted through a polarization element that changes the direction of the optical path depending on the polarization direction of the light. It guides light to 7 different types of lights. As the polarization conversion element, electro-optic materials such as electro-optic crystals and liquid crystals, and magneto-optic materials such as iron garnet crystals and high-concentration lead glass are used. Conventional optical switches of this type have several drawbacks. One of these is that the constituent polarizing elements must be expensive or have insufficient characteristics. The above-mentioned polarizing elements that change the optical path depending on the polarization direction of the light include polarizing prisms made of calcite, which is a material with a large birefringence that has been known for a long time, and prisms made of rutile crystal, which is also a material with a large birefringence. Shaped and polished,
There is one in which a three-layer dielectric film is formed on the reflective surface of a total reflection prism made of glass and used as a light loss element. Calcite is a natural stone and is expensive; the crystal material itself for rutile prisms is expensive; and because it has a high refractive index, it is necessary to form a good reflective film on the prism entrance surface. Polarizing elements that have a dielectric multilayer film as a material have drawbacks such as the polarization properties deteriorate as the wavelength of light that deviates from the design wavelength is incident because the wavelength characteristics of the multilayer film are sensitive to incident light. .

本発明の目的は、上記謎点を除去したファイバ光スイッ
チを提供することにある。
An object of the present invention is to provide a fiber optic switch that eliminates the above-mentioned problems.

本発明によれば、高い屈折率を有し、両面に光学研磨を
施こした結晶板と、該結晶板にプルスター角で入射し、
該結晶板を透過した光ビームと反射した光ビームの双方
を透凸し、しかもそれら2つの光軸が素子内で平行とな
るように入射端面の角度が設定せられ、出射した前記2
つの光ビームが入射角と同一の角度で交叉するように出
射端面の角度が設定せられ、透過する光ビームの偏光を
回転せしめる偏光回転素子と、該偏光回転素子を出射し
た前記2つの光ビームの光軸が交叉した位置に、それら
がプルスタ角で入射するように配置した前記結晶板と同
一の結晶板とによって、安価で高い性能の光スィッチが
得られる。
According to the present invention, a crystal plate having a high refractive index and optically polished on both sides, and a crystal plate having a high refractive index, and an incident light incident on the crystal plate at a Purster angle,
The angle of the incident end face is set so that both the light beam transmitted through the crystal plate and the light beam reflected are transmitted through the crystal plate, and the two optical axes are parallel to each other within the element.
a polarization rotation element whose output end face is set at an angle such that the two light beams intersect at the same angle as the incident angle, and which rotates the polarization of the transmitted light beam; and the two light beams emitted from the polarization rotation element. An inexpensive, high-performance optical switch can be obtained by using a crystal plate identical to the above-mentioned crystal plate arranged at a position where the optical axes of the optical axis intersect with each other so that the optical axes of the optical axis intersect with each other so that the optical axes of the optical axis intersect with each other so that the optical axes of the optical axis intersect with each other.

本発明の詳^4(Iを更に実施例を用いて説明する。Details of the present invention^4(I) will be further explained using examples.

第1図の本発明の一実施例の構成を示す図で、lは入射
光ファイバ、2は集光レンズ、3は高屈折率を有する結
晶板で構成される入射側の偏光子、4は偏光回転素子、
5は3と同一の構成の出射側の偏光子、6,7はレンズ
、8,9は出射光ファイバである。入射側光ファイバ1
を出射した光は集光レンズ2によって光ビーム10とな
り偏光子3に入射される。該偏光子3の原理は、後述す
るがその機能は入射光10をP波12とS波11に分離
させることである。偏光回転素子40入射面は、この面
に到達したP波12及びS波11とが屈折して該偏光回
転素子内で、光軸が平行となるように入射面の角度θが
設定されている。偏光回転素子は印加される電圧や電流
等の外場の状態に応じて透過して出射する光の偏光状態
を入射のそれと直交または同一の偏光へと偏光の状態を
制御する機能を有する。いま、偏光回転素子は偏光を9
0回転させる状態にあるとすると入射S波11は、P偏
光となって光ビーム13として出射する。一方入射P波
12はS偏光となって光ビーム14として出射する。偏
光回転素子4の出射面は、出射ビーム13及び14が光
軸を交叉し、しかもその交叉角度が入射光ビームである
11及び12がなす角度と同一になるように設定されて
いる。すなわち、入射面と同一の角度θをなすように設
定されている■偏光回転素子の出射光13.14の交叉
する位置には、入射側偏光子3と同一の偏光子5が配置
せられ、光ビーム13及び14にだいし、プルスター角
となるように設定されている。偏光回転素子を出射しだ
P偏光である光ビーム13は、偏光子5を透過し一方、
S偏光である光ビーム14は、偏光子5の裏面によって
反射させ、双方はぼ同一光路をとる光ビーム1゛6とな
りレンズ7によって集光されて出射ファイバ9に導ひか
れる。偏光回転素子に印加される外場の状態を@述とは
異なる状悪すなわち透過する光の偏光状態を入射時と同
一のtまに出射されるものとすると、偏光回転素子の出
射ビーム13の偏光は入射S波11と同一のS偏光、同
14の偏光は入射P波12と興−のP偏光である。
This is a diagram showing the configuration of an embodiment of the present invention shown in FIG. 1, where l is an input optical fiber, 2 is a condenser lens, 3 is a polarizer on the input side consisting of a crystal plate having a high refractive index, and 4 is a polarizer on the input side. polarization rotation element,
5 is a polarizer on the output side having the same configuration as 3, 6 and 7 are lenses, and 8 and 9 are output optical fibers. Input side optical fiber 1
The emitted light becomes a light beam 10 by a condensing lens 2 and enters a polarizer 3. The principle of the polarizer 3 will be described later, but its function is to separate the incident light 10 into a P wave 12 and an S wave 11. The angle θ of the incident surface of the polarization rotation element 40 is set so that the P waves 12 and S waves 11 that reach this surface are refracted and the optical axes become parallel within the polarization rotation element. . The polarization rotation element has a function of controlling the polarization state of transmitted and emitted light to be perpendicular to or the same polarization as that of the incident light, depending on the state of an external field such as an applied voltage or current. Now, the polarization rotation element changes the polarization to 9
If it is in a state of zero rotation, the incident S wave 11 becomes P-polarized light and is emitted as a light beam 13. On the other hand, the incident P wave 12 becomes S-polarized light and is emitted as a light beam 14. The output surface of the polarization rotation element 4 is set so that the output beams 13 and 14 intersect the optical axes, and the angle of intersection is the same as the angle formed by the incident light beams 11 and 12. That is, a polarizer 5, which is the same as the incident side polarizer 3, is placed at a position where the output beams 13 and 14 of the polarization rotation element intersect, which are set to form the same angle θ as the incident plane. The light beams 13 and 14 are set to have a Prusster angle. The light beam 13, which is P-polarized light, exits the polarization rotation element and passes through the polarizer 5, while
The S-polarized light beam 14 is reflected by the back surface of the polarizer 5, and both become light beams 1 and 6, which take almost the same optical path, and are focused by the lens 7 and guided to the output fiber 9. Assuming that the state of the external field applied to the polarization rotation element is different from that described above, that is, the polarization state of the transmitted light is emitted at the same time t as at the time of incidence, then the output beam 13 of the polarization rotation element is The polarized light is S polarized light, which is the same as the incident S wave 11, and the polarized light 14 is P polarized light, which is the same as the incident P wave 12.

偏光子5によってS偏光である13ニ反射され、P偏光
である14は偏光子5を透過し、光ビーム15となりレ
ンズ6によって集光されて出射7アイパ8に導びホれる
。したがって入射光ファイバ1の出射光は偏光回転素子
4に印加する外場の状+mに応じて出射ファイバ8また
は9のいずれかヘスイツチされる。いわゆるlX2スイ
ッチ動作が実現される。
The S-polarized light 13 is reflected by the polarizer 5, and the P-polarized light 14 passes through the polarizer 5, becomes a light beam 15, is focused by a lens 6, and is guided to an output 7 eyer 8. Therefore, the output light from the input optical fiber 1 is switched to either the output fiber 8 or 9 depending on the external field condition +m applied to the polarization rotation element 4. A so-called lX2 switch operation is realized.

次に偏光子の動作を説明する。第2図は偏光子の原理を
示す図で100はシリコン、ガリウム砒素、インジウム
リン等の薄い単結晶板である。これらの結晶は光波長1
μmから2μm程度にわたって透明な結晶である。たと
えばN型のシリコン単結1.3μm〜2μmの領域での
吸取検版は(11(m以下と極めて良好な光透過特性を
示す。また屈折率は3.5@度と非常に高くプリュスタ
角虜ば74度と大きい。元ビーム101をメー74度(
θ−16度)のプリースタ角で入射させると薄い結晶板
の上下面での反射が加え合さって、反射光102はS偏
光成分だけとなり、その反射率は84%となる。
Next, the operation of the polarizer will be explained. FIG. 2 is a diagram showing the principle of a polarizer, and 100 is a thin single crystal plate of silicon, gallium arsenide, indium phosphide, or the like. These crystals have a light wavelength of 1
It is a crystal that is transparent over a range of about 2 μm. For example, the absorption inspection plate in the region of 1.3 μm to 2 μm of N-type silicon single crystal exhibits extremely good light transmission characteristics of less than (11 (m). Also, the refractive index is extremely high at 3.5 degrees, and the Prusster angle is It is large at 74 degrees.The original beam 101 is 74 degrees (
When the light is incident at a Priest angle of .theta.-16 degrees), reflections from the upper and lower surfaces of the thin crystal plate are combined, and the reflected light 102 becomes only the S-polarized component, with a reflectance of 84%.

透過光103はP偏光成分が大部分で、その透過率は前
述の吸収の効果が低いため非常に高い。
Most of the transmitted light 103 is a P-polarized component, and its transmittance is very high because the above-mentioned absorption effect is low.

この透過光103に含まれるS偏光成分は13%である
。第2図に示す薄い結晶板を空間を介して3枚重ねると
S偏光成分は、0.2%となり充分な偏光特性を有する
偏光素子が得られる。
The S-polarized component contained in this transmitted light 103 is 13%. When three thin crystal plates shown in FIG. 2 are stacked with a space in between, the S polarization component becomes 0.2%, and a polarizing element having sufficient polarization characteristics can be obtained.

第1図における偏光回転素子4は、従来知られている各
種のものを使うことができる。たとえばニオブ醗リチウ
ム結晶の電気光学効果を使った偏光回転素子や、イシト
リウム鉄ガーネッ) (Y IG)結晶のような磁気光
学結晶のファラデ効果を用いた偏光回転素子を利用する
ことができる。そしてこれらの結晶の光入射面に加工す
る斜め研磨角度は結晶の屈折率をnとしたとき、簡単な
幾光学力)で与えられる。ここで■は偏光糞子のプルス
ター角で偏光素子にシリコン桔私を使ったとき、o夕l
Cから、たとえば偏光回転素子て利用する結晶がYIG
結晶で、光波長を1.3μmとすると、θ−12,5゜
程度の角度と−1す、入出射:jに設ける無反射膜処理
も垂直人出射面の場合と、はとんど変りなく施こせばよ
い口 第1図においては1人力ファイバ光を2つのいずれかの
出力ファイバに結合する謂ゆる1×2光スイツチの実施
例について示した。入力側光ファイバを2本とし、その
配置を第11kにおける出力ファイバと同様とすること
で2×2光スイツチを実現することは容易である。
As the polarization rotation element 4 in FIG. 1, various conventionally known elements can be used. For example, a polarization rotation element using the electro-optic effect of a niobium-lithium crystal or a polarization rotation element using the Faraday effect of a magneto-optic crystal such as istrium iron garnet (YIG) crystal can be used. The angle of oblique polishing applied to the light incident surface of these crystals is given by a simple geometrical optical force, where n is the refractive index of the crystal. Here, ■ is the Pilster angle of the polarized dung, and when a silicon plate is used as the polarizing element,
From C, for example, the crystal used in polarization rotation elements is YIG.
If it is a crystal and the light wavelength is 1.3 μm, the angle of θ is about -12.5 degrees and -1. FIG. 1 shows an embodiment of a so-called 1.times.2 optical switch that couples one fiber light to either of two output fibers. It is easy to realize a 2×2 optical switch by using two input optical fibers and arranging them in the same manner as the output fibers in the 11k.

以上説明したように本発明によれば、安価な材料で機械
的可動部分が無いa単な構成にできるため、切り換え速
度が早く、寿命、動作の安定性に優れ、信頼性も高い光
スィッチが得られる。
As explained above, according to the present invention, the optical switch can be made of inexpensive materials and has a simple structure without any mechanically moving parts, so that an optical switch with high switching speed, long life, stable operation, and high reliability can be achieved. can get.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 高い屈折率を有し、両面に光学研磨を施こした結晶板と
該結晶板にプルスター角で入射し、該結晶板を透過した
光ビームと反射した光ビームの双方を透過し、該2つの
光ビームの光軸が素子内で平行となるように、入射端面
の角度が設定せられ出射した2つの光ビームが入射時と
同一の角度で交叉するように出射端面の角度が設定せら
れ、透過する光ビームの偏光を印加される外場によって
回転せしめる偏光回転素子と、該偏光回転素子を出射し
た前記2つの光ビームの光軸が交叉する位置に、それら
がプルスター角で入射するように配置した、前記結晶板
と同一の結晶板とを有することを特徴とする光スィッチ
A crystal plate with a high refractive index and optically polished on both sides is incident on the crystal plate at the Prusster angle, and both the light beam transmitted through the crystal plate and the light beam reflected are transmitted. The angle of the input end face is set so that the optical axes of the light beams are parallel within the element, and the angle of the output end face is set so that the two emitted light beams intersect at the same angle as when they entered. A polarization rotation element that rotates the polarization of the transmitted light beam by an applied external field, and a position where the optical axes of the two light beams emitted from the polarization rotation element intersect, so that they are incident at a Pourster angle. An optical switch comprising a crystal plate identical to the crystal plate arranged above.
JP8596682A 1982-05-20 1982-05-20 Optical switch Pending JPS58202430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8596682A JPS58202430A (en) 1982-05-20 1982-05-20 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8596682A JPS58202430A (en) 1982-05-20 1982-05-20 Optical switch

Publications (1)

Publication Number Publication Date
JPS58202430A true JPS58202430A (en) 1983-11-25

Family

ID=13873470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8596682A Pending JPS58202430A (en) 1982-05-20 1982-05-20 Optical switch

Country Status (1)

Country Link
JP (1) JPS58202430A (en)

Similar Documents

Publication Publication Date Title
JP2710451B2 (en) Polarization independent optical isolator
US4702557A (en) Optical branching device using a liquid crystal
JPS6197629A (en) Optical switch
JPH10170867A (en) Optical device with optical circulator function
US6944363B2 (en) Miniature magneto-optic fiber optical switch
JPS58202430A (en) Optical switch
JPH024864B2 (en)
JPH0230490B2 (en)
JPH05313094A (en) Optical isolator
JPS59228610A (en) Polarizing prism
JPH0341809B2 (en)
US20020110305A1 (en) Reflective optical circulator
JPH0357459B2 (en)
JPH0830789B2 (en) Polarization splitting prism
JP2007148309A (en) Optical device using polarizing variable element
JPS6343120A (en) Optical device
CN118091844A (en) Three-port optical circulator
JPS5858782A (en) Module of semiconductor laser
JPH0372961B2 (en)
JP3388377B2 (en) Polarization-independent optical circulator
JPH02168204A (en) Polarizing prism
JPS61196227A (en) Optical transmission device
JP2006091865A (en) Optical component module
JPH04140709A (en) Optical isolator
JPS60154237A (en) Optical switch