JPH0341809B2 - - Google Patents

Info

Publication number
JPH0341809B2
JPH0341809B2 JP56181862A JP18186281A JPH0341809B2 JP H0341809 B2 JPH0341809 B2 JP H0341809B2 JP 56181862 A JP56181862 A JP 56181862A JP 18186281 A JP18186281 A JP 18186281A JP H0341809 B2 JPH0341809 B2 JP H0341809B2
Authority
JP
Japan
Prior art keywords
light
lens
optical
polarization
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56181862A
Other languages
Japanese (ja)
Other versions
JPS5883801A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18186281A priority Critical patent/JPS5883801A/en
Publication of JPS5883801A publication Critical patent/JPS5883801A/en
Publication of JPH0341809B2 publication Critical patent/JPH0341809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明はフアイバを伝わる光ビームの光路を切
換える光フアイバスイツチ、とくに機械的可動部
をもたない、電子式の光スイツチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber switch for switching the optical path of a light beam transmitted through a fiber, and more particularly to an electronic optical switch having no mechanically movable parts.

光フアイバ通信システムにおいては、回線の信
頼性を高め、保守を容易にするために、常用・予
備の回線の切換や光部分の切換え、また測定用な
どに広く光スイツチが用いられている。また遠地
間の通信システムのみならず限定された地域内で
の情報処理機器間を結んだデータの伝送システ
ム、いわゆる光データハイウエイにおける、ハイ
ウエイと端末との接続ノードなどにも光スイツチ
が利用されている。すなわち、特定の端末を回避
する必要がある場合、たとえば端末の故障、保守
点検、無使用時などには光スイツチによつて経路
をバイパスする。
In optical fiber communication systems, optical switches are widely used for switching between regular and backup lines, switching optical parts, and for measurement in order to improve line reliability and facilitate maintenance. Optical switches are also used not only for communication systems between distant places, but also for data transmission systems that connect information processing equipment within a limited area, such as connection nodes between highways and terminals in so-called optical data highways. There is. That is, when it is necessary to avoid a specific terminal, for example, when the terminal is out of order, undergoing maintenance or inspection, or when not in use, the optical switch is used to bypass the route.

このような目的に合つた光スイツチとして開発
されてきているものの1つは、プリズムやミラー
を電磁的に変位させるものである。すなわち、光
フアイバ出射光を平行ビームに変換し、この光路
中にプリズムやミラーを挿入することによつて光
路を空間的に変化させて、再び集光される光フア
イバを選択するものである。この方式の光スイツ
チは高いクロストークと低い光挿入損の特性を有
し、利用しやすいものであるが、機械的可動機構
を有するため、速い切換速度を得ることが困難で
あり、切換回数にたいする寿命や、極く間隔の長
い動作に対する信頼性に不安がある。たとえば、
長期間にわたつてほとんど固定的に或状態を保持
し、或時突然スイツチ動作を行なわせたときに正
しく動作をしないという不安定さが存在する。し
たがつて容易に素子の交換や点検が困難な光海底
中継器などへの利用は困難である。
One type of optical switch that has been developed for this purpose is one that electromagnetically displaces a prism or mirror. That is, the light emitted from an optical fiber is converted into a parallel beam, the optical path is spatially changed by inserting a prism or a mirror into this optical path, and the optical fiber on which the light is focused again is selected. This type of optical switch has the characteristics of high crosstalk and low optical insertion loss, and is easy to use, but because it has a mechanical movable mechanism, it is difficult to obtain a high switching speed, and the number of switching cycles is limited. There are concerns about longevity and reliability for extremely long intervals of operation. for example,
There is instability in that a certain state is held almost fixedly for a long period of time, and when a switch operation is suddenly performed, the device does not operate correctly. Therefore, it is difficult to use it in optical submarine repeaters, etc., where it is difficult to easily replace or inspect elements.

機械的な可動部を有すことなく、電子的にフア
イバ光をスイツチする素子としては次のようなも
のも知られている。透過光の偏光方向を電圧また
は電流の印加によつて90゜回転させる機能をもつ
た偏光変換素子に入射光を透過させ、この後、光
の偏光方向によつて光路の方向を異ならしめる偏
光素子を透過医させることによつて異なる光フア
イバに光を導びくものである。偏光変換素子とし
ては、電気光学結晶や液晶などの電気光学材料。
鉄ガーネツト結晶や高濃度鉛ガラスなどのような
磁気光学材料が用いられている。従来のこの種の
光学スイツチには難点がいくつかある。そのひと
つは、構成する偏光素子が高価であるかもしくは
特性が不十分である点である。上に述べた光の偏
光方向によつて光路を変える偏光素子としては、
古くから知られている複屈折の大きな材料である
方解石を使つた偏光プリズムや、やはり複屈折の
大きな材料であるルチル結晶をプリズム状に成形
研磨したもの、ガラスで作つた全反射プリズムの
反射面上に誘電体の三層膜を形成し偏光素子とす
るものなどがある。方解石は自然石であつて高価
であること、ルチルプリズムも結晶材料自体が高
価であるとともに、高い屈折率を有するためにプ
リズム入射面には良好な無反射膜を形成する必要
があること、ガラス材料に誘電体多層膜を設けた
偏光素子では、多層膜の入射光にたいする波長特
性が敏感であるため、設計波長よりずれた波長の
光の入射にたいして偏光特性が劣化するなどの難
点を有する。
The following devices are also known as devices that electronically switch fiber light without having mechanically movable parts. A polarizing element that transmits incident light to a polarization conversion element that has the function of rotating the polarization direction of transmitted light by 90 degrees by applying a voltage or current, and then changes the direction of the optical path depending on the polarization direction of the light. The light is directed to different optical fibers by transmitting the light through the optical fiber. Electro-optic materials such as electro-optic crystals and liquid crystals can be used as polarization conversion elements.
Magneto-optical materials such as iron garnet crystals and highly concentrated lead glass have been used. Conventional optical switches of this type have several drawbacks. One of these is that the constituent polarizing elements are expensive or have insufficient characteristics. As a polarizing element that changes the optical path according to the polarization direction of the light mentioned above,
Polarizing prisms made of calcite, which has long been known as a material with high birefringence, rutile crystal, which is also a material with high birefringence, formed into a prism shape and polished, and the reflective surface of a total reflection prism made of glass. There are some that have a three-layer dielectric film formed thereon to serve as a polarizing element. Calcite is a natural stone and is expensive; the crystal material itself for rutile prisms is expensive; and because it has a high refractive index, it is necessary to form a good anti-reflection film on the prism entrance surface. Polarizing elements made of a dielectric multilayer film have drawbacks such as deterioration of polarization properties when light of a wavelength deviates from the design wavelength is incident because the wavelength characteristics of the multilayer film are sensitive to incident light.

また従来の光スイツチの有する難点の2つ目
は、偏光変換素子の光透過断面が大であることを
必要とするか、又は円筒レンズを必要としてお
り、印加する外場の大なることまたは円筒レンズ
の収差による光透過損失の増加をまぬがれない点
にある。
The second drawback of conventional optical switches is that they require a large light transmission section of the polarization conversion element or a cylindrical lens, which means that the applied external field is large or the cylindrical The problem is that light transmission loss cannot be avoided due to lens aberration.

すなわち、光学系の配置は入射フアイバに光を
コリメートするコリメートレンズとこのコリメー
ト光を出射フアイバに集束する集束レンズを設
け、これらレンズ間の光路中に前述の偏光変換素
子や偏光素子を設けるものである。コリメート光
は断面1mmφ程度であるため偏光変換素子の断面
は数mm角又は数mmφ以上を必要とする。このため
偏光変換素子に磁気光学材料を用いた場合には反
磁界係数が大となり、磁化を違法和させるに要す
る外部磁場が大きくなり、この磁場を発生させる
ための電流値も大きくなつている。電気光学材料
を用いた場合には、電気光学効果の小さい縦型素
子を利用しており、印加電圧が数百Vと高い。偏
光変換素子を板状のものを用いれば反磁界係数の
低下や横型電気光学素子を用いることができる。
このためコリメート光を一次元方向にビーム幅を
縮小する円筒レンズを偏光変換素子の前後に設け
ている。数mmの焦点距離を有する円筒レンズは高
性能のものは得にくく、吸収が大きいために、素
子の光挿入損失を悪くしている。
That is, the arrangement of the optical system is such that a collimating lens that collimates light onto an input fiber and a focusing lens that focuses this collimated light onto an output fiber are provided, and the aforementioned polarization conversion element or polarizing element is provided in the optical path between these lenses. be. Since the collimated light has a cross section of about 1 mmφ, the cross section of the polarization conversion element needs to be several mm square or more than several mmφ. For this reason, when a magneto-optical material is used for the polarization conversion element, the demagnetizing field coefficient becomes large, the external magnetic field required to illegally sum the magnetization becomes large, and the current value for generating this magnetic field also becomes large. When an electro-optic material is used, a vertical element with a small electro-optic effect is used, and the applied voltage is as high as several hundred volts. If a plate-shaped polarization conversion element is used, the demagnetizing field coefficient can be lowered and a horizontal electro-optical element can be used.
For this reason, cylindrical lenses that reduce the beam width of the collimated light in one dimension are provided before and after the polarization conversion element. It is difficult to obtain a high-performance cylindrical lens with a focal length of several millimeters, and its large absorption deteriorates the optical insertion loss of the element.

本発明の目的は上記難点を除去した、フアイバ
光スイツチを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fiber optic switch which eliminates the above-mentioned disadvantages.

本発明によれば、高い屈折率を有し両面に光学
研磨を施こした結晶板と、該結晶板にブリユスタ
ー角で入射し、該結晶板を透過した光ビームの光
軸と反射した光ビームの光軸とを平行化するレン
ズと、該レンズによつて平行化された前記2つの
光ビームが透過し、印加される外傷によつて該光
ビームの偏光を90度回転させる偏光変換素子と、
該偏光変換素子を透過した光ビームの光軸を焦点
面上で交又せしめるレンズと、光軸を交又せしめ
た位置に、該レンズを透過した光ビームをブルー
スター角で入射せしめるように配置した前記結晶
板と同一の結晶板とによつて安価で高性能な光ス
イツチが得られる。
According to the present invention, there is provided a crystal plate having a high refractive index and optically polished on both sides, and an optical axis of a light beam that is incident on the crystal plate at the Brillister angle and transmitted through the crystal plate, and a reflected light beam. a lens that parallelizes the optical axis of the lens, and a polarization conversion element that transmits the two light beams that have been parallelized by the lens and rotates the polarization of the light beam by 90 degrees due to applied trauma. ,
A lens that causes the optical axes of the light beam that has passed through the polarization conversion element to intersect on the focal plane, and a lens that is arranged so that the light beam that has passed through the lens is incident at a Brewster angle at a position where the optical axes intersect. By using the same crystal plate as the above crystal plate, an inexpensive and high-performance optical switch can be obtained.

古来シリコン結晶のような高屈折率の結晶板に
ブルースター角で光を入射させ透過光の直線偏光
度を向上させる偏光フイルタは知られている。し
かしここでは偏光フイルタで反射される光は利用
されていない。高屈折率の結晶板による透過光及
び反射光相方をその後に配置する適切なパラメー
タを有するレンズによつて光学的に無理なく集光
する簡便な構成およびこの光学系と偏光変換素子
とを組合せた工業的に益ある光スイツチの構成は
本発明者によつて初めてなされるものである。
Polarizing filters have been known since ancient times, which improve the degree of linear polarization of transmitted light by making light incident on a crystal plate with a high refractive index, such as a silicon crystal, at the Brewster's angle. However, the light reflected by the polarizing filter is not used here. A simple configuration in which transmitted light and reflected light from a high refractive index crystal plate are optically converged without difficulty by a lens having appropriate parameters, and this optical system is combined with a polarization conversion element. The present inventor is the first to construct an industrially useful optical switch.

本発明の詳細を更に実施例を用いて説明する。
第1図は本発明の第一の実施例で1は入射光フア
イバ、2はコリメートレンズ、3は入射側の偏光
素子、4,6は集光レンズ、5は偏光変換素子、
7は出射側の偏光素子、8,9は集束レンズ、1
0,11は出射光フアイバである。入射光フアイ
バ1を出射した光はコリメートレンズ2によつて
平行光束12となり、偏光子3に入射される。該
偏光子3の原理は後述するがその機能は入射光1
2をP波14とS波13に分離させる。レンズ4
はその焦点位置を偏光子3における反射位置とな
るように設ける。そして該レンズは高いNA値た
とえば0.5程度の値を有するレンズとする。前記
偏光子3を出射するP波14、S波13のなす角
度は後述の如く32度程度と狭いため高NA値を有
し前記焦点位置の配置を有するレンズ4によつて
それらの光軸は平行化されP偏光16、S偏光1
5となる。そしてレンズ4の後側焦点位置でのビ
ーム径はレンズ2とレンズ4との焦点距離比の拡
大率を光フアイバ1の出射端面でのビーム径に乗
じた大きさに集束される。たとえばコア径50μm
の光フアイバを1に用い、レンズ2とレンズ4と
の焦点距離を等しいものに選べば、等倍結像であ
るためレンズ4の後側焦点位置における光ビーム
径は50μm程度となる。したがつてこのビームを
透過させ偏光を90℃回転させる機能を有する偏光
変換子5の第1図における紙面垂直方向の幅は小
さいすなわち薄い板状の形状を有するものでよ
い。該偏光変換子5に入射された2つの直線偏光
光15、及び16は、該偏光変換子に印加される
電圧や電流等の外場の状態に応じて同一の偏光状
態かまたはそれに直交する偏光へと偏光状態が定
められる。今、偏光変換子5によつて偏光が90℃
回転せしめられたとすると入射S偏光15はP偏
光、P偏光16はS偏光へと偏光変換され偏光変
換素子5を出射する。これらの光波が透過するレ
ンズ6出射偏光子7は前述のレンズ4、入射偏光
子3とそれぞれ同一のものとし、レンズ4の焦点
位置を挟んで対象となるように配置する。すなわ
ちレンズ6の焦点位置の一方はレンズ4の焦点位
置、他方は偏光子7の光反射位置とする。レンズ
6を透過する2つの偏光は、光軸はレンズ6の焦
点位置に向つて集束し、それぞれの光束光は平行
束となる。レンズ6は前述のようにレンズ4と同
一の特性のレンズであるため、2つの偏光17,
18の光軸の集束角度は入射の偏光子3を出射し
レンズ4に向う2つの偏光13,14のなす角度
と同一である。前述の如くS偏光である光ビーム
15は偏光変換されているため、光ビーム17は
P偏光である。出射偏光子7に入射したP偏光で
ある光ビーム17は偏光子7を透過し光ビーム2
0となつてレンズ9を介して出射フアイバ11に
結合される。またP偏光である光ビーム16は偏
光変換されると、S偏光である18となりこの光
ビームは偏光子7で反射され先の光ビーム20と
合流し出射フアイバ11に結合される。すなわ
ち、光フアイバ1を出射した光ビームは偏光子3
によつて偏光分離され、偏光変換子5によつて偏
光回転を受け出射側偏光子 によつて合波されて
出射フアイバ11に結合される。一方偏光変換子
5に印加する電圧や電流等の外場の状態を、偏光
の回転が生じないように設定すると、前述の光ビ
ーム17は光ビーム13の偏光状態と同一のS偏
光であり、この光ビームは偏光子7によつて反射
され光ビーム19となつてレンズ8を介して11
とは別なる光ビーム10に結合される。また光ビ
ーム18はP偏光であるため偏光子7を透過し、
先の光ビーム19に合流してやはり光フアイバ1
0に結合される。この場合には光フアイバ1を出
射する光は、出射光フアイバ10へ結合される。
すなわち偏光変換子の状態の切換えによつて光フ
アイバ1の出力光を2つの出射光フアイバ10ま
たは11のいずれかへ結合させることができる、
いわゆる1×2光スイツチの動作が実現される。
The details of the present invention will be further explained using examples.
FIG. 1 shows a first embodiment of the present invention, in which 1 is an incident optical fiber, 2 is a collimating lens, 3 is a polarizing element on the incident side, 4 and 6 are condensing lenses, 5 is a polarization conversion element,
7 is a polarizing element on the output side, 8 and 9 are focusing lenses, 1
0 and 11 are output optical fibers. The light emitted from the input optical fiber 1 is converted into a parallel light beam 12 by the collimating lens 2, and is incident on the polarizer 3. The principle of the polarizer 3 will be described later, but its function is to
2 into P wave 14 and S wave 13. lens 4
is provided so that its focal position is the reflection position on the polarizer 3. The lens is assumed to have a high NA value, for example, about 0.5. Since the angle formed by the P wave 14 and the S wave 13 emitted from the polarizer 3 is as narrow as about 32 degrees, as will be described later, their optical axes are Collimated P polarized light 16, S polarized light 1
It becomes 5. The beam diameter at the rear focal position of the lens 4 is focused to a size obtained by multiplying the beam diameter at the output end face of the optical fiber 1 by the magnification ratio of the focal length ratio of the lenses 2 and 4. For example, core diameter 50μm
If an optical fiber 1 is used and the focal lengths of lenses 2 and 4 are selected to be equal, the diameter of the light beam at the rear focal position of lens 4 will be about 50 μm since the image is formed at a same magnification. Therefore, the polarization converter 5, which has the function of transmitting this beam and rotating the polarized light by 90 degrees, may have a small width in the direction perpendicular to the paper plane in FIG. 1, that is, it may have a thin plate shape. The two linearly polarized lights 15 and 16 incident on the polarization converter 5 may be in the same polarization state or polarized light perpendicular thereto, depending on the state of the external field such as voltage or current applied to the polarization converter. The polarization state is determined as follows. Now, the polarization is changed to 90℃ by the polarization converter 5.
If it is rotated, the incident S-polarized light 15 is polarized into P-polarized light, and the P-polarized light 16 is polarized into S-polarized light, and exits from the polarization conversion element 5. The lens 6 and the output polarizer 7 through which these light waves pass are the same as the lens 4 and the input polarizer 3 described above, and are arranged so as to be symmetrical with the focal position of the lens 4 in between. That is, one of the focal positions of the lens 6 is the focal position of the lens 4, and the other is the light reflecting position of the polarizer 7. The optical axes of the two polarized lights transmitted through the lens 6 are converged toward the focal position of the lens 6, and the respective luminous fluxes become parallel fluxes. Since the lens 6 has the same characteristics as the lens 4 as described above, the two polarized lights 17,
The convergence angle of the optical axis 18 is the same as the angle formed by the two polarized lights 13 and 14 that exit the incident polarizer 3 and head towards the lens 4. Since the light beam 15, which is S-polarized light, has undergone polarization conversion as described above, the light beam 17 is P-polarized light. The light beam 17 which is P-polarized light incident on the output polarizer 7 passes through the polarizer 7 and becomes a light beam 2.
0 and is coupled to the exit fiber 11 via the lens 9. When the P-polarized light beam 16 undergoes polarization conversion, it becomes S-polarized light 18. This light beam is reflected by the polarizer 7, merges with the previous light beam 20, and is coupled to the output fiber 11. That is, the light beam emitted from the optical fiber 1 is polarized by the polarizer 3.
The polarized light is separated by the polarization converter 5, polarized by the polarization converter 5, multiplexed by the output polarizer, and coupled to the output fiber 11. On the other hand, if the state of the external field such as the voltage and current applied to the polarization converter 5 is set so that rotation of polarization does not occur, the aforementioned light beam 17 is S-polarized light, which is the same polarization state as the light beam 13. This light beam is reflected by the polarizer 7, becomes a light beam 19, and passes through the lens 8 to the light beam 11.
is combined into a separate light beam 10. Furthermore, since the light beam 18 is P-polarized light, it passes through the polarizer 7,
It merges with the previous light beam 19 and also forms optical fiber 1.
Combined with 0. In this case, the light exiting the optical fiber 1 is coupled into the exit optical fiber 10.
That is, by switching the state of the polarization converter, the output light of the optical fiber 1 can be coupled into either of the two output optical fibers 10 or 11.
The operation of a so-called 1×2 optical switch is realized.

次に偏光子の動作を説明する。第2図は偏光子
の原理を示す図で100はシリコン、ガリウム砒
素、インジウムリン等の薄い単結晶板である。こ
れらの結晶は光波長1μmから2μm程度にわたつ
て透明な結晶である。たとえばN型のシリコン単
結晶でキヤリア密度1.4×1016cm-3のものは光波長
1.3μm〜2μmの領域での吸収係数は0.1cm-1以下
と極めて良好な光透過特性を示す。また屈折率は
3.5程度と非常に高くブリユスタ角φは74度と大
きい。光ビーム101をφ=74度(Θ=16度)の
ブリユスタ角で入射させると薄い結晶板の上下面
での反射が加え合さつて、反射光102はS偏光
成分だけとなりその反射率は84%となる。透過
光103はP偏光成分が大部分でその透過率は前
述の吸収の効果が低いため非常に高い。この透過
光103に含まれるS偏光成分は13%である。第
2図に示す薄い結晶板を空間を介して3枚重ねる
とS偏光成分は0.2%となり充分な偏光特性を有
する偏光素子が得られる。また前述の如くにΘ=
16度と非常に浅い角度で光ビームを入射させるこ
とになるため、第1図に示す如くにNA値の高い
レンズを用いることによつてP偏光S偏光の光軸
を平行化することができる。
Next, the operation of the polarizer will be explained. FIG. 2 is a diagram showing the principle of a polarizer, and 100 is a thin single crystal plate of silicon, gallium arsenide, indium phosphide, or the like. These crystals are transparent over a light wavelength of about 1 μm to 2 μm. For example, an N-type silicon single crystal with a carrier density of 1.4×10 16 cm -3 has an optical wavelength of
The absorption coefficient in the region of 1.3 μm to 2 μm is 0.1 cm −1 or less, showing extremely good light transmission characteristics. Also, the refractive index is
It is very high at about 3.5, and the Brillusta angle φ is as large as 74 degrees. When the light beam 101 is incident at a Brillustat angle of φ = 74 degrees (Θ = 16 degrees), the reflections from the upper and lower surfaces of the thin crystal plate are added together, and the reflected light 102 becomes only the S-polarized component, with a reflectance of 84 %. Most of the transmitted light 103 has a P-polarized component, and its transmittance is very high because the above-mentioned absorption effect is low. The S-polarized component contained in this transmitted light 103 is 13%. When three thin crystal plates shown in FIG. 2 are stacked with a space in between, the S polarization component becomes 0.2%, and a polarizing element having sufficient polarization characteristics can be obtained. Also, as mentioned above, Θ=
Since the light beam will be incident at a very shallow angle of 16 degrees, the optical axes of the P-polarized and S-polarized light can be made parallel by using a lens with a high NA value, as shown in Figure 1. .

第1図における偏光変換子5は従来知られてい
る種類のものを使うことができる。例えば
LiTaQ3結晶の電気光学効果を使つた偏光変換子
やYIGのような磁気光学結晶のフアラデ効果を用
いた偏光変換子を利用した場合には前述の如く、
偏光変換子が置かれる位置での光ビーム径は50μ
mと非常に小さいため、いずれも厚さの薄い結晶
板でよく、印加電圧や印加磁場強度は低くくて済
むという特長をもつ。
As the polarization converter 5 in FIG. 1, a conventionally known type can be used. for example
As mentioned above, when using a polarization converter that uses the electro-optic effect of LiTaQ 3 crystal or a polarization converter that uses the Farade effect of a magneto-optic crystal such as YIG,
The light beam diameter at the position where the polarization converter is placed is 50μ
m, which is very small, requires only a thin crystal plate, and has the advantage that the applied voltage and applied magnetic field strength can be low.

第1図においては1入力フアイバ光を2つのい
ずれかの出力フアイバに結合する謂ゆる1×2光
スイツチの実施例について示した。入力側光フア
イバを2本としその配置を第1図における出力フ
アイバと同様とすることで2×2光スイツチを実
現することは容易である。
FIG. 1 shows an embodiment of a so-called 1.times.2 optical switch that couples light from one input fiber to one of two output fibers. It is easy to realize a 2.times.2 optical switch by using two optical fibers on the input side and arranging them in the same way as the output fibers in FIG.

また偏光素子から出射するS偏光光P偏光光の
光軸を平行化するレンズは1つのレンズで同機能
を実現する場合を述べたが、それぞれレンズを1
つづつ合せて2つ用いてもよい。このことは偏光
変換素子から出射した光軸が平行となつている光
ビームをコリメートし出射側偏光素子に導びくレ
ンズについても同様にすることは可能である。
In addition, although we have described the case where the same function is achieved with one lens for parallelizing the optical axis of the S-polarized light and the P-polarized light emitted from the polarizing element, each lens is
A combination of two may be used. The same can be applied to a lens that collimates a light beam whose optical axes are parallel, emitted from a polarization conversion element, and guides it to the output-side polarizing element.

以上述べた如く本発明によれば安価で高性能の
光スイツチを得ることができる。
As described above, according to the present invention, an inexpensive and high-performance optical switch can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図で1
は入力光フアイバ、3は入力側偏光素子、4と6
は高NA値を有するレンズ、5は偏光変換素子、
7は出力側偏光素子、10,11は出力光フアイ
バである。第2図は偏光素子の動作を示す原理図
で100は高屈折率結晶板である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention.
is the input optical fiber, 3 is the input side polarizing element, 4 and 6
5 is a lens with a high NA value, 5 is a polarization conversion element,
7 is an output side polarizing element, and 10 and 11 are output optical fibers. FIG. 2 is a principle diagram showing the operation of a polarizing element, and 100 is a high refractive index crystal plate.

Claims (1)

【特許請求の範囲】[Claims] 1 高い屈折率を有し、両面に光学研磨を施こし
た結晶板と、該結晶板にブルースター角で入射し
該結晶板を透過する光ビームの光軸と反射する光
ビームの光軸とを平行化するレンズと、該レンズ
によつて平行化された前記2つの光ビームが透過
し印加される外場によつて該光ビームの偏光を90
度回転せしめる偏光変換素子と、該偏光変換素子
を透過した光ビームの光軸を焦点面上で交又せし
めるレンズと、光軸を交又せしめた位置に該レン
ズを透過した光ビームをブルースター角で入射せ
しめるように配置した前記結晶板と同一の結晶板
とを有することを特徴とする光スイツチ。
1 A crystal plate with a high refractive index and optically polished on both sides, an optical axis of a light beam that enters the crystal plate at Brewster's angle and passes through the crystal plate, and an optical axis of a reflected light beam. a lens that collimates the light beams, and the two light beams collimated by the lens are transmitted and the polarization of the light beams is changed to 90 by an applied external field.
a polarization conversion element that rotates the polarization conversion element; a lens that causes the optical axes of the light beams that have passed through the polarization conversion element to intersect on the focal plane; 1. An optical switch comprising a crystal plate identical to the above crystal plate arranged so as to allow light to enter at a corner.
JP18186281A 1981-11-13 1981-11-13 Optical switch Granted JPS5883801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18186281A JPS5883801A (en) 1981-11-13 1981-11-13 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18186281A JPS5883801A (en) 1981-11-13 1981-11-13 Optical switch

Publications (2)

Publication Number Publication Date
JPS5883801A JPS5883801A (en) 1983-05-19
JPH0341809B2 true JPH0341809B2 (en) 1991-06-25

Family

ID=16108132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18186281A Granted JPS5883801A (en) 1981-11-13 1981-11-13 Optical switch

Country Status (1)

Country Link
JP (1) JPS5883801A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137329A (en) * 1980-03-28 1981-10-27 Fujitsu Ltd Polarized and separated light control device
JPS5850415B2 (en) * 1978-06-21 1983-11-10 ヒュ−ズ・エアクラフト・カンパニ− How to shut off the ion beam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850415U (en) * 1981-09-29 1983-04-05 富士通株式会社 optical crystal device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850415B2 (en) * 1978-06-21 1983-11-10 ヒュ−ズ・エアクラフト・カンパニ− How to shut off the ion beam
JPS56137329A (en) * 1980-03-28 1981-10-27 Fujitsu Ltd Polarized and separated light control device

Also Published As

Publication number Publication date
JPS5883801A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
JP2710451B2 (en) Polarization independent optical isolator
US4516837A (en) Electro-optical switch for unpolarized optical signals
JP2747349B2 (en) Lighting system for liquid crystal display system
US4702557A (en) Optical branching device using a liquid crystal
NL7905972A (en) OPTICAL NON-RECIPROKE DEVICE.
US5999313A (en) Optical device having function of optical circulator
US5739951A (en) Polarization independent optical device
JPS6197629A (en) Optical switch
JPH0341809B2 (en)
JPH024864B2 (en)
JPH05313094A (en) Optical isolator
JPS58202430A (en) Optical switch
US20020110305A1 (en) Reflective optical circulator
JPH0830789B2 (en) Polarization splitting prism
JPS59228610A (en) Polarizing prism
WO2022041340A1 (en) Low-cost small optical circulator
JP3384520B2 (en) Optical device
JPS5858782A (en) Module of semiconductor laser
JPS60146216A (en) Optical branch coupler
JP2611812B2 (en) Optical splitter / combiner
JPS6343120A (en) Optical device
JPS61112123A (en) Depolarizer
JPH10186278A (en) Optical circulator
JPH02168204A (en) Polarizing prism
JPS63139317A (en) Optical isolator