JPS58202424A - Optical beam deflecting device - Google Patents

Optical beam deflecting device

Info

Publication number
JPS58202424A
JPS58202424A JP8532782A JP8532782A JPS58202424A JP S58202424 A JPS58202424 A JP S58202424A JP 8532782 A JP8532782 A JP 8532782A JP 8532782 A JP8532782 A JP 8532782A JP S58202424 A JPS58202424 A JP S58202424A
Authority
JP
Japan
Prior art keywords
mirrors
mirror
deflection
mirror faces
optical beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8532782A
Other languages
Japanese (ja)
Inventor
Tomohiro Murakami
知広 村上
Toshimi Okubo
大久保 利美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8532782A priority Critical patent/JPS58202424A/en
Publication of JPS58202424A publication Critical patent/JPS58202424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To reduce a cost of a titled device, by vibrating rockingly one of a pair of mirrors whose mirror faces are opposed to each other, against the other, or vibrating both of them rockingly and complementarily, and constituting so that an optical beam which is made incident between both mirrors can be deflected at a high speed and at a large deflection angle. CONSTITUTION:When an optical beam 1 is made incident from a prescribed direction, between mirror faces M1, M2 of mirrors placed so as to be opposed in parallel to each other, the optical beam 1 is reflected like a zigzag by the mirror faces M1, M2, and is emitted as an optical beam 1O. In this state, when each of mirror faces M1, M2 is silighly vibrated rockingly and complementarily by making their end parts A, B the rocking centers, the emitted beam 1O is deflected periodically at a deflection angle theta around a virtual deflecting center point P by the rocking and complementary slight vibration of the mirror faces M1, M2, and its deflecting period is equal to a complementary vibrating period of the mirror faces M1, M2.

Description

【発明の詳細な説明】 この発明は、光ビーム偏向装置に関する。[Detailed description of the invention] The present invention relates to a light beam deflection device.

光ビーム偏向装置は、従来、光プリンターや、原稿走漬
胱取装置等に関連して種々のものが知られて〜・る。こ
Jlら柚々の光ビーム偏向装置は、大別すると、機械的
方法によるもの、電気光学効果を利用するもの、および
音響光学効果を利用するものの3横に分けらね・る。こ
わらは、そねぞねに、利、―と欠盾とを有するから、そ
の優劣を一概に云々することはできないが、超高速の偏
向や、う/ダム偏向ということを目的とするものでない
i洩り、塊状では、偏向角の大きさ、分解点数、光利用
の効率1m度安定註などの点で、機械的方法によるもの
が、他のものに対して優位に立っている。
Conventionally, various types of light beam deflection devices are known in connection with optical printers, document scanning devices, and the like. The optical beam deflection devices of Jl et al. can be roughly divided into three types: those using mechanical methods, those using electro-optic effects, and those using acousto-optic effects. Kowara naturally has advantages and disadvantages, so it is difficult to say whether they are superior or inferior, but they are aimed at ultra-high-speed deflection and dumb deflection. When it comes to leakage and lumps, mechanical methods are superior to other methods in terms of the deflection angle, the number of resolution points, the efficiency of light utilization, and the stability of 1 m degree.

慎械的力法による偏光装置には、多面鏡やプリズムを回
転させる方式のものと、ミラーを揺動的に振動させる方
式のものとがある。
Polarization devices based on the mechanical force method include those that rotate a polygon mirror or prism, and those that vibrate the mirror in an oscillating manner.

多面鏡等を回転させる方式のものは、ミラーを揺動的に
振動させる方式のものに比して、偏向速度も速く、偏向
角も大きく、分解点数も多い。しかし、その反面、多面
鏡等が多面体構造であるため、多面鏡等に非常に高い面
精度が要求さね、製造コストが高くつく。また、回転系
を伴うので、機械的な寿命や(i’ lJi 註の面で
問題があるほか、回転運動による偏向の非直線性を光学
系によってしか油止できない。そのため、偏向装置の周
辺にも高精度の、従ってコストの高い光学系を要するこ
ととなり、システム全体としてのコストが極めて高いも
のにつく。
A method in which a polygon mirror or the like is rotated has a faster deflection speed, a larger deflection angle, and a larger number of resolution points than a method in which a mirror is oscillated. However, on the other hand, since polygon mirrors and the like have a polyhedral structure, extremely high surface precision is required for the polygon mirrors, and manufacturing costs are high. In addition, since it involves a rotating system, there are problems in terms of mechanical lifespan (i' lJi Note), and non-linearity of deflection due to rotational movement can only be suppressed by an optical system. This also requires a highly accurate and therefore expensive optical system, resulting in an extremely high cost for the entire system.

一方、ミラーを揺動的に振動させる方式のものでは、ミ
ラーの面精度等は、さほど高い精度でなくともよく、偏
向の非直線性の補正も比較的容易である。しかし、高速
偏向を行なう場合に、・−同角の大きさや分解点数の虞
で、回転方式のものに及ばないというのか従来の状況で
あった。
On the other hand, in a system in which the mirror is oscillated, the surface accuracy of the mirror does not need to be very high, and correction of nonlinearity of deflection is relatively easy. However, when high-speed deflection is to be performed, the conventional situation is that it is not as good as the rotation method due to the possibility of the size of the same angle and the number of resolution points.

そこで、本発明は、ミラー振動方式であって。Therefore, the present invention is a mirror vibration method.

なおかつ、高速偏向時においても、大偏向角、高分解点
数を得ることができ、構造が極めて簡単であって、さほ
どの機械的鴨“度を要求されず、安価に実極しうる。新
規な光ビーム偏向装置の提供を目的とする。
Furthermore, even during high-speed deflection, a large deflection angle and a high number of resolution points can be obtained, and the structure is extremely simple, does not require much mechanical precision, and can be implemented at low cost. The purpose of this invention is to provide a light beam deflection device.

以下、本発明を説明する。The present invention will be explained below.

本発明による光ビーム偏向装置は、1対のミラーと、光
ビーム入側手段と、振動手段とを有する。
A light beam deflection device according to the present invention includes a pair of mirrors, light beam entrance means, and vibration means.

1対のミラーは、その鏡面を互いに対向させて、配備さ
オ]る。
A pair of mirrors is arranged with their mirror surfaces facing each other.

光ビーム入射手段は、光ビームが、上記】対のミラーに
より交互に、かつジグザグ状に反射されるように、光ビ
ームを、上記1対のミラー間に定方向的に入射させる。
The light beam incidence means directs the light beam between the pair of mirrors so that the light beam is reflected alternately and in a zigzag pattern by the pair of mirrors.

振動手段は、】対のミラーのうちの一方を、他力に対し
7て、揺動的に振動させるか、あるいは、1対のミラー
の双方を、揺動的かっ相補的に振動させる。相補的な振
動の意味するところについては、後述する。
The vibration means vibrates one of the pair of mirrors in an oscillatory manner in response to another force, or vibrates both mirrors in an oscillatory manner in a complementary manner. The meaning of complementary vibration will be explained later.

以下、図面を参照しながら、具体的に説明する。Hereinafter, a detailed description will be given with reference to the drawings.

ます、オ′1図を参照して1本発明の詳細な説明する0
才1図において、符号Ml、M2は、ミラーの鏡面を、
示している。こねら鏡面は、実線で示す態位にあっては
、互いに平行となっている。
Now, a detailed explanation of the present invention will be given with reference to Figure 1.
In Figure 1, the symbols Ml and M2 indicate the mirror surface of the mirror,
It shows. The mirror surfaces are parallel to each other in the position shown by the solid line.

今、鏡面Ml、M2が実線に示す態位において互いに平
行に対向して静止しているものとし、この鏡面間に光ビ
ームlを定方向から入射させると、光ビームlは、鏡面
Ml、M2により交互に、ジグザグ状に反射さJl、光
ビーム1゜とじて射出する。
Now, it is assumed that the mirror surfaces Ml and M2 are stationary, facing each other in parallel in the attitude shown by the solid line, and when a light beam l is made incident between these mirror surfaces from a fixed direction, the light beam l is The light beams are alternately reflected in a zigzag pattern Jl, and the light beam is emitted as a 1° beam.

次いで、この状態から、各鏡面Ml、M2を、その端部
A、Bを揺動中心として、揺動的に、かつ相補的に微小
振動させてみる。各鏡面M]、M2のする。
Next, from this state, each of the mirror surfaces M1 and M2 is slightly vibrated in a complementary manner with the ends A and B as the center of vibration. Each mirror surface M], M2.

鏡面M1、毘の揺動的振動が相補的であるとは。The rocking vibrations of the mirror surfaces M1 and Bi are complementary.

こJlら鏡面の振動周mlが互いに等しく、かつ&勧の
位相が相互に半周期分すねていることをいう。
This means that the vibration circumferences ml of the mirror surfaces are equal to each other, and the phases of & are lag each other by half a period.

従って、鏡面M】 か振動によって、Ml’、Ml“な
る符号で示す態位をとるときは、鏡面M2  は、対応
的に、態位M2’、M2“を取る。
Therefore, when the mirror surface M] takes the positions indicated by the symbols M1', M1'' due to vibration, the mirror surface M2 correspondingly assumes the positions M2', M2''.

鏡面Ml、M2が、態位Ml’ 、  M2’を取ると
き、すなわち、鎖線で示す態位をとるとき、定方向的に
入射する光ビーム1は、鎖線の如くに反射されビーム1
′となって射出する。
When the mirror surfaces Ml and M2 assume the positions Ml' and M2', that is, when they take the positions shown by the chain lines, the light beam 1 incident in a direction is reflected as shown by the chain lines, and becomes the beam 1.
′ and ejects.

態位Ml’は、実線の態位M1  に対しl/2Δθま
たけ傾いており、鏡面M2 の態位M2’は実線の態位
に対して1/2△02  だけ傾いている。
The attitude Ml' is inclined by 1/2Δθ with respect to the attitude M1 shown by the solid line, and the attitude M2' of the mirror surface M2 is inclined by 1/2Δ02 with respect to the attitude shown by the solid line.

従って、このとき、光ビームlは、鏡面M1  に反射
方向がすねる。また、鏡面M2  に1回反射されるご
とに、Δθ2 づつ1反射方向がすわる。鏡面M】 と
M2 の振動が相補的であるので、こtlらの−f’ 
ilは、相加的である。従って、一般的に、鏡面Ml 
 による反射回数がFJ  回、鏡面M2  による反
射回数がn2 回であるとすると。
Therefore, at this time, the direction of reflection of the light beam 1 is slanted toward the mirror surface M1. Furthermore, each time the light is reflected on the mirror surface M2, the direction of reflection changes by Δθ2. Since the vibrations of mirror surface M] and M2 are complementary, -f' of these tl
il is additive. Therefore, in general, the mirror surface Ml
Suppose that the number of reflections by FJ is FJ and the number of reflections by mirror M2 is n2.

反射光ビームにおける、方向のす名は。What is the name of the direction in the reflected light beam?

ル1Δθ1+n2Δθ2(1) となる。オ”1図にあっては、rL4=1%rL2=2
であるから゛、ビームl。と1′とのなす角は。
1Δθ1+n2Δθ2(1). In Figure 1, rL4 = 1% rL2 = 2
Therefore, beam l. What is the angle between and 1'?

Δθ1+2Δθ2(2) となる。Δθ1+2Δθ2(2) becomes.

同様にして、鏡面Ml、M2が、破線で示す態位M1“
、  M2”を占めるとき、光ビームlは破線の如くに
反射さねて、ビーム1“どなって射出する。上述と同様
の考え方により、ビーム1゜と1“とのなす角は。
Similarly, the mirror surfaces Ml and M2 are in the attitude M1'' shown by the broken line.
, M2'', the light beam 1 is reflected as shown by the broken line, and beam 1'' is emitted. Using the same concept as above, the angle between beams 1° and 1" is:

△θ1 +2Δθ2(3) となる。従って、鏡面M1、M2の相補的振動による射
出ビームの1ttd向角θは。
Δθ1 +2Δθ2(3). Therefore, the 1ttd direction angle θ of the emitted beam due to the complementary vibrations of the mirror surfaces M1 and M2 is.

2ΔU1+4Δθ2(4) となる。すなわち、鏡面M】、M2の揺動的な相補的微
小倣動によって、射出ビーム1゜は、仮想的な偏向中心
P点のまわりに、偏向角θで周期的に偏向し、その偏向
周期は、鏡面Ml、M2の相補的振動周期に等しい。
2ΔU1+4Δθ2(4). That is, due to the oscillating complementary micro-trailing movements of the mirror surfaces M] and M2, the emitted beam 1° is periodically deflected at a deflection angle θ around the virtual deflection center P point, and the deflection period is , are equal to the complementary vibration periods of the mirror surfaces Ml, M2.

一般的に、鏡面M】、M2による反射回数を上述の如く
nl、rL2とすわば、偏向角が21’L1  Δ  
θ1  ”  2”2  Δ θ2(5)で与えらねる
ことは容易に理解されるであろう。
Generally, if the number of reflections by the mirror surface M], M2 is nl, rL2 as mentioned above, then the deflection angle is 21'L1 Δ
It will be easily understood that it cannot be given by θ1 '' 2 '' 2 Δ θ2 (5).

特に、Δθ1=Δθ2=Δθ のとき、すなわち、鏡面
Ml、M20角振幅が互いに等しいときは、偏向角は。
In particular, when Δθ1=Δθ2=Δθ, that is, when the mirror surface Ml and M20 angular amplitudes are equal to each other, the deflection angle is.

2  (n1+  nl)Δθ         (6
)となる。また、例えは、Δθ1=00ときは、偏向角
は 2ル2△θ2(7) となるが、こ第1は、鏡面M】 を静止させ、鏡面用の
みを揺動的に振動させた場合である。
2 (n1+nl)Δθ (6
). For example, when Δθ1=00, the deflection angle is 2 2 Δθ2 (7), but in the first case, when the mirror surface M is kept stationary and only the mirror surface is oscillated. It is.

以上が、本発明による、光ビーム偏向の原理であるが、
この偏向方式は、鏡面の揺動的振動を利用するものであ
るから、従来の揚動方式の偏向と同様、装置に対して高
度の精度は要求さねない。
The above is the principle of light beam deflection according to the present invention.
Since this deflection method utilizes the rocking vibration of the mirror surface, it may require a high degree of accuracy from the device, as in the case of conventional lift-type deflection.

しかも構成は非常に簡単であるから、低コストで実決す
ることができる。
Moreover, since the configuration is very simple, it can be implemented at low cost.

また、偏向角は、基本的に、鏡面の角振幅と、振動鏡面
での反射回数との積で与えらfするがら、上記角振幅と
反射回数とを、ともども増加させることで、偏向角を相
乗的に増大させることができるので、大きい偏向角を容
易に得ることができる。
The deflection angle is basically given by the product of the angular amplitude of the mirror surface and the number of reflections on the vibrating mirror surface, and by increasing both the angular amplitude and the number of reflections, the deflection angle can be increased. Since they can be increased synergistically, large deflection angles can be easily obtained.

例えは、従来の振動方式の偏向装着では、偏向角は、高
速偏向の場合、高々4〜6度が限度とさおでいたが、本
発明の偏向方式によりば、高速偏向の場合にも、14〜
16度という、回転方式のそ第1にも四速すべき偏向角
を無理なく達成できる。
For example, with conventional vibration-type deflection mounting, the deflection angle was limited to 4 to 6 degrees at most in the case of high-speed deflection, but with the deflection method of the present invention, even in the case of high-speed deflection, 14~
It is possible to easily achieve the deflection angle of 16 degrees, which is required for a four-speed rotation system.

分解点数については、偏向角の大きさと、ビームスポッ
トの広がりが間鴎となるが、偏向角の大きさは、上述し
た通り、十分大きなものとすることができる。一方、ビ
ームスポットの広がりに関しては、本発明の偏向方式の
場合、ビームは単に鏡面で反射されるのみであるから、
原理的に空気中を畝幅する場合と同様であり、電気光学
結晶などに光ビームを透過させる場合に問題となるビー
ムスポットの広がりは、本発明の偏向方式にあっては問
題とならない。
Regarding the number of resolution points, the magnitude of the deflection angle and the spread of the beam spot are important factors, but the magnitude of the deflection angle can be made sufficiently large as described above. On the other hand, regarding the spread of the beam spot, in the case of the deflection method of the present invention, the beam is simply reflected by the mirror surface.
The principle is the same as in the case of ridge width in the air, and the spread of the beam spot, which is a problem when transmitting a light beam through an electro-optic crystal, does not become a problem in the deflection method of the present invention.

このように、本発明による偏向方式では、偏向角が大き
く、分解点数も尚い。また、光ビームが一対の鏡面の間
で複数回反射さtl、反射回数に応じて、1JIll向
角が増幅さtするので、鏡面の振動は敵手m i&II
lで十分であり、従って、高速偏向がEJ能であり、か
つ、その場合でも偏向角を十分に大きくとることができ
る。
As described above, in the deflection method according to the present invention, the deflection angle is large and the number of resolution points is also large. In addition, the light beam is reflected multiple times between a pair of mirror surfaces tl, and the direction angle is amplified by 1JIll according to the number of reflections, so the vibration of the mirror surface is
1 is sufficient, and therefore high-speed deflection is EJ capable, and even in that case, the deflection angle can be made sufficiently large.

月・2図は 本発明の1実施例1を説明に必要な部分の
み略示している。
Figure 2 schematically shows only the parts necessary for explaining Embodiment 1 of the present invention.

図においで、符号10t  11は据動子、符号12は
支持体、符号】3は光ビーム取入用の穴、右号】4゜1
5  はミラーを、そわぞね示している。
In the figure, symbol 10t, 11 is a stator, symbol 12 is a support, symbol ]3 is a hole for taking in a light beam, right symbol ]4゜1
5 is pointing at the mirror.

振動子10.  月は、同様の′M成のものであって。Vibrator 10. The moon has a similar 'M' composition.

そ11ぞね、薄膜電極を介して、 PZTの薄板を張り
合せて構成さJlている。図中、符号101,102゜
111.132は、PZTの薄板である。このPZTの
薄板は、印加電界と直交する方向へ伸縮するもの、例え
は、焼結ジルコニウム酸塩や、゛す/酸二水素アンモニ
ウムの薄板である。こ罎1らPZTの材料原価は安価な
ので、1・2図の偏向装置は、回転多面鏡等を用いる方
式のものに比してずつと安価に実現で、きる。
No. 11, it is constructed by laminating thin PZT plates through thin film electrodes. In the figure, numerals 101, 102, 111, and 132 are thin plates of PZT. The thin sheet of PZT is one that expands and contracts in a direction perpendicular to the applied electric field, such as a thin sheet of sintered zirconate or ammonium dihydrogen oxide. Since the material cost of PZT is low, the deflection device shown in Figures 1 and 2 can be realized at a lower cost than a system using a rotating polygon mirror or the like.

このPZTの薄板101#は、こねに電界が作用すると
、その電界の向きに応じて延ひたり、ちぢんだりする。
When an electric field acts on the dough, this PZT thin plate 101# expands or shrinks depending on the direction of the electric field.

例えば、振動子lOにおける薄膜電極に例えば正軍用を
印加すると、薄板101には上向き、薄板J02には下
向きの電界が作用し、従って、この場合、例えば、薄板
101が、図面上で左右方向へちぢむとすると、薄板1
02は左右方向へのびる。この結果、撮動子10は、上
方へ反り返る。従って、振動子10の電極に交流電圧を
印加すわば、振動子10  を低動させることができる
For example, when a regular electric field is applied to the thin film electrode of the vibrator IO, an upward electric field acts on the thin plate 101 and a downward electric field acts on the thin plate J02. If it shrinks, thin plate 1
02 extends in the left and right direction. As a result, the camera element 10 is warped upward. Therefore, by applying an alternating current voltage to the electrodes of the vibrator 10, the vibrator 10 can be made to move slowly.

振動子】0とIJとは、その一端部を、支持体に固定さ
ねて平行に対向している。
Vibrator 0 and IJ face each other in parallel with one end fixed to a support.

従って、振動子10.11の電極へ適当な方向で電圧印
加を行うことにより、振動子10.]lを、揺動的、且
つ相補的に微小振動させることができる。すなわち、振
動子1O111と、こね゛らに振動電圧を印加する図示
さねない手段とは、振動手段を構成している。
Therefore, by applying voltage to the electrodes of the vibrator 10.11 in an appropriate direction, the vibrator 10.11. ]l can be made to vibrate minutely in an oscillatory and complementary manner. That is, the vibrator 1O111 and a means (not shown) for continuously applying a vibrating voltage constitute a vibrating means.

ツ肘動子10.11の互いに対向する面には、ミラー1
4、J5が、例えば、金属薄膜蒸着等で形成されて(・
る。
Mirrors 1 are provided on mutually opposing surfaces of the elbow movers 10 and 11.
4. J5 is formed by, for example, metal thin film deposition (・
Ru.

衛勤子]0には、その固定された端部に近い位置に、光
ヒーム取入用の穴13が穿設さねている(1アそこで、
矛2図に示す如き状態において支持体12  の態位を
固定し、図に示すごとく、光ビームlを、干図示の入射
手段、により定方向的に、すなわち、常に一定方向から
、穴13を介してミラー14.15間に入射させ、撮動
子]0.11を、揺動的に、且つ相補的に微小振動させ
ることにより、出射ビームを周期的に偏向させることが
できる。偏向の周期は、振動子10.11の振動筒ル1
と等しいが、材料、形状等の選択により振動子10.1
1の撮動周期は、数μsecないし数10 /j se
e  のオーダーまで短くしうるので、極めて高速の偏
向を実境できる。
A hole 13 for taking in the optical beam is bored at a position close to the fixed end of 0 (1A).
The position of the support 12 is fixed in the state shown in Figure 2, and the light beam l is directed through the hole 13 in a unidirectional manner, that is, always from a fixed direction, as shown in the figure. The emitted beam can be periodically deflected by making it enter between the mirrors 14 and 15 through the camera and causing the camera element]0.11 to vibrate minutely in an oscillatory and complementary manner. The period of deflection is the vibration cylinder 1 of the vibrator 10.11.
However, depending on the selection of materials, shapes, etc., the transducer 10.1
The imaging period of 1 is several microseconds to several tens of seconds /j se
Since the length can be shortened to the order of e, extremely high-speed deflection can be realized.

なお、振動子JO111の振動態様は、印加電圧の波形
や大きさ等によって、かなりの自由度を以って、制御可
能である。
Note that the vibration mode of the vibrator JO 111 can be controlled with a considerable degree of freedom by changing the waveform and magnitude of the applied voltage.

以上の例では、対向する1対のミラーが互いに平行に対
向する場合を例にとったが、このことは必らずしも必要
ではなく、ミラーを平行以外の状態で対向させるように
構成することも可能である。
In the above example, we took the case where a pair of opposing mirrors face each other in parallel, but this is not always necessary, and the mirrors may be configured to face in a state other than parallel. It is also possible.

ところで、近時、光ビーム用の光源として半導体レーザ
ーが使用されるようになったか、周知の如く、半導体レ
ーザーから放射さJする光束は、発散けの光束であって
、しかも、その発散の方向は光軸のまわりに等方向では
なく、従って、上記光束をコリメートして得らねるビー
ムの断面形状は。
By the way, in recent years, semiconductor lasers have come to be used as light sources for light beams, and as is well known, the luminous flux emitted from semiconductor lasers is a divergent luminous flux, and moreover, the direction of the divergence is are not equidirectional around the optical axis, and therefore the cross-sectional shape of the beam obtained by collimating the above beam is .

一般に円形とならす、楕円もしくは楕円類似の形状であ
る。
Generally, it is an ellipse or an ellipse-like shape that is circular.

このような場合には、例えば才4図に示す例の筒面形状
などとして、ミラーMLI 、 ML2を、1次元的な
凹面蜆として使用することにより、上記楕円状の断面形
状のビームの、長軸方向に対して東京傾向を与えること
によって、偏向ビームの走肴面上のスポット形状を所望
の形状に修正することができる。ミラーMLI 、 M
L2の一方は平面鏡としてもよい。
In such a case, by using mirrors MLI and ML2 as one-dimensional concave mirrors, such as the cylindrical shape shown in Fig. 4, the length of the beam with the elliptical cross-sectional shape can be increased. By giving a Tokyo tendency in the axial direction, the spot shape on the scanning plane of the deflected beam can be modified to a desired shape. Mirror MLI, M
One of L2 may be a plane mirror.

第4図において、符号2は、ミラーMLI 、 ML2
によってジグザグ状に反射される光ビームの、主光線の
光路により決定される平面を示す。
In FIG. 4, reference numeral 2 indicates mirror MLI, ML2.
shows the plane determined by the optical path of the chief ray of a light beam reflected in a zigzag manner by .

【図面の簡単な説明】[Brief explanation of drawings]

才1図は1本発明の原理を説明するためのFXI、第2
図は、本発明の1実施例を示す仙1面図、壜・3図は、
上記実施ψ(1を示す平面図、第4図+i、本発明の他
の実施例を説明するための図である。
Figure 1 shows FXI for explaining the principle of the present invention.
The figure is a top view of the bottle showing one embodiment of the present invention.
FIG. 4 is a plan view showing the above-mentioned embodiment ψ(1), and is a diagram for explaining another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 鏡面を互いに対向させて配備される1対のミラーと、 こねらミラーにより、交互に、ジグザグ状に反射される
ように、光ビームを、ミラー間に定方向的に入射させる
手段と、 上記1対のミラーの一方を他方に対して、揺動的に撮動
させるか、もしくは、1対のミラーの双方を、揺動的か
つ相補的に振動させる振動手段とを有し、振動角の2倍
よりも大きな光偏向角を得る光ビーム偏向装置。
[Claims] A light beam is directionally incident between the mirrors so that it is alternately reflected in a zigzag pattern by a pair of mirrors arranged with mirror surfaces facing each other and a kneaded mirror. and vibrating means for oscillatingly moving one of the pair of mirrors relative to the other, or vibrating both of the pair of mirrors oscillatingly and complementary. A light beam deflection device that obtains a light deflection angle larger than twice the vibration angle.
JP8532782A 1982-05-20 1982-05-20 Optical beam deflecting device Pending JPS58202424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8532782A JPS58202424A (en) 1982-05-20 1982-05-20 Optical beam deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8532782A JPS58202424A (en) 1982-05-20 1982-05-20 Optical beam deflecting device

Publications (1)

Publication Number Publication Date
JPS58202424A true JPS58202424A (en) 1983-11-25

Family

ID=13855531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8532782A Pending JPS58202424A (en) 1982-05-20 1982-05-20 Optical beam deflecting device

Country Status (1)

Country Link
JP (1) JPS58202424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134726A (en) * 1984-12-06 1986-06-21 Ngk Spark Plug Co Ltd Optical deflector
JPH027016A (en) * 1988-06-27 1990-01-11 Nec Corp Optical deflector
EP0396485A2 (en) * 1989-05-01 1990-11-07 International Business Machines Corporation Bar code scanner with a large depth of field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134726A (en) * 1984-12-06 1986-06-21 Ngk Spark Plug Co Ltd Optical deflector
JPH055332B2 (en) * 1984-12-06 1993-01-22 Ngk Spark Plug Co
JPH027016A (en) * 1988-06-27 1990-01-11 Nec Corp Optical deflector
EP0396485A2 (en) * 1989-05-01 1990-11-07 International Business Machines Corporation Bar code scanner with a large depth of field

Similar Documents

Publication Publication Date Title
US5233456A (en) Resonant mirror and method of manufacture
JP4639812B2 (en) Scanning device
US8238011B1 (en) MEMS device with off-axis actuator
JPH04211217A (en) Optical deflector
JPS58202424A (en) Optical beam deflecting device
US7372620B2 (en) Micromirror and micromirror device
US6104124A (en) Ultrasonic motor and electronic apparatus and analog timepiece having the ultrasonic motor
US20230139572A1 (en) Optical scanning device and method of driving micromirror device
JPH0495917A (en) Optical scanner
US20220404615A1 (en) Optical scanning device and control method thereof
JPH04343318A (en) Torsional vibrator
JP2001264676A (en) Optical scanner
EP4209822A1 (en) Optical scanning device and control method thereof
JP2001272626A (en) Optical scanner
WO2022163501A1 (en) Optical scanning device and method for driving micromirror device
JPS62284323A (en) Light beam scanner
US20230305116A1 (en) Optical scanning device, driving method of optical scanning device, and distance measurement device
JP2629651B2 (en) Mirror deflector
JPH04368907A (en) Optical scanner
EP0740180A1 (en) Apparatus for directing light
JP7247618B2 (en) Optical scanning device and optical scanning method
WO2023053840A1 (en) Optical scanning device
JPS62226119A (en) Optical scanner
JPH01287525A (en) Deflecting or scanning device
JP2003029191A (en) Optical deflector and optical apparatus using the same