JPS58201744A - Preparation of vinyl-substituted cyclohexenedicarboxaldehyde - Google Patents

Preparation of vinyl-substituted cyclohexenedicarboxaldehyde

Info

Publication number
JPS58201744A
JPS58201744A JP57082933A JP8293382A JPS58201744A JP S58201744 A JPS58201744 A JP S58201744A JP 57082933 A JP57082933 A JP 57082933A JP 8293382 A JP8293382 A JP 8293382A JP S58201744 A JPS58201744 A JP S58201744A
Authority
JP
Japan
Prior art keywords
catalyst
group
raw material
reaction
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57082933A
Other languages
Japanese (ja)
Other versions
JPH0245611B2 (en
Inventor
Akihisa Yamamoto
陽久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP57082933A priority Critical patent/JPS58201744A/en
Publication of JPS58201744A publication Critical patent/JPS58201744A/en
Publication of JPH0245611B2 publication Critical patent/JPH0245611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound consisting of a novel substance useful as a raw material for organic industrial products efficiently in high purity, by oxidizing a 5C chain compound having CH3 in the side chain in the vapor phase in the presence of a metallic oxide, e.g. Mo-Bi-Tl type, etc. as a catalyst. CONSTITUTION:A 5C chain compound having CH3 in the side chain s oxidized in the vapor phase with molecular oxygen in the presence of a metallic oxide catalyst of formula I (Xc are one or more elements selected from a metallic element of Group I or a metallic element of Group II in the periodic table and Tl; a, b, c and d are the numbers of atoms of Mo, Bi, X and O; b is 0.01-50; c is 0.01-30 and d is the number of O atoms satisfying the valences of the other atoms) to give aimed compound consisting essentially of 5-vinyl-1-cyclohexene- 1,5-dicarboxaldehyde of formula II which is a novel substance useful as a raw material for flavorous substance like beefsteak plant or a raw material for various organic chemicals. EFFECT:The reaction can be carried out stably for a long term with a long catalyst life.

Description

【発明の詳細な説明】 本発明はビニル置換シクロヘキセンジカルポキザルデヒ
ドの製造法に関し、さらに詳しくは、側鎖にメチル置換
基を有する炭素数5の鎖状化合物を気相酸化することに
よシ効率よくビニル置換シクロヘキセンジカルボキザル
デヒドを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing vinyl-substituted cyclohexenedicarpoxaldehyde, and more specifically, the present invention relates to a method for producing vinyl-substituted cyclohexenedicarpoxaldehyde, and more specifically, the present invention relates to a method for producing vinyl-substituted cyclohexenedicarpoxaldehyde. The present invention relates to a method for efficiently producing vinyl-substituted cyclohexene dicarboxaldehyde.

ビニル置換シクロヘキセンジカルボキザルデヒド(以下
、単にジアルデヒドと称する)は分子中に2個のホルミ
ル基と1個のビニル基を有するシクロヘキセン化合物で
あり、有機工業製品の原料として有用な化合物であるO
而して、かかるジアルデヒドの合成法として、従来から
il+モリブデンと(2)ビスマス、鉄またはリンから
成る酸化物触媒の存在下にイソプレンを気相酸化する方
法が知られている(%開昭52−25747号)。
Vinyl-substituted cyclohexene dicarboxaldehyde (hereinafter simply referred to as dialdehyde) is a cyclohexene compound having two formyl groups and one vinyl group in the molecule, and is a compound useful as a raw material for organic industrial products.
As a method for synthesizing such dialdehydes, a method is conventionally known in which isoprene is oxidized in the gas phase in the presence of an oxide catalyst consisting of il + molybdenum and (2) bismuth, iron, or phosphorus (% Kaisho). 52-25747).

この方法によれば、イソプレンを出発原料としてシソ様
の香気を有する4−ビニル−1−シクロヘキセン−1,
4−ジカルボキザルデヒド(以下、ジアルデヒドIと称
する)を一段で合成することができるoしかし、この方
法の場合には、出発原料がイソプレンに限定される、生
成するジアルデヒドがジアルデヒドエに限定されるなど
といった問題があり、ジアルデヒドI以外の構造を有す
る異性体の製造には不適当であったO そこで本発明者らL従来技術ではなしえなかつ友ジアル
デヒドIの構造異性体を合成すべく鋭意検討を進めた結
果、モリブデン、ビスマスに加えて第三の成分を加えた
触媒を用いることがきわめて有効なことを見い出し本発
明を完成するに到ったO すなわち本発明の主な目的は新規物質である5−ビニル
−1−シクロへ箪センー1,5−ジカルボキザルデヒド
(以下、ジアルデヒド■と称する)を主成分とするビニ
ル置換ンクロヘキセンジカルボキザルデヒドを高純度で
経済的に製造する方法を提供することにあシ、かかる本
発明の目的は、側鎖に1個のメチル基を有する炭素数5
の鎖状化合物(以下、反応主原料と称する)を111モ
リブデン、(2)ビスマス、(3)周期律表の第゛I族
金属元素、第■族金属元素及びタリウムから成る群から
選択される少なくとも一種の金属及び(4)酸素から成
る金属酸化物触媒の存在下に分子状酸素により気相酸化
せしめることによって達成される。
According to this method, 4-vinyl-1-cyclohexene-1, which has a perilla-like aroma, is produced from isoprene as a starting material.
4-dicarboxaldehyde (hereinafter referred to as dialdehyde I) can be synthesized in one step. However, in the case of this method, the starting material is limited to isoprene, and the dialdehyde produced is limited to dialdehyde. Therefore, the present inventors synthesized a structural isomer of dialdehyde I that could not be achieved using conventional techniques. As a result of intensive studies to achieve this goal, it was discovered that the use of a catalyst containing a third component in addition to molybdenum and bismuth was extremely effective, leading to the completion of the present invention. is a new substance, vinyl-substituted vinyl-substituted dicarboxaldehyde, whose main component is 5-vinyl-1-cyclohexene-1,5-dicarboxaldehyde (hereinafter referred to as dialdehyde), with high purity and economy. It is therefore an object of the present invention to provide a method for producing carbon atoms having one methyl group in the side chain.
The chain compound (hereinafter referred to as the main reaction raw material) is selected from the group consisting of 111 molybdenum, (2) bismuth, (3) metal elements of Group I, metal elements of Group II of the periodic table, and thallium. This is achieved by gas phase oxidation with molecular oxygen in the presence of a metal oxide catalyst consisting of at least one metal and (4) oxygen.

本発明において用いられる反応主原料は、側鎖にメチル
基を有する炭素原子数5の鎖状のオレフィン、ジオレフ
ィン、アルコール及びアルデヒドであればいずれでもよ
く、その具体的な例として2−メチルブテン−1,2−
メチルブテン−2,3−メチルブテン−1、イングレン
、2−メチル−1−ブタノール、t8rt−アミルアル
コール、2−メチル−3−ブタノール、3−メチル−1
−ブタノール、3−メチル−3−ブテン−1−オール、
3−メチル−3−ブテン−2−オール、2−メチル−2
−ブテン−1−オール、3−メ゛チルー2−ブテンー2
−オール、3−メチル−2−ブテン−1−オール、2−
メチル−3−少テンー2−オール、2−メチル−3−ブ
テン−1−オール、−ブタンジオール、α、β−ジメ 3−メチル−16 チルアクロレイン、β、β−ジメチルアクロレインなど
が挙げられる。これらの反応主原料は必ずしも単独で使
用する必要はなく、これ等の混合物あるいはこの他の不
純物との混合物の形で用いることもできる。
The main reaction raw materials used in the present invention may be any chain olefins, diolefins, alcohols, and aldehydes having 5 carbon atoms and having a methyl group in the side chain, and a specific example thereof is 2-methylbutene- 1,2-
Methylbutene-2,3-methylbutene-1, Inglene, 2-methyl-1-butanol, t8rt-amyl alcohol, 2-methyl-3-butanol, 3-methyl-1
-butanol, 3-methyl-3-buten-1-ol,
3-methyl-3-buten-2-ol, 2-methyl-2
-buten-1-ol, 3-methyl-2-butene-2
-ol, 3-methyl-2-buten-1-ol, 2-
Examples include methyl-3-oten-2-ol, 2-methyl-3-buten-1-ol, -butanediol, α,β-dime3-methyl-16-thylacrolein, and β,β-dimethylacrolein. These reaction main raw materials do not necessarily need to be used alone, and can also be used in the form of a mixture thereof or a mixture with other impurities.

一方、本発明で用いられる触媒は前記四種の元素を必須
成分とするものであり、通常一般式CI)で示されるも
のである。
On the other hand, the catalyst used in the present invention contains the above-mentioned four types of elements as essential components, and is usually represented by the general formula CI).

Moa  Blb  Xc −Oa −−・−=  C
I)(ここでXは周期律表の第■族金輌元累、第■族金
属元素及びT/から選ばれた一種以上の元素を表わし、
!L、 b、 a及びdはそれぞれMo、Bi、−X及
び0の原子数であシ、a−12とした場合、b=0.0
1〜50、O=0.01〜50の値をとシ、dは他の元
素の原子価を満足する酸素の原子数である。) かかるX元累のなかでもとくに工・a属金属元素、■a
属金金属元素びT/が良好な性能を示す。
Moa Blb Xc −Oa −−・−= C
I) (Here, X represents one or more elements selected from Group ■ metal elements, Group ■ metal elements, and T/ of the periodic table,
! L, b, a and d are the number of atoms of Mo, Bi, -X and 0 respectively, and when a-12, b=0.0
1 to 50, O=0.01 to 50, and d is the number of oxygen atoms satisfying the valences of other elements. ) Among these X elements, especially metal elements of group A, ■a
Metals and metals show good performance.

また、必要に応じてこれらの各成分に加えて他の金属元
素、例えばPa、Ni、Oo、P、B、Mn+Or。
In addition to these components, other metal elements such as Pa, Ni, Oo, P, B, Mn+Or may be added as necessary.

To、W、Sb、V、As、Nb、Ta、Pb、Sn、
Zr、In。
To, W, Sb, V, As, Nb, Ta, Pb, Sn,
Zr, In.

La、Os、N4.8m、Th、Uなどの一種またはそ
れ以上を適宜添加することができ、とくにFe、 Ni
One or more of La, Os, N4.8m, Th, U, etc. can be added as appropriate, especially Fe, Ni
.

Oo、 P、 Mn、 Or、 W+ 8 b、−Pb
及びanから選ばれる一種ま穴はそれ以上の金属元素を
添加することによって、触媒性能を大巾に高めることが
できる。
Oo, P, Mn, Or, W+ 8 b, -Pb
By adding one or more metal elements selected from and an, the catalytic performance can be greatly improved.

本発明に使用される触媒は、この分野で公知のいろいろ
の方法、例えば蒸発乾固法、酸化物混合法、共沈法等に
よって調製することができる。触媒の調製に用いられる
各元素の原料物質としては、酸化物のみならず、焼成に
よって本発明の触媒を構成するものであれば、いかなる
ものも使用できる。これらの例としては、各元素のアン
モニウム塩、硝酸塩、炭酸塩、有機酸塩、ハロゲン化物
等の塩類、遊離酸、酸無水物、縮合酸、あるいはケイモ
リブデン酸等のモリブデンを含むヘテロポリ酸又はその
アンモニウム塩、金属塩等のへテロポリ酸塩等を挙げる
ことができる。またケイモリブデン酸の如きケイ素を含
む化合物を使用しても触媒活性に悪い影響は及はさない
〇 触媒原料を用いて本発明の触媒へ変換、または触媒の活
性化等の目的で行う焼成処理は、分子状酸素を含む気体
の流通下に通常500〜9’00C。
The catalyst used in the present invention can be prepared by various methods known in the art, such as evaporation to dryness, oxide mixing, coprecipitation, and the like. As the raw materials for each element used in the preparation of the catalyst, not only oxides but also any material can be used as long as it forms the catalyst of the present invention by calcination. Examples of these include salts such as ammonium salts, nitrates, carbonates, organic acid salts, and halides of each element, free acids, acid anhydrides, condensed acids, and heteropolyacids containing molybdenum such as silicomolybdic acid. Examples include heteropolyacid salts such as ammonium salts and metal salts. In addition, the use of a silicon-containing compound such as silicon molybdic acid does not have a negative effect on the catalyst activity. A calcination treatment is carried out using catalyst raw materials for the purpose of converting them into the catalyst of the present invention or activating the catalyst. is normally 500 to 9'00 C while flowing a gas containing molecular oxygen.

好ましくは450〜700Cで約4時間〜16時間行わ
れる0また必要に応じ、この焼成温度以下の温度により
一次焼成処理をほどこし、その後に上記温度で焼成処理
を行ってもよい。
It is preferably carried out at 450 to 700 C for about 4 to 16 hours. Alternatively, if necessary, a primary calcination treatment may be performed at a temperature below this calcination temperature, and then a calcination treatment may be performed at the above temperature.

本発明の触媒はそのま\使用することもできるが、適当
な形状の担体に付着せしめ、あるいは粉末状、ゾル状ま
たはグル状等の状態にした担体(希釈剤)により希釈し
て使用することもできる。
The catalyst of the present invention can be used as it is, but it can also be used by attaching it to a carrier of an appropriate shape or diluting it with a carrier (diluent) in the form of powder, sol, or glue. You can also do it.

担体あるいは希釈剤としては、例えば二酸化チタン、シ
リカゲル、シリカゾル、ケイ礫土、炭化ケイ素、アルミ
ナ、軽石、シリカ−アルミナ、ベントナイト、ジルコニ
ア、ゼオライト、タルク、耐火物等公知のものが用いら
れ、特にケイ素を含む担体が好ましい。この際、担体の
量は適当に選ぶことができる。触媒は粉状としであるい
は錠剤として適当な形状とし、固定床、移動床あるいは
流動床のいずれの方法においても使用できる。
As the carrier or diluent, known carriers or diluents may be used, such as titanium dioxide, silica gel, silica sol, quartz clay, silicon carbide, alumina, pumice, silica-alumina, bentonite, zirconia, zeolite, talc, and refractories. Preferred is a carrier comprising: At this time, the amount of carrier can be appropriately selected. The catalyst can be in the form of powder or tablets, and can be used in any fixed bed, moving bed or fluidized bed method.

本発明における反応主原料と分子状酸素との反応は、前
記したごとき新規触媒を使用すること以外、気相接触は
化反応で用いられる常法に従って行われる。例えば分子
状酸素の供給源は必ずしも高純度の酸素である必要はな
く、一般的には空気が実用的である。また必要に応じ反
応に悪影響を及ばさない不活性ガス(例えば水蒸気、窒
素、アルゴン、炭酸ガス、反応生成物から有用物を除去
したあとの廃ガスなど)で希釈することができる。
In the present invention, the reaction between the main reaction raw material and molecular oxygen is carried out in accordance with the conventional method used in chemical reactions, except for the use of the above-mentioned novel catalyst. For example, the source of molecular oxygen does not necessarily have to be highly pure oxygen; air is generally practical. If necessary, it can be diluted with an inert gas that does not adversely affect the reaction (for example, water vapor, nitrogen, argon, carbon dioxide, waste gas after removing useful substances from the reaction product, etc.).

さらに反応温度は250〜700Us好ましくは500
〜600C,反応圧力は常圧〜10気圧、全供給原料ガ
スの接触時間003〜20秒(NTP基準)、供給原料
ガス中の反応主原料濃度は0.5〜25容量チ、反応主
原料対酸素比は1:0.5〜40、好ましい供給ガス組
成は反応主原料:空気:水蒸気M1:3〜50=D〜5
0(モル比)である。
Further, the reaction temperature is 250 to 700Us, preferably 500Us.
~600C, reaction pressure is normal pressure ~10 atm, contact time of all feedstock gases is 0.3~20 seconds (NTP standard), reaction main material concentration in feedstock gas is 0.5~25vol., reaction main material vs. The oxygen ratio is 1:0.5-40, and the preferred supply gas composition is reaction main raw material: air: steam M1:3-50 = D-5
0 (molar ratio).

かくして本発明によれば、入手の容易な各種の原料から
ジアルデヒド■を生成分とするジアルデヒド混合物を選
択性よく得る仁とができ、必要に応じてこの混合物を常
法に従って処理することによ゛リジアルデヒド■を高純
度で単離することができる0また本発明で用いる触媒系
は触媒寿命が長く、長期間にわたって安定した反応を行
うことができる。
Thus, according to the present invention, it is possible to obtain a dialdehyde mixture containing dialdehyde (III) with good selectivity from various easily available raw materials, and if necessary, this mixture can be treated according to conventional methods. The catalyst system used in the present invention has a long catalyst life and can carry out stable reactions over a long period of time.

因みに、ジアルデヒド■は下記構造式[11)で表わさ
れる物質でアク、ジアルデヒド■と同様にシン様の香気
性物質として有用であるほか、各種有機薬品の原料とし
ても有用である。
Incidentally, dialdehyde (2) is a substance represented by the following structural formula [11], and like dialdehyde (2), it is useful as a sin-like aromatic substance, and is also useful as a raw material for various organic drugs.

HO 以下に実施例を挙げて本発明をさらに具体的に説明する
HO The present invention will be explained in more detail with reference to Examples below.

実施例中の反応率、選択率は次式に従った。なお反応主
原料の中には反応によって別の反応主原料が生成する場
合があるが(例えばt・rt−アミルアルコールを原料
とした場合、生成物として目的物の他に2−メチル−ブ
テン−1,2−メチル−ブテン−2及びイソプレン等本
生成する)、これ等は反応主原料として再使用できるの
で未反応物として取シ扱った。また目的物であるジアル
デヒドはジアルデヒド■とジアルデヒドIの混合物であ
る。
The reaction rate and selectivity in the examples were according to the following formula. Note that some of the reaction main raw materials may produce other reaction main raw materials due to the reaction (for example, when t・rt-amyl alcohol is used as a raw material, 2-methyl-butene-2-methyl-butene- 1,2-Methyl-butene-2 and isoprene, etc., which were produced) could be reused as the main raw materials for the reaction, so they were treated as unreacted materials. The target dialdehyde is a mixture of dialdehyde ① and dialdehyde I.

またジアルデヒドの構造決定はガス−マス法、元素分析
、赤外線吸収分析、IH−NMR及びI!(3−NMR
によって行なった。
The structure of dialdehyde can be determined using gas-mass method, elemental analysis, infrared absorption analysis, IH-NMR and I! (3-NMR
It was done by

実施例1 、 モIJブデン酸アンモニウム2121Fを400mの温
水に溶解した液に、硝酸ビスマス291?と硝酸カリウ
ム2.029−を400mjの硝酸水溶液に溶解した液
を充分攪拌しながら加え、蒸発乾固する。これを120
Cで8時間乾燥した後、550Cで4時間空気気流中で
一次焼成し、得られた一次焼成物を100メツシユ以下
に粉砕した。これを、直径4msの球状のシリコンカー
バイド担体に約50重量%付着させた後、空気気流中4
00Cで2時間、更に550Cで6時間焼成した0得ら
れた触媒の酸素および担体を除く元素の組成(以下同じ
)は、 MO12Bid  Ka2 で示される・ 10− こうして得られた触媒somを内径2651、長さ60
r:mのステンレス製反応管に充填し、金属浴で450
Cに加熱し、これにtart−アミルアルコール:空気
:水蒸気のモル比が2:20ニアBである供給ガスを空
間速度s o o ohr−’で通過させた。その結果
、反応主原料反応率55%、ジアルデヒド選択率35%
であつ友。
Example 1: Add bismuth nitrate 291? A solution prepared by dissolving 2.029 m of potassium nitrate in 400 mj of nitric acid aqueous solution was added with sufficient stirring, and the mixture was evaporated to dryness. This is 120
After drying at C for 8 hours, primary firing was performed at 550C for 4 hours in an air stream, and the obtained primary fired product was pulverized to 100 meshes or less. After about 50% by weight of this was attached to a spherical silicon carbide carrier with a diameter of 4 ms,
The composition of the elements (the same applies hereinafter) excluding oxygen and the carrier of the catalyst obtained after firing at 00C for 2 hours and further at 550C for 6 hours is expressed as MO12BidKa2. length 60
Fill a stainless steel reaction tube with r:m and heat in a metal bath at 450
C and a feed gas having a molar ratio of tart-amyl alcohol:air:steam of 2:20 near B was passed through it at a space velocity of s o o ohr-'. As a result, the reaction rate of main raw materials was 55%, and the dialdehyde selectivity was 35%.
A friend of mine.

なお、□ジアルデヒド中のジアルデヒドl[1j90.
4Molチであり、残りがジアルデヒド■であった。
Note that dialdehyde l[1j90.
The remaining amount was dialdehyde.

実施例2〜14 X成分及び組成比を変えた他は実施例1と同様の方法に
よって表1に示す触媒を調製した。次いで各々の触媒に
ついて、実施例1と同様にして反応を行ったところ、表
1の結果が得られた。なお、いずれの実施例においても
主生成物はジアルデヒド■であった。
Examples 2 to 14 Catalysts shown in Table 1 were prepared in the same manner as in Example 1 except that the component X and the composition ratio were changed. Next, each catalyst was subjected to a reaction in the same manner as in Example 1, and the results shown in Table 1 were obtained. Incidentally, in all Examples, the main product was dialdehyde (2).

表  1 実施例15〜23 、 tert−アミルアルコールのかわ夛に各種の反応主原
料を使用した他は実施例1と同様にして反応を行ったと
ころ1表2の結果が得られた。なお、いずれの実施例に
おいても主生成物はジアルデヒド■であった。
Table 1 Examples 15 to 23 Reactions were carried out in the same manner as in Example 1, except that various main reaction materials were used for the tert-amyl alcohol mixture, and the results shown in Table 1 and Table 2 were obtained. Incidentally, in all Examples, the main product was dialdehyde (2).

表   2 特許出願人  日本ゼオン株式会社Table 2 Patent applicant: Zeon Corporation

Claims (1)

【特許請求の範囲】[Claims] t 側鎖に1個のメチル基を有する炭素数5の鎖状化合
物を(υモリブデン、(21ビスマス、ζ(至)周期律
表の第I族金属元素、第■族釡属元素及びタリウムから
成る群から選択される少なくとも一種の金属及び(4酸
素から成る金属酸化物触媒の存在下に分子状酸素によシ
気相酸化することを特徴とするビニル置換シクロヘキセ
ンジカルボキザルデヒドの製造法G
t A chain compound with 5 carbon atoms having one methyl group in the side chain (υ molybdenum, (21 bismuth, ζ) group I metal elements of the periodic table, group Process G for producing vinyl-substituted cyclohexenedicarboxaldehyde, characterized by gas phase oxidation with molecular oxygen in the presence of a metal oxide catalyst consisting of at least one metal selected from the group consisting of (4) oxygen.
JP57082933A 1982-05-17 1982-05-17 Preparation of vinyl-substituted cyclohexenedicarboxaldehyde Granted JPS58201744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082933A JPS58201744A (en) 1982-05-17 1982-05-17 Preparation of vinyl-substituted cyclohexenedicarboxaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082933A JPS58201744A (en) 1982-05-17 1982-05-17 Preparation of vinyl-substituted cyclohexenedicarboxaldehyde

Publications (2)

Publication Number Publication Date
JPS58201744A true JPS58201744A (en) 1983-11-24
JPH0245611B2 JPH0245611B2 (en) 1990-10-11

Family

ID=13788027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082933A Granted JPS58201744A (en) 1982-05-17 1982-05-17 Preparation of vinyl-substituted cyclohexenedicarboxaldehyde

Country Status (1)

Country Link
JP (1) JPS58201744A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582355A (en) * 1991-09-19 1993-04-02 Tdk Corp Mounting structure of interlayer film

Also Published As

Publication number Publication date
JPH0245611B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
JP3214975B2 (en) Ammoxidation catalyst composition and production method
JP2000037624A (en) Catalyst for oxidative dehydrogenation of lower alkanoic acid and production of olefin
JPS6116507B2 (en)
JP2000037625A (en) Catalyst for oxidative dehydrogenation of lower alkanoic acid and production of olefin
JP3838705B2 (en) Ammoxidation catalyst composition
JP2002356450A (en) Method for manufacturing methacrolein and methacrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JPH032126B2 (en)
JPH05237388A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS58201744A (en) Preparation of vinyl-substituted cyclohexenedicarboxaldehyde
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2003012589A (en) Method of producing acrolein and acrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPS59190940A (en) Preparation of vinyl-substituted cyclohexenedi- carboxaldehyde
JP3818697B2 (en) Ammoxidation catalyst and method for producing nitrile using the same
JP3505547B2 (en) Method for producing acrylonitrile
JPS6035180B2 (en) Oxidation catalyst and its preparation method
JPS59204148A (en) Production of vinyl-substituted cyclohexenedicarboxaldehyde
JPS58188826A (en) Preparation of 1,3-butadiene
JPS59204147A (en) Vinyl-substituted cyclohexenedicarboxaldehyde
JPH064559B2 (en) Method for producing methacrylic acid
JP3966588B2 (en) Ammoxidation catalyst composition and method for producing nitrile compound using the same
JP3768289B2 (en) Ammoxidation catalyst and method for producing nitrile using the same
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid