JPS58201141A - Multiplier - Google Patents

Multiplier

Info

Publication number
JPS58201141A
JPS58201141A JP8583782A JP8583782A JPS58201141A JP S58201141 A JPS58201141 A JP S58201141A JP 8583782 A JP8583782 A JP 8583782A JP 8583782 A JP8583782 A JP 8583782A JP S58201141 A JPS58201141 A JP S58201141A
Authority
JP
Japan
Prior art keywords
output
circuit
circuits
multiplication
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8583782A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kaneko
克幸 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8583782A priority Critical patent/JPS58201141A/en
Publication of JPS58201141A publication Critical patent/JPS58201141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/525Multiplying only in serial-serial fashion, i.e. both operands being entered serially

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve a multiplication speed and multiplication precision at the same time, by sending the outputs of arithmetic circuits to the output lines of two systems, and separating the multiplication output into the high-order and low-order digit bits. CONSTITUTION:Arithmetic circuits 4a-4b consist of a 1-bit multiplying circuit, 3-input adding circuit, and carry output holding circuit of the adding circuit, respectively. Signal processing circuits 18a-18d output signals from input terminals (a) when a control signal (c) is at a high level, or from input terminals (b) when at a low level. While the sums of the adding circuits are outputted to a low-order digit bit signal output line 20 by the signal processing circuits 18a- 18d and the control signal ''c'', propagation to trailing elements is canceled by AND circuits 19a-19d. Consequently, all outputs are obtained successively while the high-order and low-order digita bits of the arithmetic results are made independent of each other.

Description

【発明の詳細な説明】 本発明は、ガードタイムを設けることなく乗算結果を全
ピットを得ることができる新規な乗算装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel multiplication device that can obtain all pits as a multiplication result without providing a guard time.

従来、パイプライン形式の乗算装置は、例えばnXnビ
ットの乗算結果2nビツトに関して下位nビットを桁落
ちさせて出力として上位nビット2 ページ を出力するか、或いはnビットのガードタイムを入力信
号間に挿入して2nl?ツトの出力を得るものであった
。すなわち、前者の場合は乗算精度が犠牲になり、後者
の場合は乗算速度が犠牲になっていた。
Conventionally, a pipeline type multiplication device, for example, outputs 2 pages of upper n bits by dropping the lower n bits of the 2n bits of the nXn bit multiplication result, or inserts a guard time of n bits between input signals. Insert and 2nl? It was intended to obtain the following output. That is, in the former case, multiplication accuracy was sacrificed, and in the latter case, multiplication speed was sacrificed.

第1図≠カードタイムを設けることによって全ビットの
出力を得るパイプライン方式の乗算装置の構成を示すも
ので、n=4ビツトの場合((X)を被乗数、(y)を
乗数とする)について示す。同図において、1 a−1
d及び2a−’−2dは1ビツト相当の遅延回路、3a
〜3dはラッチ回路で、それぞれ遅延回路1の出力信号
によって(y)の信号をラッチする。4a〜4dは演算
回路、5は遅延回路1の出力、6は(y)の信号入力線
である。
Figure 1 shows the configuration of a pipeline multiplier that obtains the output of all bits by providing a card time. In the case of n = 4 bits ((X) is the multiplicand and (y) is the multiplier) Show about. In the same figure, 1 a-1
d and 2a-'-2d are delay circuits equivalent to 1 bit, 3a
-3d are latch circuits, each of which latches the (y) signal based on the output signal of the delay circuit 1. 4a to 4d are arithmetic circuits, 5 is the output of the delay circuit 1, and 6 is a signal input line (y).

ここで、演算回路演算回路4a〜4dは1ビツト乗算回
路と3人力加算回路と前[記加算回路のキャリー出力保
持回路から成る。つまり、信号線7及び8の信号の乗算
と、この乗算結果と信号線9の信号と前記キャリー出力
保持回路の出力が前記3人力加算回路の入力となる。こ
の演算回路4a〜3 ページ 4dの加算結果のサムは信号線9に出力される。
Here, the arithmetic circuit arithmetic circuits 4a to 4d consist of a 1-bit multiplication circuit, a three-manual addition circuit, and a carry output holding circuit of the above-mentioned addition circuit. That is, the multiplication of the signals on the signal lines 7 and 8, the result of this multiplication, the signal on the signal line 9, and the output of the carry output holding circuit become inputs to the three-manpower adding circuit. The sum of the addition results of the arithmetic circuits 4a to 3 and page 4d is output to the signal line 9.

10〜13は演算要素である。14は制御信号(C)が
入力される信号線、16は乗数(yl信号が入力される
信号線、16は被乗数(、)信号が印加される信号線、
1了は出力(z)信号を出力する信号線である。この様
にして、パイプライン型の4×4(ビット)の乗算装置
が構成される。
10 to 13 are calculation elements. 14 is a signal line to which the control signal (C) is input; 16 is a signal line to which the multiplier (yl signal is input; 16 is a signal line to which the multiplicand (,) signal is applied;
1 is a signal line that outputs an output (z) signal. In this way, a pipeline type 4×4 (bit) multiplication device is constructed.

次にこの構成の動作を簡単に説明する。(X)=(xo
x1x2x3)(xo:MSB)、(y)−(y。
Next, the operation of this configuration will be briefly explained. (X)=(xo
x1x2x3) (xo:MSB), (y)-(y.

y  y  y  )(y  :MSB)、  (z)
−(zOzll   2  3    。
y y y ) (y: MSB), (z)
-(zOzll 2 3.

−−−−−−z 7) (z o : M S B )
とし、(x)・(y)−(z)&る乗算を考えると、こ
の乗算は次の様に表わされる。
---------z 7) (zo: MS B)
If we consider the multiplication (x)·(y)−(z)&, this multiplication can be expressed as follows.

xox1x2x3 ′cOy3x1y3x2y3x3y3 xOy2x1y2x2y2x3y2 xOy1x1y1x2y1x3y1 zo zl  z2  z3  z4  z6  z6
  z7まず、時刻T1  において、y3がラッチ回
路3aにラッチされ遅延回路2aからx3が出力される
xox1x2x3 ′cOy3x1y3x2y3x3y3 xOy2x1y2x2y2x3y2 xOy1x1y1x2y1x3y1 zo zl z2 z3 z4 z6 z6
z7 First, at time T1, y3 is latched by the latch circuit 3a, and x3 is output from the delay circuit 2a.

従って、演算回路4aからx3y3が出力され、出力信
号線17に芒x3y3が出力される。次に、時刻T2に
なると、ラッチ回路3aにはy3がラッチされた状態が
続き、ラッチ回路3bにはy2がラッチされる。この時
、遅延回路2aからはx2が出力され、遅延回路2bか
らx3が出力される。
Therefore, x3y3 is output from the arithmetic circuit 4a, and awn x3y3 is output to the output signal line 17. Next, at time T2, y3 continues to be latched in the latch circuit 3a, and y2 is latched in the latch circuit 3b. At this time, x2 is output from the delay circuit 2a, and x3 is output from the delay circuit 2b.

従って、演算回路4aからx2 ”3が出力される。Therefore, x2"3 is output from the arithmetic circuit 4a.

又、演算回路4bにおし)?【よ”2 ”3及び”3”
2の加算処理がなされ、キャリーが演算回路4bに保持
され、同時にサムが信号線17に出力される。以下、時
刻T3になると、ラッチ回路3a、  3b。
Also, put it in the arithmetic circuit 4b)? [Yo”2”3 and”3”
2 is added, the carry is held in the arithmetic circuit 4b, and the sum is output to the signal line 17 at the same time. Thereafter, at time T3, the latch circuits 3a and 3b are activated.

3Cにはそれぞれy3 、 y2 、 ylが保持され
、遅延回路2a、2b、2cからはそれぞれxl、x2
゜x3が出力され上記と同様な演算が演算回路4a。
3C holds y3, y2, and yl, respectively, and xl and x2 are held from delay circuits 2a, 2b, and 2c, respectively.
The arithmetic circuit 4a outputs °x3 and performs the same calculation as above.

4b、4cにおいてなされる。この様にして乗算が行な
われる。
4b, 4c. Multiplication is performed in this manner.

ところで、上記の様に信号線16.16に時系、列信号
(x)(y)を印加する様な構成によると、乗6 ペー
ジ 算結果の全ピット(21〜Z7 )を得ることができる
が、そのために−回の演算が終了して次の演算を開始す
るまで4ピツト以上のガードタイムを必要とする。従っ
て、この場合は乗算速度の向上が望めない。
By the way, according to the configuration in which the time series and column signals (x) and (y) are applied to the signal lines 16 and 16 as described above, all the pits (21 to Z7) of the multiplication 6 page calculation result can be obtained. However, for this purpose, a guard time of 4 pits or more is required from the end of the -th calculation to the start of the next calculation. Therefore, in this case, no improvement in multiplication speed can be expected.

一方、乗算速度を高める為に、下位ビットを切シ離すこ
とによって、上記の様なガードタイムを設けることなく
、信号線16.16に時系列信号を印加することも考え
られている。例えば、上記に説明した2゜−27の乗算
結果のうち24〜z7を切り離す様にする方法が提案さ
れている。しかし、この方法では下位ビットを切り離す
故に乗算精度が得られない欠点を有する。
On the other hand, in order to increase the multiplication speed, it is also considered to apply a time-series signal to the signal lines 16 and 16 without providing the guard time as described above by cutting off the lower bits. For example, a method has been proposed in which 24 to z7 of the 2°-27 multiplication results described above are separated. However, this method has the disadvantage that multiplication accuracy cannot be obtained because the lower bits are separated.

本発明は上記欠点にかんがみてなされたもので、本発明
は乗算速度及び乗算精度の両方を同時に高めることの出
来る乗算装置を提供せんとするものである。すなわち、
本発明は演算回路の出力を二系統の出力線に出力する様
にして、乗算結果の上位、下位ビットの分離を行なった
乗算装置を提供せんとするものである。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a multiplication device that can simultaneously increase both multiplication speed and multiplication accuracy. That is,
The present invention aims to provide a multiplication device in which the output of an arithmetic circuit is outputted to two output lines to separate the upper and lower bits of the multiplication result.

6 ページ 第2図は本発明の一実施例に係る乗算装置を示す回路図
である。同図は、4ビツト×4ビツトの入力に対して8
ピツトの出力を得る例であり、同図において、第1図と
同一番号は同一部分を示し、10’〜13’は第1図の
10〜13に対応している。
FIG. 2 on page 6 is a circuit diagram showing a multiplication device according to an embodiment of the present invention. The figure shows 8 bits for a 4 bit x 4 bit input.
In this figure, the same numbers as in FIG. 1 indicate the same parts, and 10' to 13' correspond to 10 to 13 in FIG. 1.

18a〜18dは制御信号Cにより入力端a、 bのい
ずれか一方を出力させる信号処理回路、19a〜CはA
ND回路、20は下位ビット信号出力線である。時系列
入出力信号(xHy)(c、)(J、)(ZH)は第3
図の如きタイミングで入出力される。
18a to 18d are signal processing circuits that output either one of the input terminals a and b in response to a control signal C, and 19a to C are signal processing circuits that output one of input terminals a and b.
ND circuit, 20 is a lower bit signal output line. The time series input/output signal (xHy) (c, ) (J, ) (ZH) is the third
Input and output are performed at the timing shown in the diagram.

ここで(zL)(ZH)は、夫々乗算結果の下位・下位
出力信号列である。信号処理回路18a〜18dは、制
御信号Cが高レベル(以下Hと略す)の時入力端aの信
号を、低レベル(以上りと略す)の時入力端すの信号を
出力するものとする。
Here, (zL) and (ZH) are lower and lower output signal sequences of the multiplication results, respectively. The signal processing circuits 18a to 18d output a signal from input terminal a when the control signal C is at a high level (hereinafter abbreviated as H), and output a signal from input terminal A when the control signal C is at a low level (abbreviated as above). .

次に、この構成の動作を簡単に説明する。Next, the operation of this configuration will be briefly explained.

(I)×(y)−(z)、(u)×(v)−(W) な
る乗算が引き続き行われる場合を考えると、この乗算は
次のように表わされる。
Considering the case where the following multiplications (I) x (y) - (z) and (u) x (v) - (W) are successively performed, this multiplication is expressed as follows.

7ペーミ゛ 1ず、時刻T1  においてy3がラッチ回路3aにラ
ッチされ遅延回路2aからx3が出力される。
At time T1, y3 is latched by the latch circuit 3a, and x3 is output from the delay circuit 2a.

従って、演算回路4aからx3y3が出力され、”3y
3は信号処理回路18aの入力端すに入力され、信号処
理回路18b〜18dを経て信号線2゜に出力される。
Therefore, x3y3 is output from the arithmetic circuit 4a, and "3y
3 is inputted to the input terminal of the signal processing circuit 18a, and outputted to the signal line 2° via the signal processing circuits 18b to 18d.

この時演算回路4aの出力は遅延回路1aの出力C3が
°L”のためAND回路19aによって演算回路4bに
は伝わらない。
At this time, the output of the arithmetic circuit 4a is not transmitted to the arithmetic circuit 4b by the AND circuit 19a because the output C3 of the delay circuit 1a is "L".

次に、時刻T2になると、ラッチ回路3aにはy3がラ
ッチされた状態が続き、ラッチ回路3bにはy2がラッ
チされる。この時遅延回路2a、2bからは夫々X 2
 + X sが出力され、遅延回路1a、1bからは夫
々C2、C3が出力される。従って、演算回路4aから
x2”3が出力される。また演算回路4bにおいては、
x213及び”3 ”2の加算処理がなされ、キャリー
が演算回路4bに保持され、同時にサムが出力され遅延
回路1bの出力信号C3(パL”レベル)によって信号
処理回路18bの入力端すから18c〜18dを経て信
号線2oに出力される。以下、時刻T3になると、ラッ
チ回9 ページ 路3a 、3b 、3cには夫k 5’3 + y2−
yl カ保持すレ、遅延回路2a、2b、2cからは夫
々! 1. X 2 、 X 3が出力され、遅延回路
1a、1b、1cからは夫々C1,C2、Csが出力さ
れ、上記と同様な演算が演算回路4a、4b、4cにお
いてなされ、信号処理回路18Cの入力端すを経て信号
線20に出力される。時刻T4においても同様な演算と
信号処理がなされ、信号処理回路18dの入力端すを経
て信号線2oに出力される。このようにT1〜T4にお
いて乗算結果の下位4ピツト24〜z7が信号線2oよ
り出力される。
Next, at time T2, y3 continues to be latched in the latch circuit 3a, and y2 is latched in the latch circuit 3b. At this time, each of the delay circuits 2a and 2b outputs X 2
+Xs is output, and C2 and C3 are output from delay circuits 1a and 1b, respectively. Therefore, x2''3 is output from the arithmetic circuit 4a. Also, in the arithmetic circuit 4b,
x213 and "3"2 are added, the carry is held in the arithmetic circuit 4b, and at the same time the sum is output, and the output signal C3 (P-L) level of the delay circuit 1b causes the input terminal of the signal processing circuit 18b to be input to 18c. ~18d to the signal line 2o.Afterwards, at time T3, the latch circuit 9 and the page paths 3a, 3b, and 3c are connected to the signal line 2o.
yl The power is held from the delay circuits 2a, 2b, and 2c, respectively! 1. X 2 and X 3 are output, C1, C2, and Cs are output from the delay circuits 1a, 1b, and 1c, respectively, and the same calculations as above are performed in the arithmetic circuits 4a, 4b, and 4c, and the inputs of the signal processing circuit 18C are The signal is output to the signal line 20 via the terminal. Similar calculations and signal processing are performed at time T4 as well, and the signal is output to the signal line 2o via the input terminal of the signal processing circuit 18d. In this way, at T1 to T4, the lower four pits 24 to z7 of the multiplication result are output from the signal line 2o.

時刻T6においては、ラッチ回路3a〜3bには夫々y
3〜yoがラッチされた状態が続き、遅延回路2a−2
cl、1a−1dからは、夫々0.xo。
At time T6, latch circuits 3a to 3b each have y
3 to yo continue to be latched, and the delay circuit 2a-2
cl, 0.0 from 1a-1d, respectively. xo.

X 1+ X 2及びC41’0ICI +’2が出力
される。従って、演算回路4aから0・y3−oが出力
されAND回路19aを経て演算回路4bに0が加えら
れ、演算回路4b、AND回路19b、演算回路4c、
AND回路19C9演算回路4d、AND回路19dの
経路で演算と信号処理がなされz3107<−ジ が信号線17に出力される。
X 1 + X 2 and C41'0ICI +'2 are output. Therefore, 0.y3-o is output from the arithmetic circuit 4a, 0 is added to the arithmetic circuit 4b via the AND circuit 19a, and the arithmetic circuit 4b, AND circuit 19b, arithmetic circuit 4c,
Arithmetic and signal processing are performed through the AND circuit 19C9 arithmetic circuit 4d and the AND circuit 19d, and z3107<-ji is output to the signal line 17.

次に、時刻T6においては、ラッチ回路3b〜3dには
y2〜yoがラッチされた状態が続きラッチ回路3aに
は信号C3によってv3がラッチされる。
Next, at time T6, y2 to yo are latched in the latch circuits 3b to 3d, and v3 is latched in the latch circuit 3a by the signal C3.

この時遅延回路2a〜2d、1a〜1jからは夫々u 
3 、 0 、3C□ 、 X 1及び’ 31 C4
1C01CIが出力される。従って、時刻T1 の場合
と同様にして信号線2oからu 3V 3がW7として
出力され、演算回路4bからは時刻T6において同演算
回路に蓄えられたキャリーがAND回路19bを経て演
算回路4Cへ出力され、以下同様にAND回路19C2
演算回路4d、AND回路19dの経路で演算と信号処
理がなされz2が信号線1了に出力される。以下このよ
うにして乗算が行なわれ、時刻T9において、出力2o
から出力W5が出力されるとともに、演算回路4dに時
刻T8で蓄えられたキャリーがAND回路17を経て信
号線17に20として出力される。
At this time, delay circuits 2a to 2d and 1a to 1j each receive u.
3, 0, 3C□, X 1 and ' 31 C4
1C01CI is output. Therefore, as in the case of time T1, u3V3 is output from the signal line 2o as W7, and the carry stored in the same arithmetic circuit at time T6 is output from the arithmetic circuit 4b to the arithmetic circuit 4C via the AND circuit 19b. and the AND circuit 19C2
Calculation and signal processing are performed through the path of the arithmetic circuit 4d and the AND circuit 19d, and z2 is output to the signal line 1. Thereafter, multiplication is performed in this manner, and at time T9, the output 2o
At the same time, the carry stored in the arithmetic circuit 4d at time T8 is output as 20 to the signal line 17 via the AND circuit 17.

このようにして信号処理回路18a〜18dと制御信号
(C)によって加算回路のサムを下位ビッ11 ベージ ト信号出力線20に出力すると同時に、AND回路19
a〜19dによって次要素へ伝播をキャンセルすること
によって、第3図に示す如きタイミングで演算結果の上
位ビット・下位ビットを独立に全出力が連続して得られ
る。
In this way, the signal processing circuits 18a to 18d and the control signal (C) output the sum of the adder circuit to the lower bit 11 and the base signal output line 20, and at the same time, the AND circuit 19
By canceling the propagation to the next element by a to 19d, the entire output can be obtained continuously and independently from the upper and lower bits of the operation result at the timing shown in FIG.

以」二説明したように本発明によれば連続した2つの時
系列信号の乗算の出力信号を上位・下位2つに分けるこ
とによって、全演算結果を入力信号中に入力信号長に相
当するガードタイムを含ませるとと々く、かつ連続的に
乗算出力させることができる。
As explained below, according to the present invention, by dividing the output signal of multiplication of two consecutive time-series signals into upper and lower two, all calculation results are added to the input signal as a guard corresponding to the length of the input signal. If time is included, the multiplication can be output rapidly and continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガードタイムを入力信号中に挿入して全乗算結
果を得る従来のパイプライン方式の乗算装置の構成図、
第2図は本発明による乗算装置の構成図、第3図は第2
図に示す構成の入出力信号列のタイムチャート図である
。 1a〜1d、2a〜2d・・・・・・遅延回路、3a〜
3d・・・・・・ラッチ回路、4a〜4d・・・・・・
演算回路、17−・・・・・上位ビット信号線、18a
〜18d・・・・・・信号処理回路、2o・・・・・・
下位ビット信号線。
FIG. 1 is a configuration diagram of a conventional pipeline multiplication device that inserts a guard time into the input signal to obtain a total multiplication result.
FIG. 2 is a block diagram of a multiplication device according to the present invention, and FIG.
FIG. 3 is a time chart diagram of an input/output signal train having the configuration shown in the figure. 1a to 1d, 2a to 2d... Delay circuit, 3a to
3d...Latch circuit, 4a-4d...
Arithmetic circuit, 17-... Upper bit signal line, 18a
~18d...Signal processing circuit, 2o...
Lower bit signal line.

Claims (1)

【特許請求の範囲】[Claims] 一方の時系列信号が入力される複数のラッチ回路と、他
方の時系列信号が入力される複数の遅延回路と、前記ラ
ッチ回路及び前記遅延回路の出力を乗算する複数の乗算
回路と、前記乗算回路の各々に接続された複数の信号処
理回路と、前記信号処理回路を制御する制御回路を備え
、前記信号処理回路より乗算結果の下位ビットを得、前
記乗算回路より乗算結果の上位ビットを得乞ことを特徴
とする乗算装置。
a plurality of latch circuits to which one time series signal is input; a plurality of delay circuits to which the other time series signal is input; a plurality of multiplier circuits that multiply the outputs of the latch circuits and the delay circuit; A plurality of signal processing circuits connected to each of the circuits and a control circuit for controlling the signal processing circuits are provided, the lower bits of the multiplication result are obtained from the signal processing circuit, and the upper bits of the multiplication result are obtained from the multiplication circuit. A multiplication device characterized by begging.
JP8583782A 1982-05-20 1982-05-20 Multiplier Pending JPS58201141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8583782A JPS58201141A (en) 1982-05-20 1982-05-20 Multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8583782A JPS58201141A (en) 1982-05-20 1982-05-20 Multiplier

Publications (1)

Publication Number Publication Date
JPS58201141A true JPS58201141A (en) 1983-11-22

Family

ID=13869968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8583782A Pending JPS58201141A (en) 1982-05-20 1982-05-20 Multiplier

Country Status (1)

Country Link
JP (1) JPS58201141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621144A1 (en) * 1987-09-25 1989-03-31 Labo Electronique Physique MULTIPLIER PIPELINE SERIE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621144A1 (en) * 1987-09-25 1989-03-31 Labo Electronique Physique MULTIPLIER PIPELINE SERIE

Similar Documents

Publication Publication Date Title
US4876660A (en) Fixed-point multiplier-accumulator architecture
US6687722B1 (en) High-speed/low power finite impulse response filter
GB2185605A (en) Optimally partitioned regenerative carry lookahead adder
JPH02504339A (en) Multiplier-adders in Galois fields and their use in digital signal processors
EP0146963A2 (en) Iir digital filter
US4346451A (en) Dual moduli exponent transform type high speed multiplication system
KR100302093B1 (en) How to multiply the binary input signal with the tap coefficient in the crossover digital finite impulse response filter and design the circuit arrangement and crossover digital filter
US4730266A (en) Logic full adder circuit
US3947670A (en) Signed multiplication logic
US4366549A (en) Multiplier with index transforms modulo a prime or modulo a fermat prime and the fermat prime less one
US4122527A (en) Emitter coupled multiplier array
JPS595349A (en) Adder
US4727507A (en) Multiplication circuit using a multiplier and a carry propagating adder
JPS58201141A (en) Multiplier
US6055557A (en) Adder circuit and method therefor
US5623434A (en) Structure and method of using an arithmetic and logic unit for carry propagation stage of a multiplier
JPH0519170B2 (en)
JPH01220528A (en) Parity generator
JPH02501242A (en) High-speed digital calculation system
US6076098A (en) Adder for generating sum and sum plus one in parallel
JPS6222178A (en) Multiplier for multiplying two complex numbers
US5764718A (en) Ripple carry logic ASND method
EP0213854A2 (en) Fixed-Coefficient serial multiplication and digital circuits therefor
JPS6154722A (en) Arithmetic circuit
JP3486638B2 (en) Constant multiplier