JPS58200909A - Combustion method for decreasing nitrogen oxide - Google Patents
Combustion method for decreasing nitrogen oxideInfo
- Publication number
- JPS58200909A JPS58200909A JP57083967A JP8396782A JPS58200909A JP S58200909 A JPS58200909 A JP S58200909A JP 57083967 A JP57083967 A JP 57083967A JP 8396782 A JP8396782 A JP 8396782A JP S58200909 A JPS58200909 A JP S58200909A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- gas
- air
- burner
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C5/00—Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
- F23C5/08—Disposition of burners
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は窒素酸化物低減燃焼法に係り、特に排ガス中の
窒素酸化物(以下、NO,を称する)を低減するに好適
なマルチバーナ燃焼法に関するものでちるう
ボイラなどの排ガス中に含まれるNO,を低減する燃焼
法として壷も効果の犬嗅い方法に、いわゆる、マルチバ
ーナ燃焼法が挙げられる。この方法は、炉内燃焼域の上
流側から先ず積石完全燃焼域、気相還元域、完全燃焼域
をガス流れ方向に従って順次形成するものでちる。Detailed Description of the Invention The present invention relates to a combustion method for reducing nitrogen oxides, and in particular to a multi-burner combustion method suitable for reducing nitrogen oxides (hereinafter referred to as NO) in exhaust gas. A so-called multi-burner combustion method is an effective dog-sniffing method for reducing NO contained in exhaust gases. In this method, a stone complete combustion zone, a gas phase reduction zone, and a complete combustion zone are sequentially formed in the gas flow direction from the upstream side of the combustion zone in the furnace.
従来、上記のマルチバーナ燃焼法にお噛ては、各段バー
ナの空燃比の制御が還元反応を達成する上で清も重要な
因子と考÷−ら1、これを適切な範囲で運転すればよい
と考えられていたため、各没バーナの空燃比以外の操作
条件は全く同じであった、
この従来技術てよる燃焼装置の系統図を第1図に示す。Conventionally, in the multi-burner combustion method described above, control of the air-fuel ratio of each stage burner was considered to be an important factor in achieving the reduction reaction1, and it was necessary to operate it within an appropriate range. The system diagram of this conventional combustion system is shown in Figure 1.The operating conditions of each burner were exactly the same except for the air-fuel ratio.
図は、フロントファイアリングを行なうボイラの燃焼装
置を示したものであり、火炉1の前面112に%下段位
置から、積年完全燃焼域を形成する主バーナ3、気相還
元域を形成するプラネットバーナ4および完全燃焼域を
形成するアフタエアポート5が設けられ、各バーナ3.
4およびアフタエアポート5には燃料供給ライン6、燃
焼用空気ライン7および排ガス循環ライン8がトシけら
れている。なお、21,22は循環ファン、23.2番
は調整弁である。The figure shows a combustion system for a boiler that performs front firing.From the lower position on the front surface 112 of the furnace 1, there are the main burner 3 that forms a complete combustion zone, and the planet that forms a gas phase reduction zone. A burner 4 and an after air port 5 forming a complete combustion zone are provided, each burner 3.
4 and after-air port 5 are connected with a fuel supply line 6, a combustion air line 7, and an exhaust gas circulation line 8. Note that 21 and 22 are circulation fans, and 23 and 2 are regulating valves.
このよう々製電において、NO,低減燃焼時(・/ ’
t、各段バーナの燃料tけほぼ均等に供給され、また燃
焼用空気はバーナ入口の調整弁・9によ妙主バーナでは
空燃比0.9〜1.0、プラネットバーナでは空燃比0
.4〜0.5の空気量に調節さねてバーナへ供給され、
残りがアフタエアーポート5に供給される。このように
プラネットバーナ位置以下の空燃比11理論空気置以下
の燃焼となっても・す、必然的に未燃カスが発生するが
、この未燃ガスはアフタエアポート5で燃焼される。In this way, in electrical manufacturing, NO, reduced combustion (・/'
t, fuel is supplied almost equally to each stage burner, and combustion air is supplied to the regulating valve 9 at the burner inlet, with an air-fuel ratio of 0.9 to 1.0 for the main burner and 0 for the planet burner.
.. The air amount is adjusted to 4 to 0.5 and is supplied to the burner,
The remainder is supplied to the after air port 5. In this way, even if combustion occurs at an air-fuel ratio of 11 or less than the stoichiometric air position, which is below the planet burner position, unburned gas is inevitably generated, but this unburned gas is combusted at the after air port 5.
しかし、従来の燃焼方式では、各段バーナの)し・−ム
は、炉内ガス上昇流速の最も遅い最下段バーナにおいて
、バーナ噴流の運動エネルギーが上昇流速のエネルギー
に打ち勝って相当奥まで貫通【−て1)るにすぎず、バ
ーナ段がEに行くに従って炉内ト昇?N、速が増大′ト
るため、バーナ噴流の運動エネルギーが上昇運動エネル
ギーに対し小さくな小さいものとなり、炉内ガス流とア
フタエア10との混合が悪く、これが未燃分発生の原因
となっていることが分った。なお1図中、20けエアレ
ジスタを示す。また未燃分発生によ抄、十分なNO!低
減に必要な各バーナの空燃比を維持することができず、
NO,低減効果の半減および再生成Nowを発生させる
原因ともなることが分った。However, in the conventional combustion system, the kinetic energy of the burner jet overcomes the energy of the upward flow velocity in the lowest stage burner, where the upward flow rate of the gas in the furnace is the slowest, and the holes penetrate to the depths of the burners in each stage. 1) Does the furnace rise as the burner stage moves to E? As the N and velocity increase, the kinetic energy of the burner jet becomes small compared to the rising kinetic energy, and the mixing of the in-furnace gas flow and the after air 10 is poor, which causes the generation of unburned matter. I found out that there is. Note that 20 air registers are shown in Figure 1. Also, due to the generation of unburned matter, a sufficient NO! Unable to maintain the air-fuel ratio of each burner required for reduction,
It was found that this also caused the NO reduction effect to be halved and the regeneration Now to occur.
本発明の目的は、このような従来技術の欠点を解消し、
排ガス中の未燃分(煤塵)を増加させることなく、窒素
酸化物を低減することができる燃焼法を提供することに
ある。The purpose of the present invention is to eliminate such drawbacks of the prior art,
An object of the present invention is to provide a combustion method capable of reducing nitrogen oxides without increasing unburned components (soot and dust) in exhaust gas.
本発明は、アフタエアポート部の貫通力が未燃ガスの完
全燃焼に大きく影蚤することに91i目し、てなされた
もので、完全燃焼域を形成するアフタエア−トに、アフ
タエアの貫通力強化を図る一部ガスノズルおよび一部ガ
ス供給ラインを設け、炉内燃焼ガスとアフタエアーの混
合を促進し、完全燃焼を図るようにしたもつである。The present invention was developed in view of the fact that the penetration force of the after-air port greatly affects the complete combustion of unburned gas. A part of the gas nozzle and a part of the gas supply line are installed to promote the mixing of combustion gas in the furnace and after air to achieve complete combustion.
上記−次ガスとしては、燃焼装置の燃焼排ガスの一部を
用いるDが便利である。D, which uses a part of the combustion exhaust gas of the combustion device, is convenient as the secondary gas.
以下、本発明の一実施例を図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.
第4図は、フロントファ・イアリング方式によるボイラ
装置を4」、ており、火炉lの前部炉111k 2に、
下段位置から主バーナ3、ブラネットノクーナiおよび
rクタrアボート5が1髪され、各ノ(−プへの燃粍空
気、排?jスの供給はそれぞれ燃料j(〕6、燃焼用空
気ライン7および排ガス循環ライン8を介【2て行なわ
れる点は第1図の方法と同じであるが、排ガス循環ライ
ン8を分岐し、て゛rソフタアポート5に通じる一部ガ
スライン11およびその調整弁15を設け、またボイラ
排ガス流路に設けた燃焼状態監視装置1番に未燃分の発
生状況を監視し、その状況に応じて一部ガス流蓋調整弁
15を開閉する制御装置を設けた点が異なる。Figure 4 shows a boiler system using the front-firing type 4'', with the front furnace 111k2 of the furnace l,
From the lower position, the main burner 3, the fuel nozzle i and the rctor abort 5 are connected, and the supply of combustion air and exhaust gas to each nozzle is carried out by the fuel j()6, combustion Through the air line 7 and the exhaust gas circulation line 8 [2] The procedure is the same as the method shown in FIG. A valve 15 is provided, and a control device is provided in the combustion condition monitoring device No. 1 provided in the boiler exhaust gas flow path to monitor the generation status of unburned matter and to open and close part of the gas flow lid regulating valve 15 depending on the situation. The difference is that
E紀構成の装置において、各段・ぐ−ナの空燃比トバー
ナ番空燃比O9番〜05に調節し、残りの燃焼空気はア
フタエアポート5から炉内に噴出させる。一方、アフタ
エアポート5からの噴出空気の真通力はボイラ出口に設
置した燃焼状態監視装置14の未燃ガス低減信号により
、−次ガスライン11に設置した一部ガス調整弁15で
貫通力強化用の一部ガス量を調節し、第5図に示す一部
ガスノズル13に供給し、該ガス12をアフタエア10
を同伴しながら炉内に噴出させる。In the apparatus having the E period configuration, the air-fuel ratio of each stage and gunner is adjusted to the Tovana air-fuel ratio O9 to O05, and the remaining combustion air is blown into the furnace from the after air port 5. On the other hand, the penetration force of the air ejected from the after air port 5 is increased by the unburned gas reduction signal from the combustion state monitoring device 14 installed at the boiler outlet, and the partial gas regulating valve 15 installed in the secondary gas line 11 is used to strengthen the penetration force. The amount of gas 12 is adjusted and supplied to the partial gas nozzle 13 shown in FIG.
It is ejected into the furnace while entraining it.
E述のように本発明では了フタエアポート5から噴出さ
せるアフタエアの貫通力の配分を従来と逆にし、未燃分
発生状況に即して他バーナより炉内での貫通力を増すこ
とによ抄、炉内の混合改善を図っている。従って、主バ
ーナおよびブラネツトパーナ斌で発生した未燃分を完全
燃焼するアフタエアポートの貫通力は大きくなり、第6
図に示すように、炉内燃焼ガスとアフタエアの良好な混
合が得られるため、未燃分濃度の偏りがなく、完全燃焼
が可能となる。一方、未燃分の少ない燃焼が可能となる
ため、NO,低減燃焼も効果的忙実施することができる
。As mentioned in E, the present invention reverses the distribution of the penetration force of the after air ejected from the lid air port 5 compared to the conventional one, and increases the penetration force in the furnace compared to other burners in accordance with the situation of unburned matter generation. Efforts are being made to improve the mixing in the papermaking and furnace. Therefore, the penetration force of the after air port to completely burn the unburned matter generated in the main burner and the net top burner increases, and the sixth
As shown in the figure, since a good mixture of in-furnace combustion gas and after air is obtained, there is no imbalance in the concentration of unburned matter, and complete combustion is possible. On the other hand, since combustion with a small amount of unburned matter becomes possible, NO reduction combustion can also be carried out effectively.
上記実施例において、燃焼状態監視装置i14は、火炉
内の燃焼状態を検知する装置、例えば排ガス中の未燃分
の検出装置や、火炉内の火災状態を直接観察する装置等
を示すことができる。In the above embodiments, the combustion state monitoring device i14 can be a device for detecting the combustion state in the furnace, such as a device for detecting unburned components in exhaust gas, a device for directly observing the fire state in the furnace, etc. .
以上、本発明によれば、アフタエアポートに一部ガスを
供給することKよね、アフタエアーの貫通力が強化され
、燃焼ガスとアフタエアの混合が充分に行われ、主バー
ナおよびプラネットバーナから発生した未燃分の燃焼を
促進することができる。As described above, according to the present invention, by supplying some gas to the after air port, the penetration force of the after air is strengthened, the combustion gas and the after air are sufficiently mixed, and the residual gas generated from the main burner and the planet burner is The combustion of fuel can be promoted.
第1図は、従来のフロントファイアリング方式の燃焼装
置系統図、第2図は、従来のアフタエアポート付近の構
造図%第3図は、従来のマルチバーナ燃焼法の炉内火災
パターンを示す図、第4図は本発明による燃焼装置の系
統図、第5図は1本発明によるアフタエアボート付近の
構造図、第6図は、本発明によるマルチバーナ燃焼法の
炉内火災パターンを示す図である。
】・・ 火炉、2・・・・・・前面壁、3・・・・・・
主バーナ。
番・ プラネットバーナ、5・・・アフタエアポート、
6・・・・・燃料ライン、7・・−燃焼用空気ライン、
8・・・・・・排ガスライン、9・・・−・・調整弁、
10・・・・・アフタエア、11・・・ 1次ガスライ
ン、12・・・・・・ 1次ガス、13・・・−・ 1
次ガスノズル、14・・・・・燃焼。
状態監視装置、15・・・・・1次ガス調整弁。
代理人 弁理士 川 北 武 長Figure 1 is a system diagram of a conventional front-firing combustion system, and Figure 2 is a structural diagram of a conventional after-airport area. Figure 3 is a diagram showing a fire pattern in the furnace of a conventional multi-burner combustion method. , FIG. 4 is a system diagram of the combustion device according to the present invention, FIG. 5 is a structural diagram of the vicinity of the after air boat according to the present invention, and FIG. 6 is a diagram showing the fire pattern in the furnace of the multi-burner combustion method according to the present invention. be. ]...Furnace, 2...Front wall, 3...
Main burner. Number: Planet Burna, 5... After Airport,
6...Fuel line, 7...-Combustion air line,
8... Exhaust gas line, 9... Regulating valve,
10... After air, 11... Primary gas line, 12... Primary gas, 13...-- 1
Next gas nozzle, 14... combustion. Condition monitoring device, 15...Primary gas regulating valve. Agent Patent Attorney Takenaga Kawakita
Claims (1)
焼域を排ガス流れ方向について順に形成し、排ガス中の
窒素酸化物・を低減させる燃焼法において、完全燃焼域
を形成するアフタエアポートに一次ガスを供給し、火炉
内への貫通力を他の段のバ〜すより大きくしたことを特
徴とする窒素酸化物低減燃焼法。 (2、特許請求の範囲第1項において、前記−次ガスは
、排ガス供給母管から一次ガスラインおよび流を調整弁
′!!:経てアフタエアポートへ供給されることを特徴
とする窒素酸化物低減燃焼法、(3)特許請求の範囲第
1項において、炉内燃!18状態監視装置の禾燃分制腕
信号(でより、−7ガス流量調整弁を操作し、前記アフ
ダニアポ〜ト用−次ガス量を調節することにより、アフ
タエアの貫通力を制御することを特車とする窒素酸化物
低減燃焼法。(1) In the combustion method for reducing nitrogen oxides in exhaust gas, a complete combustion zone is created in the combustion chamber by forming a complete combustion zone, a gas phase reduction zone, and a complete combustion zone in the exhaust gas flow direction. A nitrogen oxide reduction combustion method characterized by supplying primary gas to an air port and making the penetration force into the furnace greater than that of the other stages. (2. In claim 1, the nitrogen oxide gas is supplied from the exhaust gas supply main pipe to the primary gas line and the flow regulating valve'!!: to the after air port. Reduction combustion method, (3) In claim 1, the combustion control arm signal of the furnace internal combustion!18 condition monitoring device (by operating the -7 gas flow rate adjustment valve, A special combustion method for reducing nitrogen oxides that controls the penetration force of after-air by adjusting the amount of after-gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57083967A JPS58200909A (en) | 1982-05-20 | 1982-05-20 | Combustion method for decreasing nitrogen oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57083967A JPS58200909A (en) | 1982-05-20 | 1982-05-20 | Combustion method for decreasing nitrogen oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58200909A true JPS58200909A (en) | 1983-11-22 |
JPH0262765B2 JPH0262765B2 (en) | 1990-12-26 |
Family
ID=13817313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57083967A Granted JPS58200909A (en) | 1982-05-20 | 1982-05-20 | Combustion method for decreasing nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58200909A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5495020A (en) * | 1978-01-11 | 1979-07-27 | Mitsubishi Heavy Ind Ltd | Fuel combustion system for boiler |
JPS6113125A (en) * | 1984-06-29 | 1986-01-21 | Nissan Motor Co Ltd | Knocking detector for internal-combustion engine |
-
1982
- 1982-05-20 JP JP57083967A patent/JPS58200909A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5495020A (en) * | 1978-01-11 | 1979-07-27 | Mitsubishi Heavy Ind Ltd | Fuel combustion system for boiler |
JPS6113125A (en) * | 1984-06-29 | 1986-01-21 | Nissan Motor Co Ltd | Knocking detector for internal-combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0262765B2 (en) | 1990-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7175423B1 (en) | Air staged low-NOx burner | |
EP0399336A1 (en) | Combustor and method of operating same | |
JPH0814510A (en) | Pulverized coal burner and using method therefor | |
KR20210055203A (en) | Gas furnace | |
RU2242674C2 (en) | Burner for multistage fuel combustion in air affording low nox emissions (alternatives) and method for reducing nox emissions | |
JPS58200909A (en) | Combustion method for decreasing nitrogen oxide | |
GB2072827A (en) | A tubo-annular combustion chamber | |
JP3107214B2 (en) | Combustion air supply device | |
JPS5927107A (en) | Divided flame type pulverized coal burning equipment | |
JPH0328624A (en) | Multi-stage combustion method | |
JPS59195016A (en) | Combustion device | |
JPS604726A (en) | Combustion apparatus for hot water supply | |
JPH0996402A (en) | Boiler heater | |
JPS5818007A (en) | Combustor | |
JPH0227307Y2 (en) | ||
JP2742150B2 (en) | Combustors and combustion equipment | |
JPH05332509A (en) | Inter-furnace discharged gas circulation type low nox burner | |
JPS5487943A (en) | Liquid-fuel combustor | |
JP2647461B2 (en) | Thermal baking equipment | |
JPH06159628A (en) | Combustion device | |
JP2534426B2 (en) | Fuel combustion method in exhaust gas boiler | |
JPH07217864A (en) | After air supplier | |
JPH07107448B2 (en) | Operation method of gasification combustion device | |
JPH0428910A (en) | Burning device | |
JPS599413A (en) | Combustion device |