JPS58199782A - High speed cutting tip - Google Patents

High speed cutting tip

Info

Publication number
JPS58199782A
JPS58199782A JP7956082A JP7956082A JPS58199782A JP S58199782 A JPS58199782 A JP S58199782A JP 7956082 A JP7956082 A JP 7956082A JP 7956082 A JP7956082 A JP 7956082A JP S58199782 A JPS58199782 A JP S58199782A
Authority
JP
Japan
Prior art keywords
sintered body
gas
oxide
cutting
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7956082A
Other languages
Japanese (ja)
Other versions
JPS6313831B2 (en
Inventor
馬場 英俊
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP7956082A priority Critical patent/JPS58199782A/en
Publication of JPS58199782A publication Critical patent/JPS58199782A/en
Publication of JPS6313831B2 publication Critical patent/JPS6313831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特に鋼、鋳鉄を高速切削するに適したスロー
アウェイ型切削用チップに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an indexable cutting tip particularly suitable for high-speed cutting of steel and cast iron.

近年、鋼、鋳鉄の高速切削にA120aを主体とした切
削用チップが用いられ200〜1000I/■inの切
削速度で用いられている。しかしながらAJLzOsを
主体とした高速切削用チップは耐衝撃性に劣るため、切
り込みや送りの大きい切削や断続切削では欠損しやすく
使えない。そこでセラミック材料の中で耐衝撃性に、優
れた5iaN4を切削用チップに用いる試みが行われて
いるが(特開昭55−47276>、A120aに比べ
てSi aNaの耐摩耗性は格段に劣るため実用化され
ていない。又、ホットプレスした3i3Na主体の焼結
体の表面にA l 20 a及び/又はAl0Nをコー
ティングした切削チップをも提案されておりく特開昭5
5−85481)、これは高速切削でかつ断続切削にも
使用できるが、ホットプレス工程、切断、研磨工程の製
造コストが高く、この基体にAuzOsを被覆した切削
用チップは普及、実用に難がある。更にSi sNaと
AjLzO8の熱膨張係数は前者が3.2X10−6/
”C後者が7.8X10−6/’Cと大きく異なり切削
条件によっては被覆のハクリを生じる欠点があった。
In recent years, cutting tips mainly made of A120a have been used for high-speed cutting of steel and cast iron at cutting speeds of 200 to 1000 I/inch. However, high-speed cutting inserts mainly made of AJLzOs have poor impact resistance, so they cannot be used in cutting with large depths of cut or feed, or in interrupted cutting because they tend to break. Therefore, attempts have been made to use 5iaN4, which has excellent impact resistance among ceramic materials, for cutting tips (Japanese Patent Laid-Open No. 55-47276), but the wear resistance of SiaNa is significantly inferior to that of A120a. Therefore, it has not been put to practical use.In addition, a cutting tip in which the surface of a hot-pressed 3i3Na-based sintered body is coated with Al20a and/or Al0N has also been proposed.
5-85481), which can be used for high-speed cutting and interrupted cutting, but the production cost of the hot pressing process, cutting, and polishing process is high, and cutting tips with this substrate coated with AuzOs are not widely used, but it is difficult to put them into practical use. be. Furthermore, the thermal expansion coefficient of Si sNa and AjLzO8 is 3.2X10-6/
The latter was significantly different from 7.8X10-6/'C, and had the drawback of causing peeling of the coating depending on the cutting conditions.

そこで本発明者らはこれらの欠点を解消するために実験
を行い、工業的“に安価に出来かつ被NWAのへクリを
生じにクク、耐衝撃性に優れた3i BH3を主体とし
、AJ12011を被覆した切削用チップの開発に成功
したものである。
Therefore, the present inventors conducted experiments to eliminate these drawbacks, and developed AJ12011 based on 3i BH3, which is industrially inexpensive and has excellent impact resistance and does not cause damage to the NWA. This was a successful development of a coated cutting tip.

即ち、本発明の要旨は、窒化珪素を主成分とする焼結体
の表面に窒化アルミニウム又は酸窒化アルミニウムの中
間層とその上に酸化アルミニウムの外層とを設けた多・
層構造としたことを特徴とする高速切削用チップにある
That is, the gist of the present invention is to provide a polyurethane material in which an intermediate layer of aluminum nitride or aluminum oxynitride and an outer layer of aluminum oxide are provided on the surface of a sintered body mainly composed of silicon nitride.
A high-speed cutting tip characterized by a layered structure.

上記高速切削用チップの構造を概略図で表わしたものを
第1図に示す。ここにおいて、1は本発明の高速切削用
チップ、2は基体である焼結体、3は中間層及び4は外
、胴である。
FIG. 1 shows a schematic diagram of the structure of the above-mentioned high-speed cutting tip. Here, 1 is a high-speed cutting tip of the present invention, 2 is a sintered body which is a base body, 3 is an intermediate layer, and 4 is an outer shell.

ここにおいて、焼結体の主成分である窒化珪卑は化学式
3iBNa、窒化アルミニウムは化学式AIN、酸窒化
アルミニウムは化学式AjlON。
Here, base silicon nitride, which is the main component of the sintered body, has the chemical formula 3iBNa, aluminum nitride has the chemical formula AIN, and aluminum oxynitride has the chemical formula AjlON.

酸化アルミニウムは化学式AjlzOsで与えられる物
質である。
Aluminum oxide is a substance given by the chemical formula AjlzOs.

本発明チップの基体である焼結体は主成分として上記S
i sNaに148時の強度低下防止及び変形防止のた
め必要に応じて窒化チタン(化学式TiN)が1〜10
%(重量%以下同じ)配合される。TiNが10%を越
える場合はSf aNaの高靭性を低下させ切削時の耐
欠損性が劣化し、1%未満の場合は効果がない。その他
、焼結助剤として必要に応じてAu20a、酸化イツト
リウム(化学式Y20B ) 、酸化ランタン(化学式
La20S)、酸化ジルコニウム(化学式ZrQ2)、
酸化ジスプロシウム(化学式1)yzos>、酸化マグ
ネシウム(化学式fvloo)及び酸化タンタル(化学
式Ta2’s)の中から選ばれた1種又は2種以トが8
〜30%配合され、この内のAjLzOs−Y20s系
、A文20B−DV’zOs系、AizC)a−Y20
a −DV 208’系、AjLzOB−Ta20s系
あるいはzr 02−Yz Os−MQO系等の焼結助
剤の使用が焼結し易さや焼結体の強度の点から好ましい
The sintered body which is the base of the chip of the present invention has the above-mentioned S as a main component.
If necessary, titanium nitride (chemical formula: TiN) is added to i sNa from 1 to 10 to prevent strength loss and deformation at 148°C.
% (the same applies below weight %). When TiN exceeds 10%, the high toughness of SfaNa is reduced and the fracture resistance during cutting deteriorates, and when it is less than 1%, there is no effect. In addition, as sintering aids, Au20a, yttrium oxide (chemical formula Y20B), lanthanum oxide (chemical formula La20S), zirconium oxide (chemical formula ZrQ2),
One or more selected from dysprosium oxide (chemical formula 1) yzos>, magnesium oxide (chemical formula fvloo), and tantalum oxide (chemical formula Ta2's) is 8
-30% blended, of which AjLzOs-Y20s series, Abun20B-DV'zOs series, AizC) a-Y20
It is preferable to use a sintering aid such as a-DV 208' series, AjLzOB-Ta20s series, or zr 02-Yz Os-MQO series from the viewpoint of ease of sintering and strength of the sintered body.

上記の原料は粉末状態で与えられ、これら各種原料を焼
結することにより焼結体が得られる。これらの配合によ
り、例えば、焼結助剤により膨張した結晶格子を有する
β−8isNaとTiNを含む粒界相からなる基体とし
て焼結体を得ることができる。この場合、焼結体に含ま
れるTiN相はβ−3i BNmの粒子境界に存在し、
切削時切刃部分が^潟にさらされた場合、β−3i・l
lN4が変形するのを防ぎ高温における強度低下を防ぐ
効果がある。
The above raw materials are provided in the form of powder, and a sintered body is obtained by sintering these various raw materials. With these blends, for example, a sintered body can be obtained as a base consisting of a grain boundary phase containing β-8isNa and TiN having a crystal lattice expanded by the sintering aid. In this case, the TiN phase contained in the sintered body exists at the grain boundaries of β-3i BNm,
If the cutting edge part is exposed to the lagoon during cutting, β-3i・l
This has the effect of preventing deformation of IN4 and preventing a decrease in strength at high temperatures.

又、焼結助剤が30%を越える場合粒界ガラス相が多く
なり高強度、高靭性といった3i@Nm本来の特性が失
われ、8%未満の場合緻密化が不十分で、焼結体内部に
気孔が残り、強度が低化するからである。
In addition, if the sintering aid exceeds 30%, the grain boundary glass phase increases and the original properties of 3i@Nm such as high strength and high toughness are lost, and if it is less than 8%, densification is insufficient and the sintered body This is because pores remain inside and the strength decreases.

上記配合物の焼結方法はホットプレス法、コールドプレ
ス(常圧焼結)法、HIP法等の一般的焼結方法が使用
可能であるが、この内コールドプレ文法が製造コストの
点から好ましい。
General sintering methods such as a hot press method, a cold press (normal pressure sintering) method, and a HIP method can be used for sintering the above-mentioned compound, but among these, the cold press method is preferable from the viewpoint of manufacturing cost. .

上記焼結体の表面にA立N、A立ON、AAz08の被
膜を形成させるには、物理蒸着法(イオンブレーティン
グ法、反応性スパッタリング法)や化学蒸着法等の方法
が使用可能であるが、この内でも化学蒸着法が被膜の成
分元素のコントロールの点から好ましい。
In order to form a film of A-stand, A-stand-ON, and AAz08 on the surface of the sintered body, methods such as physical vapor deposition (ion blating, reactive sputtering) and chemical vapor deposition can be used. However, among these methods, the chemical vapor deposition method is preferable from the viewpoint of controlling the constituent elements of the film.

この化学蒸着法は反応槽中で、予め加熱しておいた焼結
体の表面に塩化アルミニウム(化学式AICJLa)ガ
ス及びN2ガスに更にCO2ガス又はN2ガスを流して
接触させることにより、焼結体の表向でAiN、/IO
N又はAizOsを反応析出させる方法であり、反応m
度tま900〜1100℃でなされる。
In this chemical vapor deposition method, aluminum chloride (chemical formula: AICJLa) gas and N2 gas are brought into contact with the surface of a sintered body that has been heated in advance by flowing CO2 gas or N2 gas into the surface of the sintered body in a reaction tank. AiN, /IO on the surface of
This is a method of reaction-precipitating N or AizOs, and the reaction m
This is done at 900-1100°C.

上記化学蒸着法を用いて、具体的に焼結体の表面にA立
N又はA皇ONの中間層とその上にA表2011の外層
を設けるには次のようになされる。
Specifically, using the chemical vapor deposition method described above, the method of providing an intermediate layer of A-N or A-ON on the surface of a sintered body and an outer layer of Table A 2011 thereon is as follows.

まず、AAN又はAjlONの中間層を設けるには、A
ACAsガス及びN2ガス以外にN2ガスを加えたもの
又はN2ガス及びCO2ガスを加えたものを加熱した焼
結体の表面に接触させることによりなされ、AuC1m
ガス及びN2ガスに対してN2ガスのみ加えたものを使
用した場合には、AiNが、N2ガスの他にCO2ガス
を加えた場合にはA11ONが中間調として析出するこ
とになる。次いで、A9.C1aガス及びN2ガスに対
しCO2ガスのみを加えたものを、中間層を設けた焼結
体の表面に接触させるとAizOsの外層が析出する。
First, to provide an intermediate layer of AAN or AjlON, A
This is done by contacting the surface of a heated sintered body with a mixture of ACAs gas and N2 gas, or a mixture of N2 gas and CO2 gas.
If only N2 gas is added to the gas and N2 gas, AiN will be precipitated, and if CO2 gas is added in addition to N2 gas, A11ON will be precipitated as an intermediate tone. Next, A9. When a mixture of C1a gas and N2 gas plus only CO2 gas is brought into contact with the surface of the sintered body provided with the intermediate layer, an outer layer of AizOs is precipitated.

この構成において基体である焼結体のSi aNaの熱
膨張係数は3.2X10−6/’C1外層のA立201
1は7.8X10−6/’Cと差が大きいが、中間層の
AiNの熱膨張係数は基体と外層との中間115.6X
10  /”Cであり、又、AMONを含む層はAl2
03とAjlNとの間の任意の値を取ることができ、更
に、基体においても、添加物により、膨張した結晶格子
を有するSi aNaを主体とする焼結体の熱1脹係数
は3.8・〜4.2X10=/’Cと、よりAl2O3
に近いので熱歪みを分散あるいは減少できる。
In this configuration, the thermal expansion coefficient of Si aNa of the sintered body that is the base is 3.2X10-6/'A201 of the C1 outer layer.
1 has a large difference of 7.8X10-6/'C, but the thermal expansion coefficient of AiN in the intermediate layer is 115.6X between the base and the outer layer.
10/”C, and the layer containing AMON is Al2
The thermal expansion coefficient of a sintered body mainly composed of Si aNa, which has an expanded crystal lattice due to additives in the base body, is 3.8.・~4.2X10=/'C and more Al2O3
Since it is close to , thermal distortion can be dispersed or reduced.

上記の中l11111、外商の析出方法は、接触させる
ガスの組成を2種類調整し、2度にわけて焼結体の表面
に析出させ不連続に中間層と外層とを設けているが、最
初にA1C15ガス及びH・2ガスに対してN2ガスあ
るいはN2ガスとCO2ガスとの組み合わせにより焼結
体表面にAjlN又はAAONを析出させ次いでN2ガ
スの割り合いを連続的に減少させると共に、CO2ガス
の割り合いを増大させることにより、連続的に中間層の
窒素成分が外方向に減少し、それに伴い酸素成分が増加
するように被1Illlを形成でき、中nuiと外1と
が連続調となるように設けることも可能である。このよ
うに連続的にその組成が変化している場合には熱ll!
l検眼の遠いにより発生する熱歪みを震全体で分散して
受けるため、前記のような不連続層に比べて熱歪みによ
る破壊を更に受けにくくなる。
In the above-mentioned method, Gaisho's deposition method adjusts the composition of two types of gases to be brought into contact and deposits on the surface of the sintered body in two stages, forming a discontinuous intermediate layer and an outer layer. AjlN or AAON is deposited on the surface of the sintered body using N2 gas or a combination of N2 gas and CO2 gas for A1C15 gas and H2 gas, and then the proportion of N2 gas is continuously decreased, and CO2 gas By increasing the ratio of , it is possible to form a layer in which the nitrogen component in the intermediate layer continuously decreases outward and the oxygen component increases accordingly, and the middle layer and outer layer become continuous. It is also possible to provide such a configuration. If the composition changes continuously like this, it's hot!
Since the thermal strain caused by the distance of the optometry is distributed throughout the entire earthquake, it is more difficult to be destroyed by thermal strain than the discontinuous layer described above.

不連続に層を設ける場合、中間層の厚みは0゜01〜3
μに設定す−□iとが熱歪の緩和の点から好ましく、外
層の厚みは0.5〜2μに設定することが切削時の耐摩
耗性や耐剥離性の点から好ましい。又、連続不連続にか
かわらず、全体としての厚みは0.5〜5μ、その内で
も1〜4μに設定することが切削寿命の点から好ましい
。この中間層及び外層からなる被1llllの厚みがこ
れらより過大であると熱衝撃により基体である焼結体と
被覆−との間に亀裂が入り易く、切削時刃先欠損の原因
となり、過少の場合は耐摩耗性等の効果が少ない。
When providing discontinuous layers, the thickness of the intermediate layer is 0°01 to 3
The thickness of the outer layer is preferably set to 0.5 to 2 μ from the viewpoint of wear resistance and peeling resistance during cutting. In addition, regardless of whether it is continuous or discontinuous, it is preferable to set the overall thickness to 0.5 to 5 μm, and preferably 1 to 4 μm from the viewpoint of cutting life. If the thickness of the intermediate layer and the outer layer is too thick, cracks will easily form between the sintered body and the coating due to thermal shock, which may cause chipping of the cutting edge during cutting. has little effect on wear resistance, etc.

以上詳述した如く、本発明の高速切削用チップはSi 
3N4を主成分とする焼結体の表面にAiN又はAl0
Nの中間■とその上にAAzOsの外層とを設けた多層
構造としたことにより、実質的な刃先がAl2Omとな
り良好な^速切削性、耐摩耗性及び耐欠損性を示し、又
基体の焼結体が3i aNaであるので良好な耐衝撃性
を示し、更にAl2O5層と基体の5fsNaとの間に
各々の熱膨張係数のほぼ中間値の熱膨張係数を有する中
wallIが形成されていることにより熱膨張の差によ
るクラックの発生を防止でき、長寿命の切削チップとす
ることができる。
As detailed above, the high-speed cutting tip of the present invention is made of Si.
AiN or Al0 is applied to the surface of the sintered body mainly composed of 3N4.
By creating a multilayer structure with an intermediate layer of N and an outer layer of AAzOs on top of it, the actual cutting edge becomes Al2O, exhibiting good high-speed machinability, wear resistance, and chipping resistance. Since the solid body is 3i aNa, it exhibits good impact resistance, and furthermore, a medium wall I is formed between the Al2O5 layer and the 5fsNa of the substrate, which has a thermal expansion coefficient that is approximately the middle value of the respective thermal expansion coefficients. This makes it possible to prevent the occurrence of cracks due to differences in thermal expansion, resulting in a long-life cutting tip.

次に、実施例により更に具体的に説明する。Next, a more specific explanation will be given using examples.

実施例1 Si sNa (純度96.5%平均粒径0.5μ)8
0% Y2O3(純度99.9%平均粒径1.2μ)10% AAzOs (純度99.9%平均粒径1.0μ)5% TiN   (純度99.2%平均粒径1.0μ)5% 以上の成分をA120a製ボール及びエチルアルコール
等のアルコールと共にAAzOs製ボールミルに入れ、
20vi闇混合し乾燥した。その後パラフィンを4%添
加し、焼結体1法が13ssx1311X51−の直方
体となるよう金型にてプレス成形を行った。焼結はN2
雰囲気で1750℃1時間にて行った。この焼結体から
抗折試験片を切り出し、スパン長さ10−一で抗折力を
測定したところ95 ko/ ll襲あった。この試験
片を5NGN433、チャンファ−0,05s+ex2
5−”に加工し、これを基体としてCVD <化学気相
析出法)反応容器に入れ1050℃に加熱したのら、温
度を320℃に保ったアルミニウムチップ中に80文を
通過させて発生したA文C立3とHC1混合ガス17容
蟻%、CO2ガス5容饅%、ト12ガス71容量%及び
N2ガス7容量%を流し、5時間保持した。N2ガスは
1時間毎に流量を減じ最終的にはN2ガスは停止した。
Example 1 Si sNa (purity 96.5% average particle size 0.5μ) 8
0% Y2O3 (purity 99.9% average particle size 1.2μ) 10% AAzOs (purity 99.9% average particle size 1.0μ) 5% TiN (purity 99.2% average particle size 1.0μ) 5% Put the above ingredients into an AAzOs ball mill together with A120a balls and alcohol such as ethyl alcohol,
The mixture was mixed in the dark for 20 minutes and dried. Thereafter, 4% paraffin was added, and press molding was performed using a mold so that the sintered body 1 became a rectangular parallelepiped of 13ssx1311x51-. Sintering is N2
The test was carried out at 1750° C. for 1 hour in an atmosphere. A transverse rupture test piece was cut out from this sintered body, and the transverse rupture strength was measured at a span length of 10-1 and found to be 95 ko/ll. This test piece was 5NGN433, chamfer-0.05s+ex2
5-", this was processed into a substrate using CVD (chemical vapor deposition method) and heated to 1050°C in a reaction vessel, and 80 particles were passed through an aluminum chip kept at a temperature of 320°C. A mixed gas of 17% by volume and HC1, 5% by volume of CO2 gas, 71% by volume of T12 gas, and 7% by volume of N2 gas were flowed and held for 5 hours.The flow rate of N2 gas was changed every hour. The supply of N2 gas was eventually stopped.

これにより得られた被覆層の厚みは2.4μであり、第
3図の八で表わされるように窒素成分は内部から外部へ
濃度が段階的に減少していることがX線マイクロアナラ
ーイザーによる線分析により確認された。
The thickness of the resulting coating layer was 2.4μ, and an X-ray microanalyzer showed that the nitrogen component concentration decreased stepwise from the inside to the outside, as shown by 8 in Figure 3. Confirmed by line analysis.

上記実施例1のチップを用いて極めて難削材とされでい
る高ニッケル合金(インコネル718)の切削試験を行
った。切削条件は切削速度200m /1n 、切り込
み1.5IllIll及び送り速度0.15 mm/r
evの条件で刃先が欠損するまで切削した。
Using the tip of Example 1, a cutting test was conducted on a high nickel alloy (Inconel 718), which is considered to be an extremely difficult-to-cut material. Cutting conditions are cutting speed 200m/1n, depth of cut 1.5IllIll, and feed rate 0.15 mm/r.
Cutting was performed under ev conditions until the cutting edge was damaged.

その結果、本発明チップは865分間切削可能ぐあった
が、実施例と同様に製造した焼結体で中間層及び外層を
設【ノていない比較例の切削チップは2分、市販のΔ1
20s系セラミック工具は1分、市販のAnzOaを被
覆した超硬チップは30秒でそれぞれ破損した。
As a result, the cutting tip of the present invention was capable of cutting for 865 minutes, whereas the cutting tip of the comparative example, which was a sintered body manufactured in the same manner as the example and without an intermediate layer and no outer layer, was able to cut for 2 minutes, and the cutting tip of the commercially available Δ1
The 20s series ceramic tool broke in 1 minute, and the commercially available AnzOa-coated carbide tip broke in 30 seconds.

実施例2 実施例1でのチップのwi造方法の内、中間層及び外層
を形成するためのAlC1aガスとH(itガスとの混
合ガス、CO2ガス、N2ガス、N 2ガスの焼結体表
面への接触時間のみを変化させ、中間層及び外層の厚み
の異なるチップを得た。被覆層の窒素成分は第3図の8
の如く二層になっていた。
Example 2 A mixed gas of AlC1a gas and H(it gas), a sintered body of CO2 gas, N2 gas, and N2 gas for forming the intermediate layer and the outer layer in the chip manufacturing method in Example 1. Chips with different thicknesses of the intermediate layer and outer layer were obtained by changing only the contact time to the surface.The nitrogen content of the coating layer was 8 in Fig. 3.
It had two layers like this.

上記チップを前記実施例1のチップに対して行ったと同
じ切削試験を行った。この結果を第2図に示す。縦軸は
欠損に至るまでの切削時間−(分)横軸は中間層と外層
とを一体とした被覆層の厚み(μ)を表わづ。ここにお
いて、被t+iiの厚みが約2μのところが最も切削時
間が長いことがわかる。又、被WIN、の:ないものに
対して約2倍以上の切削時間を示す範囲は被HIMの厚
み0.5〜5μであり、特に1〜4μは3倍以上であり
より^い性能である。
The above chips were subjected to the same cutting tests as were performed on the chips of Example 1 above. The results are shown in FIG. The vertical axis represents the cutting time until breakage (minutes), and the horizontal axis represents the thickness (μ) of the coating layer including the intermediate layer and the outer layer. Here, it can be seen that the cutting time is the longest when the thickness of the target t+ii is about 2μ. In addition, the range in which the cutting time is approximately twice as long as that without WIN is the thickness of the HIM of 0.5 to 5μ, and in particular, the thickness of 1 to 4μ is three times or more, resulting in better performance. be.

実施例3 実施例1と同じ基体をCVD反応容器に入れ1050℃
に加熱したのち温度を320℃に保ったアルミニウムチ
ップ中にHCMを通過させて発生したA10文3とHC
文混合ガス:17容−%及び112ガスニア1容量%を
一定とし、残りの12容鏝%のCO2+N2混合ガスを
バルブの連続操作でCO2:6容量%及びN2:6容量
%から3時間でCO2:12容量%及びN2:0容量%
まで連続的に変化させた後、最終組成で1時間保持した
。これにより得られた被覆層の厚みは2μであり、第3
図のCで表わされるように内部から15μまでの窒素成
分は内部から外部へ連続的濃度勾配があり、外部0.5
μがAjlzOallであることが確認された。
Example 3 The same substrate as in Example 1 was placed in a CVD reaction vessel at 1050°C.
A10 sentence 3 and HC generated by passing HCM through an aluminum chip that was heated to 320℃ and kept at a temperature of 320℃.
Mixed gas: 17% by volume and 1% by volume of 112 gas are kept constant, and the remaining 12% by volume of CO2 + N2 mixed gas is converted to CO2 in 3 hours from 6% by volume of CO2 and 6% by volume of N2 by continuous operation of the valve. : 12 volume% and N2: 0 volume%
The final composition was maintained for 1 hour. The thickness of the coating layer thus obtained was 2μ, and the thickness of the third layer was 2μ.
As shown by C in the figure, the nitrogen component from the inside to 15μ has a continuous concentration gradient from the inside to the outside.
It was confirmed that μ is AjlzOall.

上記実施例3のチップを用いて実施例1と同様の切削テ
ストを行った結果、実施例1のチップに較べ1割程度切
削可能時間が長くなった。
As a result of conducting the same cutting test as in Example 1 using the tip of Example 3, the cutting time was approximately 10% longer than that of the tip of Example 1.

実施例4 実施例1と同様な方法で、Y2O11: 10%、Al
2O:l:5%及び配合割合を変化させたTiNを、S
i aNaに配合し焼結したものの抗折力を測定した。
Example 4 In the same manner as in Example 1, Y2O11: 10%, Al
2O:l:5% and TiN with different blending ratios were
The transverse rupture strength of the mixture mixed with iaNa and sintered was measured.

その結果をTiNの配合割合と共に第1表に示す。The results are shown in Table 1 along with the blending ratio of TiN.

この結果から明らかな如く本配合のチップは十分に高い
抗折力を示したことがわかり、特にTiNの配合が1〜
10%においては常温抗折力及び1200℃の抗折力の
両者において抜群の抗折力を示した。
As is clear from these results, it was found that the chips with this formulation exhibited sufficiently high transverse rupture strength, especially when the TiN formulation was 1 to 1.
At 10%, it showed outstanding transverse rupture strength in both normal temperature transverse rupture strength and 1200°C transverse rupture strength.

実施例5 各種焼結助剤を添加した3i3Na焼結体を5NGN4
33、チャンファ−0,111X25°にこの結果から
明らかな如く、本配合のチップは十分に高い耐欠損性を
示し、特に焼結助剤の配合が8〜30%においては抜群
の耐欠損性を示した。
Example 5 3i3Na sintered body with various sintering aids added to 5NGN4
33. Chamfer - 0.111 x 25° As is clear from the results, the chip with this formulation shows sufficiently high fracture resistance, and especially when the sintering aid content is 8 to 30%, it has outstanding fracture resistance. Indicated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高速切削用チップを示づ概略断面図、
第2図は被IIIの厚みと切削時間(切削寿命)の関係
を示すグラフ、第3図は被111iのN(窒素)成分の
割合変化を示す概略グラフを表わ′!I。 1・・・本発明の高速切削用チップ 2・・・基体(焼結体) 3・・・中間層 4・・・外層 代理人 弁理士 足立 勉 第1図 第2図 0123456 補1jl172(μ)
FIG. 1 is a schematic cross-sectional view showing a high-speed cutting tip of the present invention;
Figure 2 is a graph showing the relationship between the thickness of workpiece III and cutting time (cutting life), and Figure 3 is a schematic graph showing the change in the proportion of N (nitrogen) component of workpiece 111i. I. 1... High-speed cutting tip of the present invention 2... Substrate (sintered body) 3... Intermediate layer 4... Outer layer agent Patent attorney Tsutomu Adachi Figure 1 Figure 2 0123456 Supplementary 1jl172 (μ)

Claims (1)

【特許請求の範囲】 1 窒化珪素を主成分とする焼結体の表面に窒化アルミ
ニウム又は酸窒化アルミニウムの中間層とその上に酸化
アルミニウムの外層とを設けた多層構造としたことを特
徴とする高速切削用チップ。 2 中間層の窒素成分が外方向に減少し、それに伴い酸
素成分が増加して、中間層と外層とが連続層となってい
る特許請求の範囲第1項記載の高速切削用チップ。 3 窒化l素を主成分とする焼結体が、窒化■1素粉末
に窒化チタン1〜10重量%と酸化アルミニウム、酸化
イツトリウム、酸化ランタン、酸化ジルコニウム、酸化
ジスプロシウム、酸化マグネシウム及び酸化タンタルか
ら選ばれた1種又は2種以上の8〜30重量%とを添加
した焼結体である特許請求の範囲第1項あるいは第2項
記載の高速切削用チップ。
[Claims] 1. A multilayer structure in which an intermediate layer of aluminum nitride or aluminum oxynitride and an outer layer of aluminum oxide are provided on the surface of a sintered body mainly composed of silicon nitride. Tip for high speed cutting. 2. The high-speed cutting tip according to claim 1, wherein the nitrogen component of the intermediate layer decreases outward, and the oxygen component increases accordingly, so that the intermediate layer and the outer layer form a continuous layer. 3. A sintered body containing nitride as a main component is a sintered body containing 1 to 10% by weight of titanium nitride in nitride powder selected from aluminum oxide, yttrium oxide, lanthanum oxide, zirconium oxide, dysprosium oxide, magnesium oxide, and tantalum oxide. The high-speed cutting tip according to claim 1 or 2, which is a sintered body containing 8 to 30% by weight of one or more of the following.
JP7956082A 1982-05-12 1982-05-12 High speed cutting tip Granted JPS58199782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7956082A JPS58199782A (en) 1982-05-12 1982-05-12 High speed cutting tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7956082A JPS58199782A (en) 1982-05-12 1982-05-12 High speed cutting tip

Publications (2)

Publication Number Publication Date
JPS58199782A true JPS58199782A (en) 1983-11-21
JPS6313831B2 JPS6313831B2 (en) 1988-03-28

Family

ID=13693388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7956082A Granted JPS58199782A (en) 1982-05-12 1982-05-12 High speed cutting tip

Country Status (1)

Country Link
JP (1) JPS58199782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632910A (en) * 1984-05-29 1986-12-30 Korea Advanced Institute Of Science And Technology Sintered material of silicon nitride for cutting tools and process therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632910A (en) * 1984-05-29 1986-12-30 Korea Advanced Institute Of Science And Technology Sintered material of silicon nitride for cutting tools and process therefor

Also Published As

Publication number Publication date
JPS6313831B2 (en) 1988-03-28

Similar Documents

Publication Publication Date Title
JPS60502244A (en) Coated silicon nitride cutting tools
JPS6011288A (en) Surface coated sialon-base ceramic tool member
EP0113660A2 (en) Nitride based cutting tool
JPS5913475B2 (en) Ceramic throw-away chips and their manufacturing method
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
JPS58199782A (en) High speed cutting tip
JP3039909B2 (en) Substrate material for magnetic head
JPS6152102B2 (en)
JPS58145676A (en) Surface-clad silicon nitride base sintered member for high speed cutting tool
JPS5855560A (en) Surface coated throw-away chip for cutting
JP3107168B2 (en) Coated silicon nitride sintered body for tools
JPS61201778A (en) Coated sintered hard alloy
JPS6111724B2 (en)
JPH0663804A (en) Throw-away tip for cutting made of silicon-nitride-based coated ceramics
JPS5895644A (en) High strength composite sintered body
JPS631278B2 (en)
JPS598670A (en) High tenacity silicon nitride base sintered body
JPS6050747B2 (en) Aluminum oxide based ceramic with high toughness and hardness
JPH09291378A (en) Coated cemented carbide
JPS6059717A (en) Ceramic substrate for thin film magnetic head
JP2570354B2 (en) Surface coated ceramic members for cutting tools
JPH0295502A (en) High speed cutting chip
JPS6245290B2 (en)
JPS5925972A (en) Coated hard member