JPS58199732A - Method for doping fluorine in formation of oxide powder for optical glass - Google Patents

Method for doping fluorine in formation of oxide powder for optical glass

Info

Publication number
JPS58199732A
JPS58199732A JP7634582A JP7634582A JPS58199732A JP S58199732 A JPS58199732 A JP S58199732A JP 7634582 A JP7634582 A JP 7634582A JP 7634582 A JP7634582 A JP 7634582A JP S58199732 A JPS58199732 A JP S58199732A
Authority
JP
Japan
Prior art keywords
gas
fluorine
oxide powder
fluorine compound
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7634582A
Other languages
Japanese (ja)
Inventor
Yasuro Furui
古井 康郎
Tamotsu Kamiya
保 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7634582A priority Critical patent/JPS58199732A/en
Publication of JPS58199732A publication Critical patent/JPS58199732A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a product with little unevenness in difference in specific refractive index, by feeding a fluorine compound as a doping agent after diluting it with other gas when vapor phase starting material for glass are decomposed to form oxide powder for glass. CONSTITUTION:A vapor phase fluorine compound such as SF6 or SiF4 is mixed with other gas such as oxygen and filled into a cylinder 3. A bubbling gas such as oxygen is introduced into starting materials for glass such as SiCl4, GeCl4 and POCl3 held in bubbling containers 6, 7, 8 to evaporate the materials, and the gaseous starting materials are mixed with the diluted fluorine compound from the cylinder 3 and introduced into a reaction system. In the system, oxide powder for optical glass is formed by flame hydrolysis or thermal decomposition. The flowability of the fluorine compound is enhanced by increasing the amount of the diluting gas to be fed without changing the desired amount of the compound to be fed, so uniform doping can be carried out.

Description

【発明の詳細な説明】 本発明は光学系ガラス酸化物粉末生成法における弗素の
ドープ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for doping fluorine in a method for producing optical glass oxide powder.

光フアイバ用母材、ロンドレンズ用母材の製造方法とし
て知られているCVD法、VAD法等では、所定の気相
ガラス原料を火炎加水分解反応または熱分解反応させる
ことにより生成したガラス酸化物粉末(白色のスート)
を所定箇所へ堆積させ、かつ、これを透明ガラス化して
棒状ガラスすなわち上記母材を得ている。
In the CVD method, VAD method, etc., which are known as methods for manufacturing optical fiber base materials and Rondo lens base materials, glass oxides are produced by subjecting predetermined vapor phase glass raw materials to a flame hydrolysis reaction or thermal decomposition reaction. powder (white soot)
is deposited at a predetermined location, and this is made into transparent glass to obtain rod-shaped glass, that is, the above-mentioned base material.

こうした母材をつくるとき、主成分5102の他に種々
のドープ剤が必要に応じて用いられる。
When making such a base material, various dopants are used in addition to the main component 5102 as necessary.

例えば石英系光フアイバ用母材の場合、屈折率上昇効果
の高いGeはコア領域の屈折率分布を形成するドープ剤
として用いられ、また、Geに比べた屈折率上昇効果は
小さいが、ガラス合成温度を著しく低下させる効果のあ
るPは、そのガラス合成の安定性、レイリー散乱損失の
抑制、滑らかな屈折率分布の形成などを目的としたドー
プ剤として用いられている。
For example, in the case of the base material for silica-based optical fibers, Ge, which has a high effect of increasing the refractive index, is used as a dopant to form the refractive index distribution in the core region. P, which has the effect of significantly lowering the temperature, is used as a doping agent for the purposes of stabilizing glass synthesis, suppressing Rayleigh scattering loss, and forming a smooth refractive index distribution.

一方、上記Pとの併用でクラッド領域にドープされるB
は、Pによる屈折率上昇効果を打ち消し、当該Pによる
温度低下効果のみを発揮させる。
On the other hand, B doped into the cladding region in combination with the above P
cancels the refractive index increasing effect due to P and allows only the temperature decreasing effect due to the P to be exhibited.

もちろん上述した各ドープ剤はそれぞれ化合物の状態で
ドープされ、透明ガラス化された時点では酸化物(Ge
 02 、P205 、B203 渣ど)となっており
、これらをドープ剤として含有し□ ている光フアイバ母材は既知の紡糸手段を介し1光フア
イバに加工される。
Of course, each of the above-mentioned doping agents is doped in the form of a compound, and at the time of transparent vitrification, it becomes an oxide (Ge
02, P205, B203 residues, etc.), and an optical fiber matrix containing these as dopants is processed into one optical fiber through known spinning means.

ところでB20.を含有している光ファイバに関し又は
、長波長帯域での使用における損失増加の傾向がすでに
指摘されており、特に13pm帯、1.55μm帯での
損失が大きいとされている。
By the way, B20. It has already been pointed out that there is a tendency for loss to increase when using optical fibers containing .

上述のような技術的背景から、長波長帯域での損失増加
を起こさない新たなドープ剤として、弗素CF)が注目
されているが、このFを上記Bに代えてドープするには
つぎの問題を解消しなければならない。
Due to the above-mentioned technical background, fluorine (CF) is attracting attention as a new dopant that does not cause an increase in loss in the long wavelength band.However, in order to dope this F instead of B, the following problems must be solved. must be resolved.

以下、シングルモード光ファイバを前提としたクラッド
領域にPおよびFをドープする例をあげ、Fの問題を指
摘してみる。
Below, we will give an example in which the cladding region of a single-mode optical fiber is doped with P and F, and point out the problem with F.

Fのドープ量はBの場合と同じく、Pによる屈折率上昇
分を打ち消すだけおればよく、したがってFはPのドー
プ量に対応して定まる。
As in the case of B, the amount of F doped needs to be enough to cancel out the increase in refractive index due to P, and therefore F is determined in accordance with the amount of P doped.

一方、Pのドープ量としてはガラス合成時の安定化がは
かれる程度を要するが、これの量が多くなると吸収槁欠
が大きくなるので、上記安定化と吸収損失とのかね合い
で定まる。
On the other hand, the amount of P doped must be set to an extent that stabilizes the glass during synthesis, but as the amount increases, the absorption deficit increases, so it is determined by the balance between the above-mentioned stabilization and absorption loss.

望ましくはPは少ない方がよい。Desirably, the smaller the amount of P, the better.

経験値によると、Pのドープ量はP2O,のmo1% 
で2mot%程度になり、これによる比屈折率差の上昇
分は0.05%程度でおる。
According to empirical values, the amount of P doped is mo1% of P2O,
Therefore, the increase in the relative refractive index difference is about 0.05%.

この上昇分を打ち消し得るFのドープ量はきわめて少量
で足り、例えば前述した火炎加水分解反応や熱分解反応
等においてFをドープすべく、気相の8F6 、S i
F4 、CF4などを用いたとすると、そのドープ剤供
給量は10ca/m以下である。
An extremely small amount of F doping is sufficient to cancel out this increase. For example, in order to dope F in the above-mentioned flame hydrolysis reaction or thermal decomposition reaction, gas phase 8F6, Si
If F4, CF4, etc. are used, the amount of dopant supplied is 10 ca/m or less.

このような微小流量のガスは所定の配管系を介して反応
系へ送るにしても、また、反応後における生成物を所定
箇所へ堆積させるにしても、安定した流動性を示さず、
それに再現性もなく、故に比屈折率差のバラツキを惹起
している。
Even if such a small flow rate of gas is sent to the reaction system through a predetermined piping system, or even if the product after the reaction is deposited at a predetermined location, it does not exhibit stable fluidity.
Moreover, there is no reproducibility, and this causes variations in the relative refractive index difference.

ちなみに、Fによる上記バラツキの大きさく最大値−最
小値)は0.1%にもなっている。
Incidentally, the magnitude of the above-mentioned variation due to F (maximum value - minimum value) is as much as 0.1%.

本発明は上記の問題点に対処すべく弗素のドープ方法を
改善したものであり、その特徴とするところは、気相の
ガラス原料を火炎加水分解・反応または熱分解反応させ
ることにより光学系ガラス酸化物粉末を生成する方法に
おいて上記ガラス原料の反応系へ気相の弗素化合物を供
給するとき、該弗素化合物を他の気体と混合して供給す
ることにより、弗素化合物供給量を所望量に保持しなが
らその供給ガス量を増量することにある〇 こうした技術内容を特徴としている本発明は、既述のご
とく、弗素をドープ剤として含有する光学系プリフォー
ムロッド(光フアイバ用母材、ロンドレンズ用母材)の
製造に際して実施されるのであり、ドープ剤としての弗
素CF]は燐CP)をドープした際に生じる屈折率上昇
分を打ち消すことになる。
The present invention is an improvement on the fluorine doping method in order to solve the above-mentioned problems.The present invention is characterized in that optical glass is produced by flame hydrolysis/reaction or thermal decomposition reaction of gas phase glass raw materials. When supplying a gas phase fluorine compound to the reaction system of the glass raw materials in the method for producing oxide powder, the fluorine compound supply amount is maintained at a desired amount by supplying the fluorine compound mixed with other gases. The purpose of the present invention, which is characterized by such technical content, is to increase the amount of gas supplied, as described above. Fluorine CF] as a doping agent cancels out the increase in refractive index that occurs when doping with phosphorus CP).

上記のドープ効果をねらいとするFは微小量で足りるが
、これの実施に際して微小量の弗素化合物(気相)を所
定の反応系へ供給したとしても、安定した流動性がない
ため、既述のごとき比屈折率差のバラツキを生じること
になる。
A very small amount of F is sufficient to achieve the above-mentioned doping effect, but even if a very small amount of fluorine compound (gas phase) is supplied to the specified reaction system, stable fluidity is not achieved, as mentioned above. This results in variations in the relative refractive index difference.

本発明ではガラス原料の反応系へ気相の弗素化合物を供
給するとき、該弗素化合物を他の気体と混合することに
より、弗素化合物供給量を所望量に保持しながらその供
給ガス量を増量するから、Fを含んで反応系へ送られる
ガスの総量は多くな9、したがって供給ガス量が微小量
であるが故に生じる流動不安定、およびこれに起因し之
比屈折率差のバラツキは解消されることになる。
In the present invention, when a gaseous fluorine compound is supplied to a reaction system for glass raw materials, the fluorine compound is mixed with other gases to increase the amount of supplied gas while maintaining the fluorine compound supply amount at a desired level. Therefore, the total amount of gas containing F sent to the reaction system is large9, so the flow instability caused by the small amount of gas supplied and the variation in the relative refractive index difference caused by this are eliminated. That will happen.

もちろん上記において弗素化合物を他の気体と混合した
とき、該弗素化合物は希釈されるが、反応系へ送るべき
弗素化合物の必要量はこの際の混合比、混合ガス流量を
制御することにより確保でき、したがって他のドープ剤
による屈折率上昇分の打ち消し効果は奏し得る。
Of course, when a fluorine compound is mixed with another gas in the above, the fluorine compound is diluted, but the required amount of fluorine compound to be sent to the reaction system can be secured by controlling the mixing ratio and mixed gas flow rate at this time. Therefore, the effect of canceling out the increase in refractive index caused by other dopants can be achieved.

本発明方法で用いる気相の弗素化合物は8F6、S i
 F4 、CF4などであり、これらのいずれを用いて
も所期の目的は達成できる。
The gas phase fluorine compound used in the method of the present invention is 8F6, Si
F4, CF4, etc., and the intended purpose can be achieved using any of these.

また、上記弗素化合物と混、eする他の気体としては高
純度の酸素〔02〕を用いるが、これには不活性ガスが
混合されていてもよく、さらに02に代えてAr5He
などの不活性ガスを用いてもよい。
Further, as the other gas to be mixed with the above fluorine compound, high purity oxygen [02] is used, but an inert gas may be mixed therein.
An inert gas such as may also be used.

一方、弗素化合物と他の気体とを混合してない混合ガス
を所定の反応系へ供給するとき、その供給ガス量は少な
くとも10g/−以上であるO 本発明における火炎加水分解反応、熱分解反応させる反
応系とは、既知のVAD装置、内材CVD装置、外付C
VD装置などであり、とれらの反応により生成されたガ
ラス酸化物粉末は、石英系などとしたガラス管の内周、
ガラス欅の外周、ガラススート棒の外周などに堆積され
る。
On the other hand, when a mixed gas in which a fluorine compound and other gases are not mixed is supplied to a predetermined reaction system, the amount of supplied gas is at least 10 g/- or more. The reaction system to be used is a known VAD device, internal material CVD device, external C
VD equipment, etc., and the glass oxide powder produced by the reaction is applied to the inner periphery of a glass tube made of quartz, etc.
It is deposited on the outer periphery of the glass keyaki, the outer periphery of the glass soot rod, etc.

また、上記における火炎加水分解反応に際しては3重管
以上の多重管構造をもつ酸水素炎バーナが用いられ、熱
分解反応に際しては多重管構造のガス噴射管と熱源とが
組み合わされて用いられる。
Further, in the above-mentioned flame hydrolysis reaction, an oxyhydrogen flame burner having a triple or more multi-tube structure is used, and in the thermal decomposition reaction, a combination of a gas injection tube with a multi-tube structure and a heat source is used.

つぎに本発明方法の具体例を図示に基づいて説明する。Next, a specific example of the method of the present invention will be explained based on the drawings.

はじめ、気相の弗素化合物と他の気体とを混合するとき
、第1図のごとく弗素化合物(例えばsp6 )が10
j程度入ったボンベfilと、他の気体(例えば02 
 )が10を程度入ったボンベ(2)と、両ガスを収容
すべき混合ガスボンベ(3)とを配管系(4)により接
続し、両ボンベ+1)+21から放出した各ガスを混合
状態にして混合ガスボンベ(3)内に収容する。
Initially, when a gas phase fluorine compound and another gas are mixed, the fluorine compound (for example, sp6) is mixed with 10
A cylinder filled with about
A cylinder (2) containing about 10 of ) is connected to a mixed gas cylinder (3) that should contain both gases through a piping system (4), and each gas released from both cylinders +1) +21 is mixed. It is housed in a mixed gas cylinder (3).

もちろん上記配管系(4)の所定箇所には図示のごとく
バルブや圧力計が備えられており、ボンベ(2)に関し
又は、配管接続時の大気吸引を防止する目的から1〜3
Kg/−の充填圧で所定ガスを充填するのがよい。
Of course, the piping system (4) is equipped with valves and pressure gauges at predetermined locations as shown in the figure.
It is preferable to fill the specified gas with a filling pressure of Kg/-.

また、混合ガスボンベ(3)内の弗素化合物濃度を2%
、その内圧を50Kg/dとする場合では、はじめに混
合ガスボンベfilの圧力がIKe/cyliだけ上昇
するまでボンベ(1]内の弗素化合物を上記ボンへ(3
)内に充填し、つぎに当該ボンベ+31 内の圧力が5
0 K9/ diに昇圧するまでボンベ(2)内の気体
を上記ボンベ(3)内に充填する。
In addition, the concentration of fluorine compounds in the mixed gas cylinder (3) was reduced to 2%.
, when the internal pressure is 50 Kg/d, the fluorine compound in the cylinder (1) is first transferred to the cylinder (3) until the pressure of the mixed gas cylinder fil rises by IKe/cyli.
), then the pressure inside the cylinder +31 is 5
The gas in the cylinder (2) is filled into the cylinder (3) until the pressure is increased to 0 K9/di.

上記において混合ガス(例えば8 F a / Oz)
が充填された混合ガスボンベ(3)は第2図に示すよう
に反応系へのガス供給配管系(5)へ装着される。
In the above, mixed gas (e.g. 8 F a/Oz)
The mixed gas cylinder (3) filled with is attached to the gas supply piping system (5) to the reaction system as shown in FIG.

このガス供給配管系(5)は液相状態にある8iC4、
G e Ct4 、 P OC1zなどをバブリング(
こより蒸発させるためのバブリング装置161 (7)
 +81が接続されており、バブリングガス(例えば0
□ )により蒸発(蒸発温度約250℃)された上記各
ガスは前記混合ガスとともに反応系へ送られ、所定の分
解反応を受けることになる。
This gas supply piping system (5) has 8iC4 in a liquid phase,
Bubbling G e Ct4, P OC1z, etc.
Bubbling device 161 for evaporation (7)
+81 is connected and bubbling gas (e.g. 0
The above-mentioned gases evaporated (evaporation temperature: about 250° C.) by □) are sent to the reaction system together with the mixed gas and undergo a predetermined decomposition reaction.

この際、これら各ガスは流量制御器(マスフローコント
ローラ)MFCを介して流量制御される。
At this time, the flow rate of each of these gases is controlled via a flow rate controller (mass flow controller) MFC.

より具体的な例として、上記のごとき原料ガス供給によ
る火炎加水分解反応により肉付CVD法を実施し、その
後のコラブス工程を経て外径12゜5WII+11長さ
40crn1 コア用ガラス径1.211+1%クラッ
ド用ガラス径6.5 mのシングルモード型光ファイバ
用母材をつくった。
As a more specific example, a CVD method is carried out using a flame hydrolysis reaction using the above-mentioned raw material gas supply, followed by a colab process to form a material with an outer diameter of 12°5 WII + 11 length 40 crn1 and a core glass diameter of 1.211 + 1% cladding. A base material for a single-mode optical fiber with a glass diameter of 6.5 m was made.

この際に用いた出発石英管は外径2(1m、肉厚1.5
m+である。
The starting quartz tube used at this time had an outer diameter of 2 (1 m, wall thickness 1.5
It is m+.

また、その石英管内周にはS i C14= 800c
a1m。
Also, on the inner circumference of the quartz tube, S i C14=800c
a1m.

POC10=240CC/m、SF6 =300CC/
−として供給した各原料ガスの反応生成物、すなわちク
ラッド用ガラス酸化物粉末を90回で堆積させ、さらに
その内周にはS ICt4 =300Ca/sj  G
aCl2 =lQQco/jとして供給した各原料ガス
の反応生成物、すなわちコア用ガラス酸化物粉末を5回
で堆積させた。
POC10=240CC/m, SF6=300CC/
The reaction product of each raw material gas supplied as -, that is, the glass oxide powder for cladding, was deposited in 90 times, and further, on the inner circumference, S ICt4 =300Ca/sj G
A reaction product of each raw material gas supplied as aCl2 =lQQco/j, that is, a core glass oxide powder was deposited five times.

なお、上記における反応用バーナ(酸水素炎バーナ)の
移動速度は15crn/mでおる。
In addition, the moving speed of the reaction burner (oxyhydrogen flame burner) in the above is 15 crn/m.

この具体例で製造された光フアイバ用母材を干渉顕微鏡
で測定したところ、クラッド用ガラスの屈折率差は無視
できるほど小さいものでおった。
When the optical fiber base material manufactured in this specific example was measured using an interference microscope, the difference in refractive index of the cladding glass was so small that it could be ignored.

さらに上記母材に石英管をジャケットしてこれを紡糸し
、外径125μmの光ファイバをつくったところ、その
伝1.送特性は第3図のごとく波長13μm帯、1.5
 pm帯においてきわめて良好な状態を示した。
Furthermore, a quartz tube was jacketed on the base material and spun to make an optical fiber with an outer diameter of 125 μm. The transmission characteristics are as shown in Figure 3, wavelength 13μm band, 1.5
It showed extremely good conditions in the pm band.

また問題となった比屈折率差のバラツキも0.01%で
あり、従来の0.1%と比べて桁違いに改善された。
Further, the variation in the relative refractive index difference, which was a problem, was 0.01%, which was an order of magnitude improvement compared to the conventional 0.1%.

以上説明した通り、本発明方法によるときは、光学系ガ
ラス酸化物粉末生成法における弗素のドープ方法が改善
され、所期の目的が達成できた。
As explained above, when using the method of the present invention, the fluorine doping method in the optical glass oxide powder production method was improved, and the intended purpose was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法において混合ガスをつくる際の1例
を示した略示説明図、第2図は上記混合ガスを所定の反
応系へ供給する際の1例を示した略示説明図、第3図は
本発明方法を利用して製造した光ファイバの伝送特性図
である。 (1)・・・・・弗素化合物のボンベ (2)・・・・・他の気体のボンベ (3)・・・・・混合ガスボンベ (5)・・・・・ガス供給配管系
Fig. 1 is a schematic explanatory diagram showing an example of producing a mixed gas in the method of the present invention, and Fig. 2 is a schematic explanatory diagram showing an example of supplying the mixed gas to a predetermined reaction system. , FIG. 3 is a transmission characteristic diagram of an optical fiber manufactured using the method of the present invention. (1)...Fluorine compound cylinder (2)...Other gas cylinder (3)...Mixed gas cylinder (5)...Gas supply piping system

Claims (4)

【特許請求の範囲】[Claims] (1)  気相のガラス原料を火炎加水分解反応または
熱分解反応させることにより光学系ガラス酸化物粉末を
生成する方法において上記ガラス原料の反応系へ気相の
弗素化合物を供給するとき、該弗素化合物を他の気体と
混合して供給することによね、弗素化合物供給量を所望
量に保持しながらその供給ガス量を増量することを特徴
とした光学系ガラス酸化物粉末生成法における弗素のド
ープ方法。
(1) When supplying a gaseous fluorine compound to the reaction system of the glass raw material in a method for producing optical glass oxide powder by subjecting a gaseous glass raw material to a flame hydrolysis reaction or a thermal decomposition reaction, the fluorine compound is Fluorine doping in an optical glass oxide powder production method characterized by increasing the amount of fluorine compound supplied while maintaining it at a desired amount by supplying the compound mixed with another gas. Method.
(2)気相の弗素化合物がSF6、SIFいCF。 のいずれかである特許請求の範囲第1項記載の光学系ガ
ラス酸化物粉末生成法における弗素のドープ方法。
(2) Gas phase fluorine compounds are SF6, SIF and CF. A fluorine doping method in the method for producing optical glass oxide powder according to claim 1, which is any one of the following.
(3)  気相の弗素化合物と混合した他の気体が高純
度の酸素である特許請求の範囲第1項記載の光学系ガラ
ス酸化物粉末生成法における弗素のドープ方法。
(3) The fluorine doping method in the method for producing optical glass oxide powder according to claim 1, wherein the other gas mixed with the gaseous fluorine compound is high-purity oxygen.
(4)  気相の弗素化合物とこれに混合した他の気体
とからなる混合ガスの供給ガス量が10cc / si
p以上である特許請求の範囲第1項記載の光学系ガラス
酸化物粉末生成法における弗素のドープ方法。
(4) The amount of supplied gas of a mixed gas consisting of a gas phase fluorine compound and other gases mixed therein is 10 cc/si.
A method for doping fluorine in an optical system glass oxide powder production method according to claim 1, wherein the fluorine doping method is at least p.
JP7634582A 1982-05-07 1982-05-07 Method for doping fluorine in formation of oxide powder for optical glass Pending JPS58199732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7634582A JPS58199732A (en) 1982-05-07 1982-05-07 Method for doping fluorine in formation of oxide powder for optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7634582A JPS58199732A (en) 1982-05-07 1982-05-07 Method for doping fluorine in formation of oxide powder for optical glass

Publications (1)

Publication Number Publication Date
JPS58199732A true JPS58199732A (en) 1983-11-21

Family

ID=13602764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7634582A Pending JPS58199732A (en) 1982-05-07 1982-05-07 Method for doping fluorine in formation of oxide powder for optical glass

Country Status (1)

Country Link
JP (1) JPS58199732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227739A (en) * 1983-05-21 1984-12-21 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Manufacture of optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227739A (en) * 1983-05-21 1984-12-21 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Manufacture of optical fiber
JPH0476936B2 (en) * 1983-05-21 1992-12-07 Fuiritsupusu Furuuiranpenfuaburiken Nv

Similar Documents

Publication Publication Date Title
US4468413A (en) Method of manufacturing fluorine-doped optical fibers
US4221825A (en) Continuous production of synthetic silica doped with fluorine
EP0888398A1 (en) Germanium doped silica forming feedstock and method
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
CA2288769A1 (en) Germanium chloride and siloxane feedstock for forming silica glass and method
US20020162359A1 (en) Method and feedstock for making silica
JPS58199732A (en) Method for doping fluorine in formation of oxide powder for optical glass
JP2000191336A (en) Production of optical fiber preform and production of optical fiber
DK167463B1 (en) PROCEDURE FOR PREPARING A PRIOR STAGE TO AN OPTICAL FIBER
JPH0525818B2 (en)
EP0415341B1 (en) Method for producing porous glass preform for optical fiber
JP2831842B2 (en) Manufacturing method of optical fiber base material
JPH0460930B2 (en)
JPS6144725A (en) Method of treating quartz porous glass layer
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPH05105466A (en) Production of base material for optical fiber
JP2000063147A (en) Optical fiber preform and its production
JPS6144821B2 (en)
JPS5925738B2 (en) Optical glass fiber manufacturing method
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPH06219765A (en) Production of preform for optical fiber
JPS6150888B2 (en)
JP2000327360A (en) Production of optical fiber preform
JPS63129032A (en) Manufacture of glass doped with fluorine
JPS60231432A (en) Manufacture of quartz series optical fiber base material