JPS58199728A - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JPS58199728A
JPS58199728A JP8378182A JP8378182A JPS58199728A JP S58199728 A JPS58199728 A JP S58199728A JP 8378182 A JP8378182 A JP 8378182A JP 8378182 A JP8378182 A JP 8378182A JP S58199728 A JPS58199728 A JP S58199728A
Authority
JP
Japan
Prior art keywords
glass
tank
melting
bubbles
defoaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8378182A
Other languages
Japanese (ja)
Other versions
JPS6031772B2 (en
Inventor
Moriya Suzuki
鈴木 守也
Kinnosuke Nagaoka
欣之介 長岡
Michio Uetsuki
植月 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8378182A priority Critical patent/JPS6031772B2/en
Publication of JPS58199728A publication Critical patent/JPS58199728A/en
Publication of JPS6031772B2 publication Critical patent/JPS6031772B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2356Submerged heating, e.g. by using heat pipes, hot gas or submerged combustion burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/20Submerged gas heating
    • C03B2211/22Submerged gas heating by direct combustion in the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To eliminate hindrance to the continuous operation of a glass melting furnace and to further refine glass by installing a submerged combustion burner to remove bubbles formed in molten glass. CONSTITUTION:This glass melting furnace is composed of a melting vessel 1, a bubble removing vessel 2, a refining vessel 3 and a glass discharge section 4 arranged in the order. The partition wall 24 between the vessels 1, 2 is provided with a passage 25 for molten glass in the vicinity of the surface of the molten glass, and the partition wall 22 between the vessels 2, 3 is provided with a passage 23 for molten glass close to the bottoms of the vessels. A submerged combustion burner 17 is installed in the vessel 1. When town gas and air are fed to the burner 17 and burned, bubbles formed in molten glass in the vessel 1 are fine, the surface of the molten glass rises slightly, and bubbles are scarcely observed in the vessel 3.

Description

【発明の詳細な説明】 本発明はガラス溶融炉に関し、より詳細には液中燃焼バ
ーナの使用によって発生する溶融ガラス中の気泡を脱泡
して連続運転におよばず障害を排除し、ガラスをより清
澄できる・ようKしたガラス溶融炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass melting furnace, and more particularly to a glass melting furnace, which defoames bubbles in molten glass generated by the use of a submerged combustion burner, eliminates trouble during continuous operation, and melts glass. This invention relates to a glass melting furnace that allows for better clarity.

従来、ガラス原料を溶融してガラスを製造するにあたっ
て線、主としてガラス溶融タンク炉が用いられている。
BACKGROUND ART Conventionally, wires, mainly glass melting tank furnaces, have been used to melt glass raw materials to produce glass.

このガラス溶融炉は、糖1図に示すように通常、ガラス
原料を溶−してガラスとする丸めの溶融槽1と、溶融ガ
ラスの清澄を行なう清澄11b(退部、作業槽と呼げれ
ることが多い)と、清澄を終えた溶融ガラスを成形に適
する温度に調整するフオハースCとから構成され、溶融
槽と清澄槽とはその底部近傍でスロートと呼はれる一種
の連通管dで連絡されている。そして通常、各楕とも下
部に溶融ガラスが保持され、上部はガラス加熱用の燃料
の燃焼室になっている。
As shown in Fig. 1, this glass melting furnace usually consists of a round melting tank 1 that melts glass raw materials to make glass, and a refining tank 11b (also called a working tank) that refines the molten glass. The melting tank and the fining tank are connected by a type of communication pipe d called a throat near the bottom of the tank. has been done. Usually, the lower part of each oval holds molten glass, and the upper part is a combustion chamber for fuel for heating the glass.

かかるガラス溶融タンク炉では、溶融槽aの温度はカラ
スの種類によって多少相違するが、一般には1500〜
1600’Cの温度が必要であり、この温度は溶融槽a
の上部に設けた燃焼室eで燃料、主として重油の燃焼に
よって得られている。つまり、ガラスは間接加熱によっ
て溶融されることになセ、従って炉の熱効率が著ゐル1
低い欠点があった。
In such a glass melting tank furnace, the temperature of the melting tank a varies somewhat depending on the type of glass, but generally it is between 1500 and
A temperature of 1600'C is required, and this temperature is
Fuel is obtained by burning fuel, mainly heavy oil, in a combustion chamber e provided at the top of the engine. In other words, the glass must be melted by indirect heating, so the thermal efficiency of the furnace is extremely high.
There was a low drawback.

そこで、熱効率を向上させるために、ガラス填料を1接
加熱して溶融せしめる液中燃焼方式が提案されている。
Therefore, in order to improve thermal efficiency, a submerged combustion method has been proposed in which the glass filler is heated directly and melted.

液中燃焼方式とけ、バーナで得られた炎、またFi高温
の燃焼ガスをガラス融液内に直接噴出させて加熱するも
のであり、、ガラス溶融槽の加熱に液中燃焼バーナを使
用した場合、熱効率の′向上、および燃焼ガスの溶融ガ
ラス内部の浮上に伴なう攪拌効果の向上があり、投入し
たガラで睡る。
The submerged combustion method heats the glass melt by injecting the flame obtained by the burner and the high-temperature combustion gas directly into the glass melt.When a submerged combustion burner is used to heat the glass melting tank. There is an improvement in thermal efficiency and an improvement in the stirring effect due to the floating of the combustion gas inside the molten glass.

しかしながら溶融中のガラスは粘度があるため、高温の
燃焼ガスが溶融ガラス液、itiに達したときに大きな
気泡となって破裂し、破裂時に小さな多数の泡を発生す
る。また、投入したガラス原料が、必ずしも十分に分解
し九のち酸化物の形になってから溶融ガラス中に入ると
1ilslJら   ゛ないことから分解不十分の原料
から分解ガスが発生しガラス中に泡を形成する。かかる
、?11IIの量、大きさは、ガラス粘度、溶融ガラス
中に直接吹き込まれる燃焼ガス量、燃焼ガスによる溶融
ガラス液表面における大形気泡の破裂回数などによって
かなりの変化がある。
However, since molten glass has viscosity, when the high-temperature combustion gas reaches the molten glass liquid, it bursts into large bubbles, generating many small bubbles at the time of bursting. In addition, if the glass raw materials that have been introduced do not necessarily fully decompose and become oxides before entering the molten glass, cracked gas will be generated from the raw materials that are not fully decomposed, and bubbles will form in the glass. form. Does it take? The amount and size of 11II vary considerably depending on the viscosity of the glass, the amount of combustion gas directly blown into the molten glass, the number of bursts of large bubbles on the surface of the molten glass caused by the combustion gas, and other factors.

このようにして発生した泡は、時間が経過すると一部消
失するが、気泡の発生と消失のバランスが崩れて、気、
、泡発生割合の方が多くなると、溶#iI僧内のガラス
液面は泡立って次第に上列し、連続運転が不可能になる
欠点がある。また、実用ガラスでは、ある程度以下に除
泡しておく必要があるが、液中燃焼バーナによる泡は、
通常のガラス溶融によりて発生する泡とは、上述のよう
に泡の発生厚層が異なるので、通常の惰筐法では除泡が
不完全であシ、液中燃焼方式に適し九除泡法の一発が費
望されていた。
Some of the bubbles generated in this way disappear over time, but the balance between the generation and disappearance of bubbles is disrupted, and air,
If the bubble generation rate increases, the glass liquid level in the molten metal will bubble and gradually rise to the top, making continuous operation impossible. In addition, for practical glass, it is necessary to remove bubbles to a certain level, but bubbles caused by submerged combustion burners are
As mentioned above, the bubbles generated by normal glass melting differ in the thickness of the bubble formation layer, so the normal inertia method does not completely remove the bubbles, so the bubble removal method is suitable for the submerged combustion method. One shot was expected.

そこで本発明は、かかる塊状にかんがみなされえもので
4)り、液中燃焼バーナを便用してガラス溶融炉の加熱
効率を高めると共に、敵中燃焼バーナの使用にともなう
?1i1を十分く脱泡して清澄なガラスを得ることがで
き、かり溶融槽に2ける泡の発生にもとづくガラス液面
の上昇を防止して、連続運転をすることができるなどの
特長を壱するものである。
Therefore, the present invention can be considered in consideration of such lumps (4), and improves the heating efficiency of a glass melting furnace by conveniently using a submerged combustion burner, as well as by using a submerged combustion burner. It has the following features: it can sufficiently degas 1i1 to obtain clear glass, prevent the glass liquid level from rising due to the generation of bubbles in the melting tank, and enable continuous operation. It is something to do.

すなわち本発明のガラス溶融炉は、溶融槽と、脱泡槽と
、清澄槽と、ガラス流・上部とをこの順に配設し、前記
溶融槽と前記脱泡槽との間の隔―には溶融ガラスの液面
近傍に溶融ガラスの流路を形成し、更に喧記脱泡檜と前
記清澄槽との閣の隔壷には槽底部近傍に溶融ガラスの流
路を設けると共に、前記m融檜には液中燃焼バーナを取
付けたことを特徴とするものである。
That is, in the glass melting furnace of the present invention, a melting tank, a defoaming tank, a clarification tank, and a glass flow/upper part are arranged in this order, and the gap between the melting tank and the defoaming tank is A flow path for the molten glass is formed near the liquid surface of the molten glass, and a flow path for the molten glass is provided near the bottom of the tank in the partition between the defoaming hinoki and the clarification tank. It is characterized by a submerged combustion burner attached to the cypress wood.

以下、本発明を図面に示した実施例に本とづ!餅明する
The following is an example of the present invention shown in the drawings. I'll clear the rice cake.

第2図は本発明のガラス溶融炉の構造を示す断面図であ
゛す、第3図は本発明に用いる液中溶焼バーナの設置状
態を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of the glass melting furnace of the present invention, and FIG. 3 is a cross-sectional view showing the installed state of the submerged melting burner used in the present invention.

第2図に示すよう□に、本発明のガラス溶融炉Gは耐火
材で周囲を覆われた溶融槽1と、これに順次隣接して夫
々配設した脱泡槽2.清#槽6およびガラス流出部4と
から構成されている。
As shown in FIG. 2, the glass melting furnace G of the present invention includes a melting tank 1 surrounded by a refractory material, and defoaming tanks 2 and 2 disposed adjacent to the melting tank 1, respectively. It consists of a clearing tank 6 and a glass outflow section 4.

溶融槽1と脱泡槽2との間には耐火材による間仕切り2
4が設けられ、この間仕切り24には溶融ガラス液面の
近傍に、溶融槽1と脱泡槽2を連結する溶融ガラス流路
のスロート25が形成されている。ここでガラス液面の
近傍とは、スロート25が一部分ガラス液中に没してい
る状態、あるいはガラス液面に近いガラス液中にスロー
ト25が完全に没している状態を意味する。
A partition 2 made of fireproof material is provided between the melting tank 1 and the degassing tank 2.
A throat 25 of a molten glass flow path connecting the melting tank 1 and the defoaming tank 2 is formed in the partition 24 near the molten glass liquid surface. Here, near the glass liquid level means a state in which the throat 25 is partially submerged in the glass liquid, or a state in which the throat 25 is completely submerged in the glass liquid near the glass liquid level.

一方、脱泡槽2と清溌槽6との間にも耐火材による間仕
切り22が設けられ、この間仕切り22の底部近傍には
、脱泡槽2と清澄槽6を連結するスロート23が形成し
である。また、清澄槽6とガラス流出部4との間も、同
様に耐人材間仕切り26が形成され、その底部にはスロ
ート27が設けてあり、またガラス流出部4の底部には
ガラス流出口18が形成されている。
On the other hand, a partition 22 made of fireproof material is also provided between the defoaming tank 2 and the clarifying tank 6, and a throat 23 connecting the defoaming tank 2 and the clarifying tank 6 is formed near the bottom of this partition 22. It is. Furthermore, a human-resistant partition 26 is similarly formed between the clarification tank 6 and the glass outflow section 4, and a throat 27 is provided at the bottom of the partition 26, and a glass outflow port 18 is provided at the bottom of the glass outflow section 4. It is formed.

また、6槽1.2,5.4の上部空間には、間接加熱装
置5,6,7.8.熱電対9.10.11.12゜およ
び空気排出口28 、29 、30 、51が夫々設け
られており、ま九溶融ガラス中に位置する熱電対15 
、14 、15および16が夫々設けられている。
Further, in the upper space of the six tanks 1.2, 5.4, indirect heating devices 5, 6, 7.8. Thermocouples 9, 10, 11, 12° and air outlets 28, 29, 30, 51 are provided, respectively, and the thermocouples 15 located in the molten glass are
, 14, 15 and 16 are provided, respectively.

一方、溶融槽1には、液中燃焼バーナ17が装着されて
おり、かつ溶融′!f41と脱泡槽2の溶融ガラス中に
は一対の加熱用電極21.20が夫々設けられ、更に溶
融槽1にはガラス原料投入口19が形成されている。
On the other hand, the melting tank 1 is equipped with a submerged combustion burner 17, and the melting tank 1 is equipped with a submerged combustion burner 17. A pair of heating electrodes 21 and 20 are provided in the molten glass of f41 and the defoaming tank 2, respectively, and a glass raw material inlet 19 is formed in the melting tank 1.

間接加熱II慣5,6.7.8+□1iJl、たとえば
供給された都市ガスを燃焼させて、6槽を予熱し、tf
tか轡(鳴→1また加熱用電極21 、20 、も溶融
ガラスの温度維持を目的とし、これら間接加熱装置およ
び11極は設けなくとも良いが、脱泡槽の泡切れ効果を
促進し、連続運転の条件範囲を拡大するためには設置す
ることが好ましい。
Indirect heating II customary 5,6.7.8 + □1iJl, for example, by burning the supplied city gas, preheat the 6 tanks, tf
The heating electrodes 21 and 20 are also used for the purpose of maintaining the temperature of the molten glass, and although it is not necessary to provide these indirect heating devices and the 11 poles, they promote the bubble breaking effect of the defoaming tank, It is preferable to install one in order to expand the range of conditions for continuous operation.

溶融槽1に使用する液中燃焼バーナ17は、従来から使
用されている穐々のタイプのものを適宜、使用すること
ができ、たとえば第3図に示すように、ガラス溶融面3
2 K対して、はは45′の角度で設置し、燃焼ガス吹
出部レンガろ6はAltOs −zrot −s to
w系の電鋳品が用いられる。
The submerged combustion burner 17 used in the melting tank 1 can be of the conventionally used type, as appropriate. For example, as shown in FIG.
2K, the combustion gas outlet brick gutter 6 is installed at an angle of 45' to AltOs -zrot -s to
W-based electroformed products are used.

バーナ17の使用燃料も、特に限定されるものではなく
、たとえば4,500 ”’/p4−の都市ガスを圧縮
装置によって約1 ”/ci tで昇圧して使用するこ
とができる。
The fuel used in the burner 17 is not particularly limited either, and for example, city gas of 4,500 ''/p4- can be used after being pressurized by a compressor to about 1''/cit.

かかる本発明のガラス溶融炉は、たとえば下記のように
して操作される。まず、間接加熱バーナ5.6,7.8
によって炉内部を予め昇温す゛べく、4566 &cs
l/、、@の都市ガスを夫々29.5 ””>hr 。
The glass melting furnace of the present invention is operated, for example, as follows. First, indirect heating burner 5.6, 7.8
4566 &cs in order to preheat the inside of the furnace by
l/,, @ city gas each for 29.5 ''>hr.

10.3 ”/hr l ts、 ONrrL/hr 
+および6J N”/hrで送入し、空気比が1対1で
燃焼させた。1+、前もって重量−でSIO,70% 
、 NatO17,7% 、  CaO9,45に、A
t鵞Om2.4%、およびA1.O,α511の組成を
持つ市販品粒状原料を、別の炉で溶融しておき、カレン
トとして6槽に所定の高さまで投入した。熱電対9 、
10 、11および12で測定し良溶融横1、脱泡槽2
、清澄槽6およびガラス流出部4の上部空間の雰囲気温
度は夫々1,425℃。
10.3”/hr lts, ONrrL/hr
+ and 6J N”/hr and burned with an air ratio of 1:1. 1+, SIO at pre-weight -, 70%
, NatO17.7%, CaO9.45, A
tOm2.4%, and A1. A commercially available granular raw material having a composition of O, α511 was melted in a separate furnace and charged as current into six tanks to a predetermined height. thermocouple 9,
10, 11 and 12, good melting side 1, defoaming tank 2
, the atmospheric temperature in the upper space of the clarification tank 6 and the glass outflow section 4 is 1,425°C, respectively.

1.350℃、 1,420℃、および1,345℃で
あった。
The temperatures were 1.350°C, 1,420°C, and 1,345°C.

また、熱電対1M、14.および15で測定し九ガラス
温度は夫々、1,265℃、  1,200℃、 1,
350℃であった。更に、間接加熱バーナ6への都市ガ
ス供給量を変えずに、脱泡槽2の加熱用電極20へl0
KWの電力を供給し九とき、脱泡槽2の雰囲気温度は1
,420℃、ガラス温度a 1,300℃に上昇した。
Also, thermocouple 1M, 14. The nine glass temperatures measured at 15 and 1,265℃, 1,200℃, and 1, respectively.
The temperature was 350°C. Furthermore, without changing the amount of city gas supplied to the indirect heating burner 6, l0 is supplied to the heating electrode 20 of the defoaming tank 2.
When the KW power is supplied, the atmospheric temperature of the defoaming tank 2 is 1.
, 420°C, and the glass temperature a rose to 1,300°C.

次いでこの状態で溶融槽1に装備し喪液中燃焼バーナ1
7に9 ”/hrの都市ガスと空気を供給し、空気比1
対1で燃焼させて燃焼ガスを吹き込んだ。ま良問時に溶
融vI!J1の間接加熱バーナ50都市ガス量を29.
5 N’/hrから20.5 N”>hr K減少させ
喪。液中バーナ17からの燃焼ガスの吹き込みにつれて
、溶融槽1の溶融ガラス中には泡の発生が見られたが、
気泡は小型であり、溶泡は観察できなかつ九、原料ガラ
ス投入口19から、  xoKI/hrの割合いで原料
ガラスを連続投入したが、安定した連続運転が可能であ
シ、清澄槽6では泡の存在はほとんど見られなかった。
Next, in this state, the melting tank 1 is equipped with the combustion burner 1 in the mourning liquid.
7 to 9”/hr of city gas and air, with an air ratio of 1
They were burned at a ratio of 1 to 1 and combustion gas was blown into them. Melting vI when asking questions! J1 indirect heating burner 50 city gas amount 29.
5 N'/hr to 20.5 N''>hr K was decreased.As combustion gas was blown from the submerged burner 17, bubbles were observed in the molten glass in the melting tank 1,
The bubbles were small and no molten bubbles could be observed.Although raw glass was continuously introduced from the raw glass inlet 19 at a rate of xoKI/hr, stable continuous operation was not possible, and no bubbles were observed in the clarification tank 6. was hardly seen.

なお、原料ガラスの連続投入量を30 ’f/hrに増
量したとき、溶融槽1のガラス液面はかなり上昇し、a
oK9/hrの投入量が連続運転可能な限界量と判断さ
れた。しかし、この場合でもガラス流出口18で得たガ
ラス中には#1とんど泡は背められなかった。しかし脱
泡槽の電極20への電力投入をやめたとき、10 Kf
/hrの原料投入の状態でガラス温度は1,190℃ま
で低下し、清澄槽δで得られたガラスには泡の存在が認
められた。養左;また、30Kg/hrの原料投入の状
態では、1.172)℃まで低下し、 ガラス温度が上
昇する傾この状態で間接加熱バーナ6の都市ガス使用量
を15 N’/hrに増加し、空気比1:1で燃焼し九
Note that when the continuous feed rate of raw glass was increased to 30'f/hr, the glass liquid level in melting tank 1 rose considerably, and a
The input amount of oK9/hr was determined to be the limit amount that allows continuous operation. However, even in this case, almost no #1 bubbles were left in the glass obtained from the glass outlet 18. However, when the power supply to the electrode 20 of the defoaming tank was stopped, 10 Kf
The glass temperature decreased to 1,190° C. with raw material input of /hr, and the presence of bubbles was observed in the glass obtained in the refining tank δ. Also, in the state of raw material input of 30Kg/hr, the temperature drops to 1.172)℃, and in the state where the glass temperature is rising, the amount of town gas used by indirect heating burner 6 is increased to 15N'/hr. It burns at an air-to-air ratio of 1:1.

これKよって雰囲気温度は1,500℃まで上昇したが
、ガラス温度はいずれの原料投入量でも、わずかに10
へ20℃上昇しただけで清澄槽6で得られえガラスの泡
の状IIIFi変わらなかつ九。
This K caused the atmospheric temperature to rise to 1,500°C, but the glass temperature was only 10°C regardless of the amount of raw material input.
The glass bubble shape obtained in clarifier 6 remains unchanged by increasing the temperature by only 20°C.

かかる本発明による溶融ガラスの脱泡効果は、下記理由
による亀のと考えられる。
The defoaming effect of molten glass according to the present invention is considered to be due to the following reasons.

すなわち、溶融槽1の溶融ガラス液面に発生した泡は、
スロート25を介して脱泡11F2に移行し、比重の関
係で脱泡槽2のガラス液面にだけ集合する。加えて溶融
槽1内には液中燃焼バーナ17からの燃焼ガス吹込みに
よゐ大きな対流があるが、溶融槽1内の泡をl゛多量含
むガラスは、スロート25がガラス液面近傍に設けられ
ているので、脱泡槽2の中部、下部に直接移行せず、脱
泡槽2における脱泡、清澄作用が妨害されることはない
In other words, the bubbles generated on the molten glass liquid surface in the melting tank 1 are
It moves to the defoaming 11F2 via the throat 25 and collects only on the glass liquid surface of the defoaming tank 2 due to its specific gravity. In addition, there is a large convection in the melting tank 1 due to the injection of combustion gas from the submerged combustion burner 17, but the glass containing a large amount of bubbles in the melting tank 1 has a throat 25 near the glass liquid surface. Since it is provided, it does not directly migrate to the middle or lower part of the defoaming tank 2, and the defoaming and clarification actions in the defoaming tank 2 are not obstructed.

しかし、連続運転が進行するKつれて、脱泡槽2のガラ
ス液表面は、泡を多量に含むガラス層で覆われ、かつ泡
による断熱効果によって間接加熱バーナ6によるガラス
温度の上昇が妨害されやすくなり、脱泡槽2における脱
泡効果が低下する傾向を生ずる。そこで脱泡槽2に間接
加熱装置16以外に直接加熱用の電極20が設けてあれ
ば、脱泡槽2のガラス温度を極めて効率良く上昇するこ
とができ、泡切れが促進されると共に、泡切れを終え九
ガラスだけが槽下部に移行し、ス四−) 25から清澄
槽6に送染込まれるようKなる。
However, as the continuous operation progresses, the surface of the glass liquid in the degassing tank 2 becomes covered with a glass layer containing a large amount of bubbles, and the heat insulating effect of the bubbles prevents the indirect heating burner 6 from increasing the glass temperature. This tends to reduce the defoaming effect in the defoaming tank 2. Therefore, if the defoaming tank 2 is provided with an electrode 20 for direct heating in addition to the indirect heating device 16, the glass temperature of the defoaming tank 2 can be raised extremely efficiently, the removal of bubbles is promoted, and the bubbles are removed. After cutting, only the 9 glasses move to the lower part of the tank and are sent to the clarification tank 6 from 4-25.

Kは、下記のような効果が認められた。K had the following effects.

!を10!whrの割合いで投入したとKK比較して、
約40℃低下し、従って泡切れが愚くな9、溶融槽1内
のガラス中の泡が増加し、ガラス液面は次第に高くなり
、ガラス原料の連続投入が困−になる、しかし、電極2
1に、たとえば約10KWの電力を供給したとζろ、溶
融槽1内には液中燃焼バーナ17による燃焼ガスの浮上
、泡26の浮上による大きな対流があるにもかかわらず
、安定して電力を供給することができ、溶融柚1内のガ
ラス温度は約50℃上昇し、ガラス液面は10KVhr
の原料投入時の状11tC復帰した。清澄槽6で採取し
たガラスの泡の状態は、電極21を使用せずに10拘ン
’hrの原料を連続投入した時と同様であった。また、
電&21を使用せずに、液中燃焼バーナ17への都市ガ
ス供給量を9N″/hrから11 NWL/hr K増
大せしめて、電極21かもの熱量に相幽する熱量を増加
せしめ九が、ガラス温度上昇は、10℃にすぎなかった
。更に電1121を使用する代シに、液中燃焼バーナ1
7への都市ガス供給量9 N”/hr において、間接
加熱バーナ5への都市ガス供給量を2αB ”/hrか
ら22.5 N’/hr K増加させたが、ガラス温度
の上昇は見られなかった。これらのことから、ガラス温
度の上昇に及はす電力供給効果は大きく、この効果線溶
融ガラス中の泡に無関係に昇温することができるためと
考えられる。
! 10! Comparing KK with input at the rate of whr,
The temperature decreases by about 40°C, which makes it difficult to break out the bubbles9.The number of bubbles in the glass in the melting tank 1 increases, and the glass liquid level gradually rises, making it difficult to continuously feed glass raw materials. 2
For example, when approximately 10 KW of power is supplied to the melting tank 1, even though there is a large convection in the melting tank 1 due to the floating of combustion gas by the submerged combustion burner 17 and the floating of bubbles 26, the power is stably supplied. can be supplied, the glass temperature in the molten yuzu 1 rises by about 50℃, and the glass liquid level increases by 10KVhr.
The temperature returned to 11tC when the raw materials were added. The condition of the glass bubbles collected in the clarifying tank 6 was the same as when the raw material was continuously fed for 10 hours without using the electrode 21. Also,
The amount of city gas supplied to the submerged combustion burner 17 is increased from 9 N''/hr to 11 NWL/hr K without using the electric power & 21, and the amount of heat transferred to the electrode 21 is increased. The glass temperature rise was only 10°C.Furthermore, instead of using the electric 1121, a submerged combustion burner 1 was used.
At a city gas supply rate of 9 N''/hr to indirect heating burner 5, the city gas supply rate to indirect heating burner 5 was increased from 2αB''/hr to 22.5 N'/hr K, but no increase in glass temperature was observed. There wasn't. From these facts, it is thought that the power supply effect on increasing the glass temperature is large, and the temperature can be increased regardless of the bubbles in the molten glass.

次に上述した本発明に対する比較実施例1として、@1
図において脱泡槽2を設けず、溶融槽1と、清澄槽6お
よびガラス流出部4のみからなシ、溶融槽1と清澄槽6
との間にはスロート26を設けたガラス溶融炉を用いて
溶融槽1に1 電極鯵を使用しなかつ良風外は上記と同一条件で操作し
た。しかし、溶融槽1には、液中燃焼バーナの作動開始
につれて泡が発生し、ガラス液面は次第に上昇した。し
かも溶融槽1からのガラスは清澄槽6およびガラス流出
部4にはほとんど移動しなかった。原料ガラスを10に
4!/hrの割合いで連続投入し九が、溶融槽1内の泡
の増加、およびガラス液面の増加は着春しく、鴫ラス液
面は遂には間接加熱バーナ5のタイル下面Ktで達し、
操作を中止せざるを得なかった。
Next, as a comparative example 1 for the present invention described above, @1
In the figure, the defoaming tank 2 is not provided, and only the melting tank 1, the clarification tank 6, and the glass outflow part 4 are shown.
A glass melting furnace with a throat 26 provided between the melting tank 1 and the melting tank 1 was operated under the same conditions as above except that no electrode was used and the outside was clean. However, bubbles were generated in the melting tank 1 as the submerged combustion burner started operating, and the glass liquid level gradually rose. Moreover, almost no glass from the melting tank 1 moved to the fining tank 6 and the glass outflow section 4. Raw material glass 4 to 10! After continuous injection at a rate of /hr, the number of bubbles in the melting tank 1 and the glass liquid level began to increase, and the glass liquid level finally reached the bottom surface of the tile Kt of the indirect heating burner 5.
We had no choice but to cancel the operation.

のガラ黒部炭は1,200℃Ktで低下し九。Garakurobe coal of 1,200℃Kt decreases.9.

また比較例2として、比較例1と同様の構造のガラス溶
融炉において、溶融槽1と清澄槽るとの間の間仕切シに
はガラス面近傍にスロート25を設け、同様に操作した
。液中燃焼バーナ17の作動によって、溶融槽1のガラ
ス面紘泡によって少し^くなつ九が、スロート25を通
りで泡の多いガラスが清澄槽6に移行し、この泡の多の
割合いで、連続投入したが、溶融槽1のガラス面には大
きな変化は見られなかったが、ガラ脱泡槽2を役けない
ことによってスロートの位置を変えたKもかかわらず、
消:1泡かはとんど行なわれない11に、かつ投入原料
の溶融が不十分の1まで溶融槽1から清澄槽6に直接、
ガラスが運ばれ良ものと考えられる。
Further, as Comparative Example 2, in a glass melting furnace having the same structure as Comparative Example 1, a throat 25 was provided in the partition between the melting tank 1 and the fining tank near the glass surface, and the same operation was performed. Due to the operation of the submerged combustion burner 17, a small amount of bubbles are generated on the glass surface of the melting tank 1, and the glass with many bubbles passes through the throat 25 and is transferred to the clarification tank 6, and a large proportion of the bubbles is Despite continuous injection, no major changes were observed in the glass surface of melting tank 1, although K changed the throat position by not using glass defoaming tank 2.
Extinguishing: Directly from melting tank 1 to clarification tank 6 until 11, when 1 bubble is rarely carried out, and 1 when the input raw material is insufficiently melted.
Glass is considered to be a good item.

以上述べたように、本発明のガラス溶墜炉によれば、溶
融槽と清澄槽との間に脱泡槽を設け、溶融槽と脱泡槽と
の間の隔aKは、溶−ガラスの液面近傍に溶融ガラスの
流路を形成し、一方、脱泡槽と清澄槽との間の隔壁にF
i横横部部近傍溶融ガラスの通路を設けたので、溶融槽
のガラス液面で発生した泡は、優先的に脱泡槽に移行し
、かつ脱泡槽では、比重差によって泡はガラス液面に移
行し、泡の少ない清澄なガラスのみを清澄槽に取り出す
ことができる。また溶融槽において泡によるガラス液面
の上昇が抑制さtする。したがって、溶融槽で液中燃焼
バーナを使用しても従来のようなガラス中への泡の混入
を極力抑制することができ、泡の少ない優れた品質のガ
ラスを得ることができる。更に本顯明では溶融槽で液中
燃焼バーナを使用するので、炉の熱効率を著るしく高め
ることができ、かつ−F述のように溶融槽における泡に
よるガラス液面の上昇を防止して連続運転をすることが
できる。
As described above, according to the glass melting furnace of the present invention, a defoaming tank is provided between the melting tank and the clarifying tank, and the distance aK between the melting tank and the defoaming tank is A flow path for the molten glass is formed near the liquid surface, while an F
i Since we have provided a passage for the molten glass near the lateral parts, bubbles generated on the glass surface of the melting tank will preferentially move to the defoaming tank, and in the defoaming tank, the bubbles will be removed from the glass liquid due to the difference in specific gravity. Only clear glass with few bubbles can be taken out to the fining tank. Further, the rise in the glass liquid level due to bubbles in the melting tank is suppressed. Therefore, even if a submerged combustion burner is used in the melting tank, it is possible to suppress the incorporation of bubbles into the glass as much as possible, unlike in the conventional case, and it is possible to obtain glass of excellent quality with few bubbles. Furthermore, since Honkenmei uses a submerged combustion burner in the melting tank, it is possible to significantly increase the thermal efficiency of the furnace, and as mentioned in -F, it is possible to prevent the glass liquid level from rising due to bubbles in the melting tank. Can drive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガラス溶融炉を示す断面構成図、第2図
り本発明の実施例の概要を示す断面図、第3図は本発明
における液中燃焼バーナの設置状況を示す断面図である
。 1・・・溶M轡、2・・・脱泡槽、6・・・清澄槽、4
・・・ガラス流出部、17・・・液中燃焼バーナ、22
 、24・・・隔壁、23 、25・・・溶融ガラス流
路。 特許出願人  工業技術院長   石 坂 誠 −指定
代理人  工業技術院大阪工業技術試験所長内藤−男
FIG. 1 is a cross-sectional configuration diagram showing a conventional glass melting furnace, FIG. 2 is a cross-sectional diagram showing an outline of an embodiment of the present invention, and FIG. 3 is a cross-sectional diagram showing the installation situation of a submerged combustion burner in the present invention. . 1... Melting tank, 2... Defoaming tank, 6... Clarifying tank, 4
... Glass outflow section, 17 ... Submerged combustion burner, 22
, 24... Partition wall, 23, 25... Molten glass channel. Patent applicant: Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Designated agent: Naito, Director of the Osaka Institute of Industrial Science and Technology, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 1、 溶融槽と、脱泡槽と、清澄槽と、ガラス流出部と
をこの順に配設し、前記溶融槽と前記脱泡槽との間の隔
壁に祉溶融ガラスの液面近傍に溶融ガラスの流路を形成
し、更に前記脱泡槽は沿中燃焼バーナを取付けたことを
特徴とするガラス溶融炉。 2 溶融槽にガラスを直接加熱すべき加熱用電電を設け
た前記特許請求の範囲第1項記載のガラス溶脚炉。 λ 脱泡槽の上部空間にガラスの間接加熱装阪を設は喪
前記特許請求の範囲第1項!載のガラス溶融炉。 4、 脱泡W4にガラスを直接加熱すべき電極を設は良
前記特許請求の範vI!UM1項記載のガラス溶融炉。 翫 脱泡槽にガラスをIll加熱すべき電極と、上部空
間にガラスの間接加熱装量を設けた前記特許請求の範囲
第1項記載のガラス、溶融炉。
[Claims] 1. A melting tank, a defoaming tank, a clarifying tank, and a glass outlet are arranged in this order, and a partition wall between the melting tank and the defoaming tank is provided with a glass melting tank. 1. A glass melting furnace, characterized in that a flow path for molten glass is formed near the liquid surface, and the defoaming tank is further equipped with a mid-stream combustion burner. 2. The glass melting furnace according to claim 1, wherein the melting tank is provided with a heating electric current for directly heating the glass. λ A glass indirect heating system is not provided in the upper space of the defoaming tank, as described in Claim 1 above! Glass melting furnace. 4. The defoaming W4 is provided with an electrode that directly heats the glass. The glass melting furnace described in UM1. The glass melting furnace according to claim 1, wherein the defoaming tank is provided with an electrode for heating the glass, and the upper space is provided with an indirect heating device for the glass.
JP8378182A 1982-05-17 1982-05-17 glass melting furnace Expired JPS6031772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8378182A JPS6031772B2 (en) 1982-05-17 1982-05-17 glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8378182A JPS6031772B2 (en) 1982-05-17 1982-05-17 glass melting furnace

Publications (2)

Publication Number Publication Date
JPS58199728A true JPS58199728A (en) 1983-11-21
JPS6031772B2 JPS6031772B2 (en) 1985-07-24

Family

ID=13812161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8378182A Expired JPS6031772B2 (en) 1982-05-17 1982-05-17 glass melting furnace

Country Status (1)

Country Link
JP (1) JPS6031772B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171226A (en) * 1984-01-28 1985-09-04 Asahi Glass Co Ltd Melting method of glass and melting furnace
FR2843107A1 (en) * 2002-07-31 2004-02-06 Saint Gobain SERIES CELL OVEN FOR THE PREPARATION OF A GLASS COMPOSITION WITH LOW UNDERGROUND RATES
US20140090423A1 (en) * 2012-10-03 2014-04-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
WO2014085048A1 (en) * 2012-11-29 2014-06-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9957184B2 (en) 2011-10-07 2018-05-01 Johns Manville Submerged combustion glass manufacturing system and method
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10081565B2 (en) 2010-06-17 2018-09-25 Johns Manville Systems and methods for making foamed glass using submerged combustion
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10472268B2 (en) 2010-06-17 2019-11-12 Johns Manville Systems and methods for glass manufacturing
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US11623887B2 (en) 2013-05-22 2023-04-11 Johns Manville Submerged combustion burners, melters, and methods of use

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171226A (en) * 1984-01-28 1985-09-04 Asahi Glass Co Ltd Melting method of glass and melting furnace
JPH0137334B2 (en) * 1984-01-28 1989-08-07 Asahi Glass Co Ltd
FR2843107A1 (en) * 2002-07-31 2004-02-06 Saint Gobain SERIES CELL OVEN FOR THE PREPARATION OF A GLASS COMPOSITION WITH LOW UNDERGROUND RATES
WO2004013056A1 (en) * 2002-07-31 2004-02-12 Saint-Gobain Glass France Furnace with series-arranged baths for producing glass compounds having a low degree of unmelted material
JP2005534601A (en) * 2002-07-31 2005-11-17 サン−ゴバン グラス フランス A furnace with a plurality of tanks in series for preparing a glass composition with low stone content
JP2010229033A (en) * 2002-07-31 2010-10-14 Saint-Gobain Glass France Furnace with series-arranged baths for producing glass compounds having a low degree of unmelted material
US8196432B2 (en) 2002-07-31 2012-06-12 Saint-Gobain Glass France Furnace with series-arranged baths for producing glass compounds having a low degree of unmelted material
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US10081565B2 (en) 2010-06-17 2018-09-25 Johns Manville Systems and methods for making foamed glass using submerged combustion
US10472268B2 (en) 2010-06-17 2019-11-12 Johns Manville Systems and methods for glass manufacturing
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US9957184B2 (en) 2011-10-07 2018-05-01 Johns Manville Submerged combustion glass manufacturing system and method
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9533905B2 (en) * 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US10392285B2 (en) 2012-10-03 2019-08-27 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US20140090423A1 (en) * 2012-10-03 2014-04-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
WO2014085048A1 (en) * 2012-11-29 2014-06-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9676644B2 (en) 2012-11-29 2017-06-13 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US11623887B2 (en) 2013-05-22 2023-04-11 Johns Manville Submerged combustion burners, melters, and methods of use
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US10618830B2 (en) 2013-05-30 2020-04-14 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US11186510B2 (en) 2013-05-30 2021-11-30 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10955132B2 (en) 2015-08-27 2021-03-23 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10435320B2 (en) 2015-09-23 2019-10-08 Johns Manville Systems and methods for mechanically binding loose scrap
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10793459B2 (en) 2016-06-22 2020-10-06 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US11248787B2 (en) 2016-08-25 2022-02-15 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US11396470B2 (en) 2016-08-25 2022-07-26 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same

Also Published As

Publication number Publication date
JPS6031772B2 (en) 1985-07-24

Similar Documents

Publication Publication Date Title
JPS58199728A (en) Glass melting furnace
JP5911921B2 (en) Apparatus and method for manufacturing glass
KR100856813B1 (en) Rapid glass melting or premelting
KR101377897B1 (en) Method of forming a glass melt
US4531960A (en) Glassmaking process and equipment
US3260587A (en) Method of melting glass with submerged combustion heaters and apparatus therefor
US4061487A (en) Process for producing glass in a rotary furnace
KR101609893B1 (en) Glass melting furnace
JPS59107925A (en) Electric heating type glass melting device
JP4242586B2 (en) Skull crucible for melting or refining inorganic materials
JPS5837255B2 (en) Method and apparatus for homogenizing and fining glass
KR20150022984A (en) Installation and method for melting glass
KR101600109B1 (en) Glass melting furnace
BR112020018835A2 (en) gradient refining tank for refining foamed molten glass and a method of using it
EP2788295A1 (en) Glass melting method and molten glass layer bubbling glass melting furnace
US3715203A (en) Melting of metals
SE463512B (en) SET AND MOLDING FOR PRODUCING GLASS
US4183725A (en) Method and apparatus for melting glass in burner-heated tanks
US2068925A (en) Glass making apparatus and method
US762270A (en) Glass-melting furnace.
US1421211A (en) Manufacture of glass
JPS6395123A (en) Manufacture of glasses and equipment
US1863156A (en) Method and apparatus for melting glass
US1994959A (en) Apparatus and method for making glass
SU874673A1 (en) Direct flow glass smelting furnace