JPS58199647A - Production of amorphous alloy - Google Patents

Production of amorphous alloy

Info

Publication number
JPS58199647A
JPS58199647A JP8211382A JP8211382A JPS58199647A JP S58199647 A JPS58199647 A JP S58199647A JP 8211382 A JP8211382 A JP 8211382A JP 8211382 A JP8211382 A JP 8211382A JP S58199647 A JPS58199647 A JP S58199647A
Authority
JP
Japan
Prior art keywords
disc
axis
azimuth
angle
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8211382A
Other languages
Japanese (ja)
Other versions
JPS6320625B2 (en
Inventor
Kaneo Mori
佳年雄 毛利
Rikio Fujimoto
藤本 利喜雄
Kogetsu Takayama
高山 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8211382A priority Critical patent/JPS58199647A/en
Publication of JPS58199647A publication Critical patent/JPS58199647A/en
Publication of JPS6320625B2 publication Critical patent/JPS6320625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain spherical particles of an amorphous alloy having high out of roundness by injecting molten metal to the specific position on a disc which has good thermal conductivity, and rotates at a high speed with inclination by a prescribed angle to the injection axis of the molten metal and cooling the molten metal quickly. CONSTITUTION:A flat plate-like copper disc 20 is rotated at a high speed by means of a motor 17 via driving shaft 26 and molten metal 12 is injected onto the disc 20. The angle theta assumed by the injection axis 32 of the metal 12 and the plane of the disc 20 in this case is set at 10-60 deg.. The molten metal is injected so as to contact with the surface of said disc within the range of 180-360 deg. azimuth (the third quadrant and the fourth quadrant) in the coordinate system wherein the center X of rotation of the disc 20 is taken at the origin, the rotating direction of the disc is taken in the positive direction of the azimuth and the radius vector located in the relation minimizing the angle assumed by the positive direction of the azimuth at an optional point on the radius vector and the positive direction of the axis 32 is taken in the positive direction of the axis 32 is taken in the positive direction of the X-axis on the plane of the disc 20. The spherical particles or fiber having good symmetricalness are thus obtained.

Description

【発明の詳細な説明】 本発明tよ、)7七ルノノ・ス合金の製造り法に関りる
。アモルファス合金tよ、電解め一ノさ、無電解めっき
、低渇貞空M礪、スパック法、など(・シ得られること
が知られているが、用台、最も 般的に採用されている
の4よ、溶融状態の液体合金を高速回転Jる熱伝導性の
良いドラノ、1に噴射し10’”C/31f11負の急
速冷却をするh法Cある、。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a 77-Runonos alloy. Although it is known that amorphous alloys can be obtained using amorphous alloys, electrolytic metal plating, electroless plating, low-depletion metal plating, sprocketing, etc., the most commonly used method is 4, there is a method C in which a molten liquid alloy is injected into a highly thermally conductive drone rotating at high speed and rapidly cooled at a negative rate of 10'''C/31f11.

この様な手段等で得られた)ltルノ)lス合金は、非
晶質構造をとるため、機械的強1aが人さく、熱膨張係
数、bl銅線損傷が小さく、化学的耐食性及び耐摩耗性
に帰れている。ま/、=、特に磁性体としてのりl晶買
材は、結晶粒界などの#4造1の欠陥がないこと、結晶
磁気異方性が存在Lノ’Lいこと、保磁力、比透vA率
に托しい敗色かみられること、畠い電気抵抗率をもつこ
と等の優れた性質を右しくいる。このため、非晶質合金
は、磁気ヘッド、磁気シールドや磁気カートリッジに実
用化され、リレー、印字装訳、セン9、変It器綱板?
7極めて広縫囲の用途が期待されでいる。特殊な例とし
で、従来の金属又はフェライト材に比べて、極めて大き
な磁気ひずみ定数、電気機械結合係数を有する非晶質体
の発見もあり、超音波発受素子、可変超音波遅延線等へ
の応用も期待が寄せられている。
Since the LTS alloy obtained by such methods has an amorphous structure, it has a low mechanical strength 1a, a low coefficient of thermal expansion, a small damage to the BL copper wire, and has good chemical corrosion resistance and resistance. It's back to being abrasive. In particular, as a magnetic material, the adhesive material must be free of #4 structure defects such as grain boundaries, have magnetocrystalline anisotropy, coercive force, and relative permeability. It has excellent properties such as a noticeable loss in vA ratio and a high electrical resistivity. For this reason, amorphous alloys have been put to practical use in magnetic heads, magnetic shields, and magnetic cartridges, as well as in relays, printing and translating systems, sensors, transformers, and transformers.
7. It is expected to be used in extremely wide seams. As a special example, amorphous materials have been discovered that have extremely large magnetostriction constants and electromechanical coupling coefficients compared to conventional metals or ferrite materials, and are useful for ultrasonic transmitting/receiving elements, variable ultrasonic delay lines, etc. There are also expectations for its application.

アモルファス合金は、以上の如き、情報技術、1−レク
トOニクス、メカトロニクス、省エネルV−技術など多
り面での応用に期待がかけられており、最近、盛んに、
簡便かつ醋産性のあるアモルノノ・ス合金の製造方法が
研究されている。一方、マイクロメカニクスやマイクロ
エレクトロニクスの分野では微細なアモルファス球粒子
やアモルファスはかかる要求に応えるものである。
As mentioned above, amorphous alloys are expected to be applied in many fields such as information technology, 1-recto-O-nics, mechatronics, and energy-saving V-technology.
A simple and highly productive method for producing amornonosu alloy has been studied. On the other hand, in the fields of micromechanics and microelectronics, fine amorphous spherical particles and amorphous materials meet such demands.

従来の製造方法を第1図から第4図に示す。第1図は、
高速回転をしている筒状の容器からなる冷却筒11の内
側壁に噴射ノズル30を接近させ、溶融金属(メルト)
12を高圧不活性ガスを使用して噴射ノズルから前記側
壁に噴射接触させることにより、急速冷却させて、回転
力を利用してリボン状の)′tルフ7ス合金を4Rる方
法を示したしのぐある。
A conventional manufacturing method is shown in FIGS. 1 to 4. Figure 1 shows
The injection nozzle 30 is brought close to the inner wall of the cooling cylinder 11 consisting of a cylindrical container rotating at high speed, and the molten metal (melt) is
12 was injected into contact with the side wall from an injection nozzle using a high-pressure inert gas, and a method was shown in which the ribbon-shaped Ruf7 alloy was rapidly cooled and 4R was applied using rotational force. There is a way to survive.

第2図は、[61転する冷Hjt’+−ル14の表面に
噴射ノズル30を接近させ(、E記と同様に、高11不
活性ガスを使用し−(、噴射ノズルから溶融合金を噴射
さ1!ることにより、回転力を利用しく急速冷却さ1!
で、リボン状の77 ’[gルノIス合金133を得る
方法を示したもの(・ある。第3図は、第2図に示tg
【l一方法に対し、両側に回転音1−ル14a、14b
4!r設け、該ロールの相!jの接触面に溶融金lK1
2を吹き付【〕て、急速冷1!1させて7.t 、TE
ルフノ7ス合金13を得る双【]−ル法を示したしのぐ
ある。
In Figure 2, the injection nozzle 30 is brought close to the surface of the cold Hjt'+- rule 14 undergoing [61 rotation (, similar to E, high 11 inert gas is used - (), and the molten alloy is discharged from the injection nozzle. By injecting 1!, rapid cooling is achieved by utilizing rotational force!
Figure 3 shows a method for obtaining ribbon-shaped 77'[glunois alloy 133].
[l For one method, rotation sound 1-ru 14a, 14b on both sides
4! r provided, the phase of the roll! Molten gold lK1 on the contact surface of j
Spray 2 and let it cool rapidly 1!1.7. t, T.E.
A twin-rule method for obtaining Rufunosu alloy 13 has been demonstrated.

これらの方法によつ−で、 J9さ5〕0μm、幅1・
〜・10011ik4程唯のリボン状合金が11ノられ
ることが知られている。
By using these methods, J9 size 5] 0μm, width 1.
It is known that a ribbon-like alloy as small as 10011ik4 can be produced.

ところが、1iiLの手段によ・>”Cは、)7モルフ
ッシス合金のノ1イバーまたは、球粒j′を作成づ−る
ことはでさなかった。
However, it has not been possible to produce noivar or spherical particles j' of the 7-morphous alloy by the method of 1iiL.

そこで、アf)レノン・ス合♂のツノJイバーを得るだ
めに考案された従来の手段として、第4図に承すものが
知られている。即も、中空形状の冷却筒15の中に水1
6を入れ、該冷却筒15をモータ17によって回転させ
、遠心力を利用して冷却筒の内部の側壁に、高速水流を
起こし、この水流中に、溶融合金12を噴出させ、急速
冷却して77Pイバーを得る方法である。ところが、上
記方法では、対称性の食い球状のパウダを得ることは、
困難であった。また、上記方法によって、急速冷却して
得られた球粒子及びファイバーは、冷却筒内に溜ってし
まう為に、工業的な量産には、適していなかった。
Therefore, as a conventional means devised to obtain the horned Jiber of Lennon S.A., the one shown in Fig. 4 is known. Immediately, water 1 is poured into the hollow cooling cylinder 15.
6, the cooling cylinder 15 is rotated by the motor 17, a high-speed water flow is generated on the inner side wall of the cooling cylinder using centrifugal force, and the molten alloy 12 is spouted into this water flow to rapidly cool it. This is a method to obtain 77 points. However, with the above method, it is difficult to obtain a symmetrical spherical powder.
It was difficult. In addition, the spherical particles and fibers obtained by rapid cooling by the above method accumulate in the cooling cylinder, and therefore are not suitable for industrial mass production.

豫 )ノ干ルファス合金の球粒子を作曲する方法としては、
従来スパークエロージョン法とアトマイズ法が知られて
いるが、前者では油中放電で極微量の5〜30μm径の
ひずんだ球状粒が得られでいる。油中からの粒子の回収
は超音波洗浄を数回要づるなと面倒である。また後右で
は、ジェット水流中に溶融合金で滴下して多壷のパウダ
ーを得ることができるが、寵子形状は不規則形であり、
両者とも良好な球粒子のアモルファス合金を得る方法で
はない。
豫) As a method of composing spherical particles of rufus alloy,
Conventionally, the spark erosion method and the atomization method are known, but in the former method, a very small amount of distorted spherical particles with a diameter of 5 to 30 μm cannot be obtained by discharging in oil. Recovering particles from oil is troublesome and requires several ultrasonic cleanings. In addition, on the rear right, it is possible to obtain a multi-pot powder by dropping the molten alloy into the jet water stream, but the shape of the cup is irregular.
Neither of these methods is a method for obtaining an amorphous alloy with good spherical particles.

本発明は、以」二の欠点を改良46目的でなされたもの
であり、溶融合金を、噴射軸に対し所定の角だけ傾斜し
た高速回転する熱伝導性の良いディスク上の所定の位置
に、噴射することによつC1急速冷却しアモルファス合
金の真円度の高い球粒子又は、ファイバーを連続的に得
ることを目的とする。そして、本発明者は、ディスク上
で溶融合金が接触する位置及び、接触角に、最適条件が
存在し、ぞの場合にのみ、球粒子又はファイバーが生じ
ることを発見した。
The present invention has been made with the aim of improving the following two drawbacks.46 The molten alloy is placed at a predetermined position on a highly thermally conductive disk that rotates at high speed and is inclined at a predetermined angle with respect to the injection axis. The purpose is to rapidly cool C1 by spraying and continuously obtain highly circular spherical particles or fibers of amorphous alloy. The inventors have also discovered that there are optimum conditions for the contact position and contact angle of the molten alloy on the disk, and that spherical particles or fibers are produced only under these conditions.

本発明は1−記の知見によってなされたものである。The present invention has been made based on the findings described in 1-.

即ち、本発明方法は、高速回転する熱伝導性の良いディ
スク面に、溶融合金を噴射させることによって、該溶融
合金を急速に冷却して、非晶質である球粒子又は7Iイ
バーを製造4る方法Cあって、 前記溶融合金の前記デfスク面に対する噴射方向(反噴
射の向きを正にとった噴射軸)は、前記ディスク面に対
して、106〜60°の角をなし、かつ、ディスク面上
において、ディスクの回転中心を原点に、ディスクの回
転する向きを方位角の正方向に、動径上の任意の点での
方位角正方向と噴射軸正方向とのなす角が最小となる関
係に位置する動径をX軸止方向(始線)に、とった座標
系において、前記方位角が180°〜360° (第3
象限及び第4象限)の範囲内で溶融合金を回転ディスク
表面に接触させて急速冷却することから成るアモルファ
ス合金の製造方法から成る。ここで溶融合金は、急速冷
却によって非晶質体となるものであれば、特に限定され
ない。たとえば、鉄。
That is, in the method of the present invention, the molten alloy is injected onto the surface of a highly thermally conductive disk rotating at high speed, and the molten alloy is rapidly cooled to produce amorphous spherical particles or 7I particles. There is a method C in which the injection direction of the molten alloy with respect to the disk surface (the injection axis with the opposite injection direction being positive) makes an angle of 106 to 60 degrees with respect to the disk surface, and , on the disk surface, with the rotation center of the disk as the origin, the rotation direction of the disk is the positive azimuth direction, and the angle between the positive azimuth direction and the positive direction of the injection axis at any point on the radius vector is In a coordinate system in which the radius vector located in the minimum relationship is taken as the X-axis stop direction (starting line), the azimuth angle is 180° to 360° (third
The method for producing an amorphous alloy comprises bringing the molten alloy into contact with the surface of a rotating disk within the range of the four quadrants and the fourth quadrant for rapid cooling. Here, the molten alloy is not particularly limited as long as it becomes an amorphous material by rapid cooling. For example, iron.

族元素と半金属CあるP、C,B、Si等との合金、あ
るいは、鉄族元素と希土類金属であるGd。
An alloy of a group element and a semimetal C such as P, C, B, Si, etc., or an iron group element and a rare earth metal Gd.

Tb 、DV等との合金である。ディスクの回転速曵は
、溶融合金とディスク面、どの接触点での周速度が適正
になるように選定される。周速度は3゜71/secか
ら5.61/SeCが望ま、しい。
It is an alloy with Tb, DV, etc. The rotational speed of the disk is selected so that the circumferential speed at which point of contact between the molten alloy and the disk surface is appropriate. The peripheral speed is desirably from 3°71/sec to 5.61/Sec.

上記構成において、ディスク面を溶融合金の噴射軸32
に対して10°〜60°の範囲で傾斜させたのは、球粒
子及びファイバーが適正に作成される範囲であるからで
ある。ここに、噴射軸32とは、溶融合金の噴射方向に
とった軸(・あつC1噴1)1する向きと反対の向きを
j[とりる軸をいう(第5図参照、傾斜角は図上θで示
される)。この傾斜角が小さい程、噴11された溶融合
金とディスクとの接触面積が大きく冷却効果が大さい。
In the above configuration, the disk surface is connected to the injection shaft 32 of the molten alloy.
The reason why the inclination is within the range of 10° to 60° with respect to the angle is because this is the range in which spherical particles and fibers can be appropriately produced. Here, the injection axis 32 refers to an axis that takes the direction opposite to the axis (Atsu C1 injection 1) taken in the injection direction of the molten alloy (see Fig. 5, the inclination angle is as shown in Fig. (indicated by θ above). The smaller the inclination angle, the larger the contact area between the molten alloy sprayed 11 and the disk, and the greater the cooling effect.

小さすぎると接触が不安定となる。このことから最小限
度角が存在する。一方傾斜角が大きいと、接触面積が小
さくなり、球粒子又はノア、イバーが得られない。また
、ディスクFの溶融合金の噴射位置も、次の如く最適範
囲が存在づる。ディスクの回転中心を原点に、ディスク
の回転の向きを方位角の正方向に、動径上の任意の点で
の方位角正方向と噴射軸32の正方向とのなす角が最小
となる、即ち、ディスクと噴、引輪32とのなす傾斜角
θに等しくなる、関係に位置する動径をX軸の正の向き
にとった9!標系においで、lJ位自重80°〜360
° (第3象限及び第4象限)の範囲内で噴射接触させ
ると対称性の良い球粒子、又はファイバーが得られる。
If it is too small, contact will become unstable. From this, there is a minimum degree angle. On the other hand, if the inclination angle is large, the contact area becomes small and spherical particles or noa or ivar cannot be obtained. Further, the injection position of the molten alloy on the disk F also has an optimum range as follows. With the rotation center of the disk as the origin, the direction of rotation of the disk is in the positive azimuth direction, and the angle between the positive azimuth direction and the positive direction of the injection axis 32 at any point on the radius vector is the minimum; That is, the radius vector located in the relationship that is equal to the inclination angle θ formed by the disk, jet, and pull ring 32 is taken in the positive direction of the X axis.9! In the standard system, lJ self-weight 80° ~ 360
If the particles are injected into contact within the range of (3rd and 4th quadrant), spherical particles or fibers with good symmetry can be obtained.

上記の範囲を図により詳しく説明する。第6図は、ディ
スクをディスク面に垂直な方向から見た平面図である。
The above range will be explained in detail with reference to the drawings. FIG. 6 is a plan view of the disk viewed from a direction perpendicular to the disk surface.

図上、A、B、Cはそれぞれディスク上の噴射点P、Q
、Rにおける噴射軸32a。
In the figure, A, B, and C are injection points P and Q on the disk, respectively.
, the injection shaft 32a at R.

32b、32cの正方向を示す噴射軸記号である。This is an injection axis symbol indicating the positive direction of 32b and 32c.

また、第7図(a)、(b)、(C)は、それぞれP点
、Q点、R点に噴射軸を設定した場合のa。
Moreover, FIGS. 7(a), (b), and (C) are a when the injection axis is set at point P, point Q, and point R, respectively.

ty、c矢印方向の側面図である。今、ディスク面と噴
射軸とのなす傾斜角を第6図に示す如くθとする。R点
において、方位角正方向と噴射軸Cとのなす角は第7図
(C)に示す様に前記傾斜角θに等しい。またP点にお
いて、方位角正方向と噴射軸へとのなす角は180°−
〇である。またQ点において、方位角正方向と噴射軸B
とのなす角は90°である。この様に、方位角正方向と
噴射軸とのなす角が最小になる点は、R点であることが
分る。そしてR点を含む動径をX輪に、回転中心を原点
にとった座標系において、方位角1806〜3600の
範囲内(第6図斜線部分)において噴射接近させる5、
上記範囲外になると球粒子又はファイバーが生じない。
ty, is a side view in the direction of the arrow c. Now, let us assume that the angle of inclination between the disk surface and the ejection axis is θ as shown in FIG. At point R, the angle between the positive azimuth direction and the injection axis C is equal to the inclination angle θ, as shown in FIG. 7(C). Also, at point P, the angle between the positive azimuth direction and the injection axis is 180°-
It is 〇. Also, at point Q, the positive azimuth direction and the injection axis B
The angle formed with is 90°. In this way, it can be seen that the point where the angle between the positive azimuth direction and the injection axis is the smallest is point R. Then, in a coordinate system in which the radius including the R point is the X wheel and the rotation center is the origin, the injection is made to approach the azimuth within the range of 1806 to 3600 (the shaded area in Figure 6)5.
Outside the above range, spherical particles or fibers will not be formed.

球粒子かファイバーが得られるか(ま、回転速度に依存
し、速度が高いとファイバーが得られる。
Do you get spherical particles or fibers (well, it depends on the rotation speed, the higher the speed, the more fibers you get.

噴射ノズルの口径は、製造物Cある)Iイバーの直径又
は、球粒子の粒径ど、冷却効果を考慮して適正に選択さ
れる。[]l¥が人さ過ぎると、冷却効果が小さく、所
望の球粒子又はファイバーが得られない。又、噴射ノズ
ルからの合金の噴射は、人気に対し、加圧した不活性ガ
スを用いるのが9ましい。
The diameter of the injection nozzle is appropriately selected in consideration of the cooling effect, such as the diameter of the product C) or the particle size of the spherical particles. If []l\ is too large, the cooling effect will be small and the desired spherical particles or fibers will not be obtained. In addition, for spraying the alloy from the spray nozzle, it is preferable to use pressurized inert gas, although it is popular.

上記の溶融合金の噴射方向は、必ずしも鉛直方向に限定
されるものではない。たとえば回転ケるディスクを水平
にして、噴射り向をこれに対して傾斜させてら良い。
The injection direction of the above-mentioned molten alloy is not necessarily limited to the vertical direction. For example, the rotating disk may be placed horizontally, and the jetting direction may be inclined relative to this.

以上の如く、高速回転するディスク面への溶融合金喰射
時の接触角及び接触イ装置を選定4ることにJ、って、
効果的な急速冷fJ]が行なわれ少なくとし表面がアモ
ルファス状態になった球粒子又は−ノI・イバーが連続
的に得られるという効果をh ’Jる。
As mentioned above, J decided to select the contact angle and contact device when injecting molten alloy onto the disk surface rotating at high speed.
The effect is that spherical particles or particles whose surfaces are in an amorphous state can be continuously obtained by effective rapid cooling fJ].

また公知の手段の如く、冷却水を使用していないためア
モルファスの表面が酸化されない。本発明り法によって
製造された球粒子は球対称性が良いものが得られる。
Further, unlike known means, since no cooling water is used, the amorphous surface is not oxidized. The spherical particles produced by the method of the present invention have good spherical symmetry.

実施例 第5図は本発明方法によってアモルファス合金を得る具
体的手段を示したものである。
Embodiment FIG. 5 shows a specific means for obtaining an amorphous alloy by the method of the present invention.

熱伝導性の良い、例えば、銅製にて形成しt、= q!
根板状ディスク20は、モータ17の駆動軸26に同右
されており、モータ17の回転力を受け1回転する。こ
の自ディスクは、西?!200alt−あり、ファイバ
ーを製作するときは、4500rpm+の回転を行い、
球粒子を製作づるときは、300 Orpmの回転を行
った。溶融金、金の噴射方向とディスク20との傾斜角
は、30°に設定した。前記fイスク20上噴射点の位
置は、第3象限内であつ(、方位角180’+45° 
(α−45°)に、ディスクの同転中心からのrll−
11約75)mm程鳴に設定され(いる。この場合、こ
の接+j、i (゛の周速(よ。
It is made of a material with good thermal conductivity, such as copper, and t, = q!
The root plate-like disk 20 is attached to the drive shaft 26 of the motor 17, and rotates once upon receiving the rotational force of the motor 17. Is this own disk west? ! There is 200alt-, and when producing fiber, rotate at 4500rpm+.
When producing spherical particles, rotation was performed at 300 Orpm. The inclination angle between the molten gold and the injection direction of the gold and the disk 20 was set to 30°. The position of the injection point on the f-isk 20 is within the third quadrant (with an azimuth angle of 180'+45°
(α-45°), rll- from the center of rotation of the disk
11 approx. 75) mm. In this case, the circumferential speed of this contact +j, i (゛).

4500rpmのと3約5)62 cm  sec (
あり、ご3000 rpmのとさ、約3−7 !’) 
(:m、’ bec (’ある。
4500 rpm and about 5) 62 cm sec (
Yes, the speed is about 3000 rpm, about 3-7! ')
(:m,' bec ('There is.

この様なMdにおいて、合金組成tま、原r%(Fe−
79%、5i−2%、13−17%、0r−2%としI
J0約1200°0・ 1300 ’Cに加熱して溶融
しlこ上記合金12を、ノズル[J仔0 、 、’3 
:>lφの合金噴射ノズル330から、1.5気IFの
)′ルインガスて・【1す転するj゛イスク1、押出し
、噴射させて、球粒子又各五フッ・イバーを得た。パウ
ダの形状は、はぼ球対称をしくおり、1径0.1−0、
211−φであった。ノ)Iイム−4,1断面が円形状
条しく’ aiす、*”E IYo 、  1−0 、
 2 mmφ(あ−)た、1
In such Md, alloy composition t, raw material r% (Fe-
79%, 5i-2%, 13-17%, 0r-2% and I
The above alloy 12 was melted by heating to about 1200°0.
From the alloy injection nozzle 330 of >lφ, 1.5 IF of )'ruin gas was extruded and injected to obtain spherical particles or 5 IF of each. The shape of the powder has spherical symmetry, 1 diameter 0.1-0,
It was 211-φ. g) Iim-4,1 cross section is circular striped, *”E IYo, 1-0,
2 mmφ(a-)ta, 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は、従来のリボン状のアノモルツノ・
ス合金を製造4る/J法をホしI5構成図、第4図は、
従来の球粒子又はツノシイバー状の7tルノ)Iス合念
を製造づる方法を小しI、:構成図、第5図は、本発明
製造り法に係る球粒子叉はノI・イバー状のアノモルツ
ノ・ス合金を製造づる方法を示しlこ構成図、第6図(
よ、第り図の■矢示方向の平面図、第7図(a )、 
 (b >、  (c )、は、それぞれ第6図におけ
るa、b、c矢示方向の側面図Cある、。 20・・・・・・ディスク 30・・・・・・合金噴射ノズル 特晶1出願人  アイシン精機株式会社代理人  弁理
J:  犬 川  広 間   弁理」  藤 谷  修 同     弁理士    丸  山  明  人第1
Figures 1 to 3 show conventional ribbon-shaped anomalous
The block diagram of I5 is shown in Figure 4, using the J method.
A conventional method for manufacturing spherical particles or horn-shaped 7T lunion particles is shown in Fig. 5. Figure 6 shows the method for manufacturing anomalous alloys.
Figure 7 (a) is a plan view in the direction of the arrow.
(b>, (c) are side views C in the directions of arrows a, b, and c in FIG. 6, respectively. 20...Disk 30...Alloy injection nozzle special crystal 1 Applicant: Aisin Seiki Co., Ltd. Patent Attorney J: Inugawa Hiroma Patent Attorney Shudo Fujitani Patent Attorney Akira Maruyama Person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] ^速回転する熱伝導性の良いディスク面に、溶融合金を
噴射させることによって、該溶融合金を急速に冷却して
、       −゛非晶質である球粒子又はファイバ
ーを製造づる方法であっ(、前記溶融合金の前記ディス
ク面に対する噴射方向く反噴射の向きを正にとった噴射
軸)は、前記ディスク面に対して、10°〜60°の角
をなし、かつ、ディスク面上において、ディスクの回転
中心を1東点に、ディスクの回転する向きを方位角の1
方向に、動径Fの任意の点での方位角正方向と@胴軸正
方向とのなす角が最小となる関係に位置する動径をX軸
止方向(始線)に、とった座標系において、前記方位角
が1806〜360° (第3象限及び第4象限)の範
囲内で溶融合金を回転ディスク表面に噴射させて急速冷
却(ることから成る2モルフIス合金の製造方法。
This is a method of producing amorphous spherical particles or fibers by injecting the molten alloy onto the surface of a disk that rotates at a high speed and has good thermal conductivity, thereby rapidly cooling the molten alloy. The injection axis (in which the injection direction of the molten alloy with respect to the disk surface and the opposite injection direction are positive) forms an angle of 10° to 60° with respect to the disk surface, and The center of rotation of the disc is set to the 1 east point, and the direction of rotation of the disc is set to the azimuth of 1
Coordinates taken in the X-axis stop direction (starting line) of the radius vector located in the relationship where the angle between the positive azimuth direction at any point of the radius vector F and the positive direction of the trunk axis is the minimum A method for producing a two-morph I-based alloy, which comprises injecting molten alloy onto the surface of a rotating disk within the azimuth angle range of 1806 to 360° (third and fourth quadrants) and rapidly cooling it.
JP8211382A 1982-05-14 1982-05-14 Production of amorphous alloy Granted JPS58199647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8211382A JPS58199647A (en) 1982-05-14 1982-05-14 Production of amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8211382A JPS58199647A (en) 1982-05-14 1982-05-14 Production of amorphous alloy

Publications (2)

Publication Number Publication Date
JPS58199647A true JPS58199647A (en) 1983-11-21
JPS6320625B2 JPS6320625B2 (en) 1988-04-28

Family

ID=13765345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8211382A Granted JPS58199647A (en) 1982-05-14 1982-05-14 Production of amorphous alloy

Country Status (1)

Country Link
JP (1) JPS58199647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218505A (en) * 1986-03-19 1987-09-25 Nippon Denso Co Ltd Method and apparatus for producing needle-like amorphous metallic powder
JPH02175801A (en) * 1988-12-27 1990-07-09 Kubota Ltd Apparatus for manufacturing metal granular body
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218505A (en) * 1986-03-19 1987-09-25 Nippon Denso Co Ltd Method and apparatus for producing needle-like amorphous metallic powder
JPH02175801A (en) * 1988-12-27 1990-07-09 Kubota Ltd Apparatus for manufacturing metal granular body
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder

Also Published As

Publication number Publication date
JPS6320625B2 (en) 1988-04-28

Similar Documents

Publication Publication Date Title
JPS60114507A (en) Manufacture of metal fine powder
JPS58199647A (en) Production of amorphous alloy
US5456308A (en) Method and apparatus for manufacturing thin amorphous metal strip
JPS59159903A (en) Method and device for producing metallic powder
JPH03149804A (en) Fibrous anisotropic permanent magnet and manufacture thereof
JPS605804A (en) Production of fine metallic ball
JPH02145710A (en) Manufacture of metal fine powder
JPH064886B2 (en) Cream solder manufacturing method
JPS63230807A (en) Rotary disk for centrifugal atomization
JP2001172704A (en) Method of manufacturing metallic flake
JPS62112709A (en) Production of metallic powder
JPS6139367B2 (en)
JPH01249247A (en) Method for producing solder extreme fine wire
JPS5961004A (en) Thin strip of permanent magnet and manufacture thereof
JPS63192803A (en) Apparatus and method for producing spherical metallic particle
JPS5816761A (en) Production of thin metallic strip
JPS59156552A (en) Ribbon-shaped fine metallic wire and nozzle for producing fine wire
JPH0321603B2 (en)
JPS62124702A (en) Manufacture of rare earth magnet
JPS60229307A (en) Manufacture of magnetic powder for magnetic recording
JPS62218505A (en) Method and apparatus for producing needle-like amorphous metallic powder
JPH01228652A (en) Manufacture of amorphous alloy thin strip
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPH01201403A (en) Rotary disk for centrifugal atomizing
Rizk The Production of Metal Powders by Rotating Disk Atomization