JPS58197264A - Surface treatment of industrial material - Google Patents
Surface treatment of industrial materialInfo
- Publication number
- JPS58197264A JPS58197264A JP7869082A JP7869082A JPS58197264A JP S58197264 A JPS58197264 A JP S58197264A JP 7869082 A JP7869082 A JP 7869082A JP 7869082 A JP7869082 A JP 7869082A JP S58197264 A JPS58197264 A JP S58197264A
- Authority
- JP
- Japan
- Prior art keywords
- bath
- industrial material
- salt
- anode
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、工業材料の表面処理方法(:関し、特に、
周期律表1a、[aに属する元素の塩化物弗化物、臭化
物、Alの塩化物、弗化物、臭化物を選択的に含む浴中
に、Or、Ta、Nb、V。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of industrial materials, in particular,
Or, Ta, Nb, V.
Zrの元素の1種又は2種以上を加え、これを陽極とし
て熟成電解を行ないながら、又はその後、この浴中に炭
素を含む工業材料を浸漬して、前記Cr、Ta、Nb、
V、Zrの元素の炭化物全前記工業材料表面に被着成層
させる。Adding one or more of Zr elements and performing aging electrolysis using this as an anode, or after that, by immersing an industrial material containing carbon in this bath, the above-mentioned Cr, Ta, Nb,
Carbides of the elements V and Zr are deposited and layered on the entire surface of the industrial material.
一般に、高融点、高硬度、高耐酸化性、及び高耐食性を
持つものとシテ、Cr、Ta、Nb、V。Generally, materials with high melting point, high hardness, high oxidation resistance, and high corrosion resistance are used, such as Cr, Ta, Nb, and V.
Zrの炭化物は注目されており、その利用法も数多く提
案されている。しかし、高硬度であるため、靭性がなく
、それ自体を焼結して機械部品として使用することはま
だ不可能である。このため、工業材料の表面に、均一強
固に被覆させ利用する方法が従来から存在し、近年益々
数多くの方法が提案されている。Zr carbide has been attracting attention, and many uses have been proposed. However, due to its high hardness, it lacks toughness, and it is still impossible to sinter itself and use it as a mechanical part. For this reason, there have been methods for uniformly and firmly coating the surfaces of industrial materials, and an increasing number of methods have been proposed in recent years.
従来の方法は、大別すると化学的方法と物理的方法とに
分けることができる。物理的方法は、比較的新しく低温
で処理が可能であるという利点はあるが、装置が複雑で
あり形状にも制限がある。Conventional methods can be broadly divided into chemical methods and physical methods. Physical methods have the advantage of being relatively new and can be processed at low temperatures, but require complex equipment and are limited in shape.
一方化学的方法は、比較的古くから実施されているもの
であり、気体法、粉末法、塩浴法がある。On the other hand, chemical methods have been practiced for a relatively long time and include gas methods, powder methods, and salt bath methods.
気体法は、広い範囲の元素及びその炭化物を含む化合物
の被覆ができる利点があるが、塩化水素等毒性のガスの
発生の可能性があること、及び水素等の危険性のあるガ
スの使用が必要であることなどにより、装置としても犬
がかりなものを要する。また、粉末法は、被覆の密着性
などの性質が一般的に悪いとされている。塩浴法(二も
種々の方法が提案されているが、実用化されているのは
、硼酸又は硼酸塩を主成分とする塩浴に被覆用元素を混
合し、その中に鋼材を浸漬する方法である。The gas method has the advantage of being able to coat compounds containing a wide range of elements and their carbides, but there is a possibility of generating toxic gases such as hydrogen chloride, and the use of dangerous gases such as hydrogen is disadvantageous. Due to the necessity, the device requires a dog. Further, the powder method is generally considered to have poor properties such as coating adhesion. Salt bath method (2) Various methods have been proposed, but the one that has been put into practical use involves mixing coating elements in a salt bath whose main component is boric acid or borate, and immersing the steel material in it. It's a method.
この方法は、装置が簡易であり、比較的容易に処理でき
るが、硼酸又は硼酸塩を主成分とするため、塩浴の粘度
が非常に高く、従って処理品への塩の付着量が大きい。This method uses a simple device and can be treated relatively easily, but since boric acid or borate is the main component, the viscosity of the salt bath is very high, and therefore a large amount of salt adheres to the treated product.
また、容器の高温耐蝕性、処理品の付着塩の除去の困難
さ等の問題が有り、操作性のより良好な塩浴の開発が望
まれている。In addition, there are problems such as the high temperature corrosion resistance of the container and the difficulty in removing salt adhering to treated products, so it is desired to develop a salt bath with better operability.
この発明は以上のような問題を解決するものであり、そ
の目的は、工業材料に対し、Crr 、 Ta 。This invention solves the above-mentioned problems, and its purpose is to improve Crr and Ta for industrial materials.
Nb、V、Zrの元素の炭化物を容易、かつ、強固に付
着し、特性の優れた工業材料の表面処理状態を得ること
(=ある。To easily and firmly adhere carbides of the elements Nb, V, and Zr, and to obtain a surface treatment state of an industrial material with excellent characteristics.
すなわち、この発明は、実施例(二示す如く、周期律表
1a、IIai二属する元素の弗化物及び臭化物並びに
塩化物、Alの弗化物及び臭化物並びに塩化物、これら
のうちの1種の又は2種以」二の混合物の加熱溶融浴中
に、Or 、 Ta 、 Nb 、 V 。That is, this invention relates to the fluorides, bromides and chlorides of elements belonging to Ia and IIai of the periodic table, the fluorides and bromides and chlorides of Al, one or two of these, as shown in Example 2. In a heated melt bath of a mixture of two species, Or, Ta, Nb, V.
Zrの元素の1種又は2種以」二又はそれらの合金を加
え、これを陽極として熟成電解を行ないながら、又はそ
の後、この浴中に、炭素を少なくとも0.05%含有す
る工業材料を一定時間浸漬することによッテ、前記Or
、Ta、Nb、V、Zrの少なくとも一種の炭化物を前
記工業材料表面に被着成層させる表面処理方法に係る。One or more of the elements Zr or an alloy thereof is added, and while performing ripening electrolysis using this as an anode, or thereafter, an industrial material containing at least 0.05% of carbon is added to the bath. By soaking for an hour, the or
The present invention relates to a surface treatment method in which at least one carbide of Ta, Nb, V, and Zr is deposited and layered on the surface of the industrial material.
この発明において使用する浴は、特別のものではなく、
通常の鉄鋼の焼入れ加熱に用いられる特にKcl 、N
acl 、Baclz等の周期律表1aあるいは■aに
属する元素の塩化物とN a Fのような元素の弗化物
、又は該弗化物のみを主成分とするものが典形的な例と
して挙げられる。なお、塩化物の他に、A1の塩化物を
主成分とする浴を用−5=
いてもよい。The bath used in this invention is not special;
Especially Kcl, N used for normal quenching heating of steel.
Typical examples include chlorides of elements belonging to 1a or ■a of the periodic table such as acl and Baclz, fluorides of elements such as NaF, or those containing only these fluorides as the main component. . In addition to the chloride, a bath containing the chloride of A1 as the main component may be used.
この発明の要旨は、浴組成としては従来不用能であった
特(二塩浴を使用し、建浴の段階でOr。The gist of this invention is to use a special di-salt bath as a bath composition, which has not been previously possible, and to use Or.
Ta、Nb、V、Zrの元素又はその合金を陽極とし、
熟成電解をする工程を加えることのみ(−よって、その
後連続的に被覆処理を可能にした点にある。一度建浴を
行った後においては、不足する元素をそのまま又は合金
の形で添加するだけで作業は続行でき、処理の中断もな
く効率的でもある。Ta, Nb, V, Zr elements or alloys thereof are used as an anode,
Only by adding the step of ripening electrolysis (-therefore, continuous coating treatment is possible after that. Once the bath is prepared, the missing elements can be added as they are or in the form of an alloy. The work can be continued without any interruptions and is efficient.
また、一般(二塩化物浴の場合は、酸化防止のため(−
アルゴン等の中性雰囲気中での処理が必要であるが、こ
の発明の処理では、大気中での処理が可能である。なお
、当然、中性雰囲気中での処理も可能である。In addition, general (in the case of a dichloride bath, for prevention of oxidation (-
Although treatment in a neutral atmosphere such as argon is required, the treatment of the present invention allows treatment in the atmosphere. Note that, of course, processing in a neutral atmosphere is also possible.
この処理用塩浴は、入手の容易さ及び価格等の関係カラ
、塩化物とり、−’(はN’ac l 、 Kc l
、 Baa 12が弗化物としてはNaFを使用する場
合が多い。This treatment salt bath has various characteristics such as availability and price, chloride removal, -'(N'acl, Kcl
, Baa 12 often uses NaF as the fluoride.
使用に際しては、融点を調整する意味で塩化物を2種以
上混合し、それ(二弗化物を適量入れる場合が通常であ
る。N a F’を使用する場合の混合割合 4 −
は、炭化物被覆の付着速度と付着塩の除去の難易によっ
て決まる。すなわち、少なすぎる場合は付着速度が減少
し、多すぎると付着塩の除去が困難となる。従って、実
用上の下限は0.3%(モル)上限は70%(モル)程
度である。また、添加する被覆用金属は、実用上フェロ
アロイが利用される場合が多く、その添加量は被覆速度
との関係上0.5%(モル)を下限と考えるべきである
。また、添加過多は、浴の粘度を上昇させ処理品表面へ
の巻込み耐着等の不都合発生の可能性を生じるため、該
当元素として60係(モル)程度とすべきである。処理
温度は、被覆形成速度と母材質によって決定されるべき
であるが、通常750C〜1100Cまでの温度範囲を
とるべきである。When using, two or more chlorides are mixed to adjust the melting point, and an appropriate amount of difluoride is usually added. Depends on the deposition rate of salt and the difficulty of removing the deposited salt.In other words, if the amount is too low, the deposition rate will decrease, and if it is too large, it will be difficult to remove the deposited salt.Therefore, the practical lower limit is 0.3% (mol). ) The upper limit is about 70% (mol).Furthermore, the coating metal to be added is often a ferroalloy in practice, and the amount added is less than 0.5% (mol) in relation to the coating speed. This should be considered as the lower limit.Additionally, too much addition may increase the viscosity of the bath and cause problems such as entrainment and adhesion to the surface of the treated product, so the corresponding element should be around 60 parts (mol). The processing temperature should be determined by the rate of coating formation and the base material, but should normally range from 750C to 1100C.
塩化物は、よく知られているように、塩浴の粘度が低く
、従って、処理品に付着する塩の量も少い。また、塩も
水に容易に溶解し、付着塩の除去も容易である。この発
明の塩の場合、実用的には塩化物が量的には多く、弗化
物は塩化物の溶解と同時に除去されるため、付着塩の除
去は非常に容易である。As is well known, chloride has a low viscosity in the salt bath, and therefore the amount of salt adhering to the treated product is also small. In addition, salt is easily dissolved in water, and adhering salt can be easily removed. In the case of the salt of this invention, the amount of chloride is practically large, and the fluoride is removed at the same time as the chloride is dissolved, so it is very easy to remove the attached salt.
過去において塩化物を主成分とする溶融塩にバナジウム
を添加し、その中に鉄鋼を浸漬してその炭化物被覆を得
たという報告もあるが、同族のNbでは炭化物被覆はで
きないと同時に報告されている。従って、この処理法は
、不安定であると推定する。事実この発明に到る事前実
験においても、塩化物のみ、及び塩化物と弗化物の混合
塩浴にV。In the past, there have been reports that a carbide coating was obtained by adding vanadium to a molten salt whose main component was chloride and immersing steel in it, but it was also reported that carbide coating could not be obtained using Nb, which is a member of the same family. There is. Therefore, we estimate that this processing method is unstable. In fact, in preliminary experiments leading up to this invention, V.
Nb、Taの様な元素を添加した塩浴では安定した被覆
は得られていない。A stable coating has not been obtained in a salt bath to which elements such as Nb and Ta have been added.
電解条件は浴温度、塩浴量によって異るが、浴温度75
0C〜110oC1電流密度0 、 I A/dm2〜
500 A/dm”、電解時間5分〜5時間程度が実用
的である。Electrolysis conditions vary depending on the bath temperature and salt bath amount, but the bath temperature is 75
0C~110oC1 Current density 0, IA/dm2~
500 A/dm'' and an electrolysis time of about 5 minutes to 5 hours are practical.
炭化物被覆は、被覆元素と工業材料中の炭素が反応して
形成されるのであるが、炭素量の少ない鉄に浸炭等の処
理によって炭素を浸透させれば適用できるし、また、塩
浴に炭素を加えて鉄鋼の外部から炭素を供給しても同様
の結果を得ることができる。Carbide coatings are formed by the reaction between coating elements and carbon in industrial materials, but it can be applied by infiltrating carbon into iron with a small amount of carbon through a process such as carburizing, or by adding carbon to a salt bath. Similar results can be obtained by adding carbon and supplying carbon from outside the steel.
この発明は、以」二のように処理操作の容易な塩浴処理
法であるが、結果として、被覆形成速度が硼酸又は硼酸
塩法に比較して早く、同一厚さ被覆形成の時間が短縮さ
れ、処理コストの低減にも効果的であることが判った。This invention is a salt bath treatment method that is easy to operate as described below, but as a result, the coating formation speed is faster than the boric acid or borate method, and the time required to form a coating of the same thickness is shortened. It was also found to be effective in reducing processing costs.
以下にこの発明の実施例を示す。参考のため、第1図に
本発明による処理速度を示す。Examples of this invention are shown below. For reference, FIG. 1 shows the processing speed according to the present invention.
実施例1
塩化ナトリウム33%、塩化カリウム33%、弗化ナト
リウム20%、フェロバナジウム14%(54%バナジ
ウム)の混合粉末2o01をステンレス製容器に入れ、
900tl’″−加熱溶融させ、その後、板状のフェロ
バナジウム(54%バナジウム)を陽極とし、別に装入
した電極を陰極として20 A/dm”の電流で1時間
電解した。終了後、ソノ中E JIS 5KD11 (
形状 厚さ6m、幅1. Q rum、長さ50m)の
試験片を入れ1時間保持後取出し、空冷後付希塩を水・
洗して除去し、被覆層の確認及び層の確認のためX線回
折を行った。試験片の断面組織写真を第2図に示す。写
真で判る様に、鉄 7−
鋼表面に均一なる厚さ10μの被覆層の存在が確認でき
る。また、X線回折の結果から、それは、炭化バナジウ
ム(V C)であることが確認できた3図3にX線回折
結果を示す。その後、処理を継線すると、ある段階から
急激に被覆層の厚さが低下してくる現象がみられる。最
終的(二同時間で2〜3μ程度になるのを確認後、塩浴
中にフェロバナジウム粉末(54%〕上゛口゛バナジウ
ム)を建浴時と同量投入し、その後前詠の処理を行った
結果、最初の場合と同程度の、被覆層の厚さ、を形成す
るのを確言忍した。Example 1 Mixed powder 2o01 of 33% sodium chloride, 33% potassium chloride, 20% sodium fluoride, and 14% ferrovanadium (54% vanadium) was placed in a stainless steel container,
900 tl''' was melted by heating, and then electrolysis was carried out for 1 hour at a current of 20 A/dm'' using a plate-shaped ferrovanadium (54% vanadium) as an anode and a separately charged electrode as a cathode. After finishing, Sono Middle E JIS 5KD11 (
Shape Thickness 6m, Width 1. A test piece of Q rum, length 50m) was put in and held for 1 hour, then taken out, and after air cooling, diluted with water and diluted salt.
It was washed and removed, and X-ray diffraction was performed to confirm the coating layer and the layer. A photograph of the cross-sectional structure of the test piece is shown in Fig. 2. As can be seen from the photograph, the presence of a uniform coating layer of 10 μm in thickness can be confirmed on the surface of the iron 7-steel. Further, from the results of X-ray diffraction, it was confirmed that it was vanadium carbide (VC).The X-ray diffraction results are shown in FIG. After that, when the process is continued, the thickness of the coating layer suddenly decreases from a certain stage. Finally (after confirming that it becomes about 2 to 3μ in the same time, add the same amount of ferrovanadium powder (54%) as when preparing the bath, and then perform the pre-treatment. As a result, we were able to form a coating layer with the same thickness as in the first case.
塩化カリウム44モル係、塩化バリウム19モ実施例2
ル係、弗イはトリウム37愚ル1%の混合粉末2002
を、ステンレス製容器に入れてi”o o o Cに加
熱溶融させ、その中にタンタルを投入し、それを陽極と
して30 A/dm2の電流で熟成電解を30分間実施
した。その中(二5KDII (形状 厚さ6間、幅I
Qm、長さ50爺)の試験片を入れ2時間保持後取出し
冷却した。試験片の組織及びX線回折 8−
結果から、24μのTaCの被覆の存在を確認した。図
4に表面組織を、第5図に】【線回折結果を各々示す。44 moles of potassium chloride, 19 moles of barium chloride, 1% mixed powder of 37 moles of thorium 2002
was placed in a stainless steel container and heated to melt it to i''o o o C, and tantalum was put into it, and aging electrolysis was carried out for 30 minutes with a current of 30 A/dm2 using tantalum as an anode. 5KDII (shape: thickness 6, width I
A test piece of Qm (length: 50 m) was put therein and held for 2 hours, then taken out and cooled. From the structure of the test piece and the X-ray diffraction results, the presence of a 24μ TaC coating was confirmed. FIG. 4 shows the surface structure, and FIG. 5 shows the line diffraction results.
実施例3
塩化カリウム601、塩化ナトリウム6051−1弗化
ナトリウム601、金属クロム301の混合物を、ステ
ンレス製容器に入れて900Cに加熱溶融させ、浴中に
沈澱している金属クロムを陽極とし、電流10 A/d
m”で2時間の熟成電解を実施する。その後、JISS
K−3(形状 厚さ6咽、幅10謳、長さ50M)の試
験片を入れて5時間保持した。処理終了後試験片を取出
し、空冷した。冷却後水洗して付着塩を除去した後切断
し、組織観察及び表面硬度測定を行い、また、X線回折
を1行い被覆層の確認を行った。その結果、13μの被
覆層と表面硬度Hv2032,21.88とを確認した
。また、同時にクロムの炭化物0r3C7の存在も確認
した。Example 3 A mixture of potassium chloride 601, sodium chloride 6051-1, sodium fluoride 601, and metallic chromium 301 was placed in a stainless steel container and heated and melted at 900 C. The metallic chromium precipitated in the bath was used as an anode, and a current was applied. 10 A/d
Carry out aging electrolysis for 2 hours at m”.After that, JISS
A test piece of K-3 (shape: thickness: 6 mm, width: 10 mm, length: 50 m) was placed and held for 5 hours. After the treatment was completed, the test piece was taken out and cooled in air. After cooling, it was washed with water to remove adhering salts, and then cut, and the structure was observed and the surface hardness was measured. Also, the coating layer was confirmed by performing X-ray diffraction. As a result, a coating layer of 13μ and a surface hardness of Hv2032, 21.88 were confirmed. At the same time, the presence of chromium carbide Or3C7 was also confirmed.
その後、寿命の確認のため実験を継続したところ、約1
00時間後に被覆層が非常に少なくなってきたため、3
0g−金属クロムを投入後処理を実施した。その結果、
実験初期 と同程度の結果が得られた。After that, we continued the experiment to confirm the lifespan, and found that approximately 1
After 00 hours, the coating layer became very thin, so 3
0g - A post-treatment after adding metallic chromium was carried out. the result,
Results comparable to those obtained in the initial stage of the experiment were obtained.
実施例4
塩化カリウム32重量%、塩化バリウム46重量%、細
化ナトリウム22重量%の混合粉末2001に、9重量
%のジルコニアを加えて1000Cに加熱溶融し、加え
たジルコニアを陽極とし熟成電解を電流20 A/dm
2で5分間行い、電解を続けたまま浴中にJIS 5K
S−3(形状 厚さ6石、幅10論、長さ50Tnrr
l)の試験片を入れて1時間保持した。その後、引出し
て空冷した。冷却後、水洗して表面硬度及び断面組織を
観察した。また、X線で表面の同定も行った。その結果
、表面硬度Hv1500前後、被覆層厚さ32μが確認
され、また、ジルコニア炭化物の存在も明確となった。Example 4 To mixed powder 2001 containing 32% by weight of potassium chloride, 46% by weight of barium chloride, and 22% by weight of attenuated sodium, 9% by weight of zirconia was added and melted by heating at 1000C, and the added zirconia was used as an anode to conduct aging electrolysis. Current 20 A/dm
2 for 5 minutes, and JIS 5K in the bath while continuing electrolysis.
S-3 (shape thickness: 6 stone, width: 10 mm, length: 50 Tnrr
The test piece (l) was added and held for 1 hour. After that, it was pulled out and air cooled. After cooling, it was washed with water and the surface hardness and cross-sectional structure were observed. The surface was also identified using X-rays. As a result, a surface hardness of around 1500 Hv and a coating layer thickness of 32 μm were confirmed, and the presence of zirconia carbide was also confirmed.
寿命試験は、実施例3と同様の結果が得られており問題
はない。In the life test, the same results as in Example 3 were obtained and there were no problems.
実施例5
塩化カリウム34重量%、塩化バリウム48重量%、弗
化ナトリウム18重量%の混合粉末なステンレス製容器
(−入れて1000tZ’を二部熱溶融させ、その中(
二〕゛エロニオブ(64%ニオス0.37タンタル)1
6重量%を加え、それを陽極として電流20 A/dm
2で熟成電解を2時間行った。電解終了後、JIS 5
KD−11(形状実施例4に同じ)の試験片を浴中に浸
漬し1時間保持し、その後空冷した。顕微鏡及びX線回
折によって27μのニオブ炭化物の被覆の存在を確認し
た。Example 5 A mixed powder of 34% by weight of potassium chloride, 48% by weight of barium chloride, and 18% by weight of sodium fluoride was placed in a stainless steel container (-) and 1000 tZ' was heated and melted in two parts.
2゛Eloniobium (64% nios 0.37 tantalum) 1
Add 6% by weight and use it as an anode to generate a current of 20 A/dm.
2, aging electrolysis was performed for 2 hours. After electrolysis, JIS 5
A test piece of KD-11 (same shape as Example 4) was immersed in the bath, held for 1 hour, and then cooled in air. The presence of a 27μ niobium carbide coating was confirmed by microscopy and X-ray diffraction.
実施例6
実施例1の塩浴を1000Cに上昇し、その浴中に黒鉛
試験片(形状 厚さ5陥、幅10m、長さ5Qai)を
浸漬して3時間保持した。その処理後、試片断面を顕微
鏡観察したところ、15μの被覆層が形成されておりX
線回折の結果、バナジウム炭化物であることも確認でき
た。Example 6 The salt bath of Example 1 was heated to 1000C, and a graphite test piece (shape: 5 holes in thickness, 10 m in width, 5 Qai in length) was immersed in the bath and maintained for 3 hours. After the treatment, the cross section of the specimen was observed under a microscope, and it was found that a coating layer of 15μ had been formed.
As a result of line diffraction, it was confirmed that it was vanadium carbide.
第1図は処理速度を示すグラフ、第2図は組織断面顕微
鏡写真、第3図はCuターゲットのX線回折グラフ、第
4図は組織断面顕微鏡写真、第5図はCOツタ−ットの
X線回折グラフである。
11!!t11−ノ ())Figure 1 is a graph showing processing speed, Figure 2 is a cross-sectional micrograph of the structure, Figure 3 is an X-ray diffraction graph of the Cu target, Figure 4 is a micrograph of the cross-section of the CO target, and Figure 5 is a micrograph of the CO target. It is an X-ray diffraction graph. 11! ! t11-ノ ())
Claims (1)
び(二塩化物、Alの弗化物及び臭化物並びに塩化物、
これらのうちの1種の又は2種以上の混合物の加熱溶融
浴中に、Or 、 Ta 、 Nb 。 V、Zrの元素の1種又は2種以上又はそれらの合金を
加え、これを陽極として熟成電解を行ないながら、又は
その後、この浴中に、炭素を少なくとも0.05%含有
する工業材料を一定時間浸漬することによッテ、前記O
r、Ta、Nb、V。 Zrの少なくとも一種の炭化物を前記工業材料表面に被
着成層させる表面処理方法。[Claims] Periodic Table 1a, fluorides and bromides of elements belonging to [a] (dichloride, fluoride and bromide of Al, and chloride,
Or, Ta, Nb in a heated melting bath of one type or a mixture of two or more of these. One or more of the elements V, Zr, or an alloy thereof is added, and while performing aging electrolysis using this as an anode, or after that, an industrial material containing at least 0.05% of carbon is added to the bath. By soaking for an hour, the O
r, Ta, Nb, V. A surface treatment method comprising depositing and layering at least one carbide of Zr on the surface of the industrial material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7869082A JPS58197264A (en) | 1982-05-11 | 1982-05-11 | Surface treatment of industrial material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7869082A JPS58197264A (en) | 1982-05-11 | 1982-05-11 | Surface treatment of industrial material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58197264A true JPS58197264A (en) | 1983-11-16 |
Family
ID=13668860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7869082A Pending JPS58197264A (en) | 1982-05-11 | 1982-05-11 | Surface treatment of industrial material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58197264A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3725321A1 (en) * | 1986-07-30 | 1988-04-07 | Toyoda Chuo Kenkyusho Kk | METHOD FOR TREATING THE SURFACE OF AN OBJECT OF IRON OR AN IRON ALLOY |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5729571A (en) * | 1980-06-17 | 1982-02-17 | Hitachi Metals Ltd | Surface treating method |
-
1982
- 1982-05-11 JP JP7869082A patent/JPS58197264A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5729571A (en) * | 1980-06-17 | 1982-02-17 | Hitachi Metals Ltd | Surface treating method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3725321A1 (en) * | 1986-07-30 | 1988-04-07 | Toyoda Chuo Kenkyusho Kk | METHOD FOR TREATING THE SURFACE OF AN OBJECT OF IRON OR AN IRON ALLOY |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458218B1 (en) | Deposition and thermal diffusion of borides and carbides of refractory metals | |
US3141744A (en) | Wear-resistant nickel-aluminum coatings | |
JP5431348B2 (en) | Method for boronation of coatings using a fast electrolysis process | |
EP0252479B1 (en) | Method for surface treatment and treating material therefor | |
JPH0570718B2 (en) | ||
Sethi | Electrocoating from molten salts | |
JP2553937B2 (en) | Immersion member for molten metal with excellent corrosion and wear resistance | |
US2950233A (en) | Production of hard surfaces on base metals | |
US3824134A (en) | Metalliding process | |
JP3390776B2 (en) | Surface modification method for steel using aluminum diffusion dilution | |
US4662998A (en) | Electrodeposition of refractory metal silicides | |
JPS58197264A (en) | Surface treatment of industrial material | |
US2392871A (en) | Chromium plating | |
US3793160A (en) | Method of forming case-hardened metals by electrolysis | |
US3046205A (en) | Nickel-aluminum alloy coatings | |
JPS622628B2 (en) | ||
US4009086A (en) | Method for a surface treatment of an iron, ferrous alloy or cemented carbide article | |
US3930575A (en) | Method for a surface treatment of an iron, ferrous alloy or cemented carbide article | |
CA1052317A (en) | Electrolytic formation of group va carbide on an iron, ferrous alloy or cemented carbide article | |
JPH0521979B2 (en) | ||
JPS6335764A (en) | Surface treatment of iron or iron alloy material | |
Stern | Metalliding | |
JPS6227577A (en) | Surface treated article having metallic compound layer and its production | |
JPS62156264A (en) | Surface treatment of iron alloy material | |
JPS6240362A (en) | Surface treatment of iron alloy material |