JPS622628B2 - - Google Patents

Info

Publication number
JPS622628B2
JPS622628B2 JP6279683A JP6279683A JPS622628B2 JP S622628 B2 JPS622628 B2 JP S622628B2 JP 6279683 A JP6279683 A JP 6279683A JP 6279683 A JP6279683 A JP 6279683A JP S622628 B2 JPS622628 B2 JP S622628B2
Authority
JP
Japan
Prior art keywords
iron alloy
layer
treatment
alloy material
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6279683A
Other languages
Japanese (ja)
Other versions
JPS59190355A (en
Inventor
Tooru Arai
Junji Endo
Yoshihiko Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP6279683A priority Critical patent/JPS59190355A/en
Priority to EP19840103561 priority patent/EP0122529B1/en
Priority to DE8484103561T priority patent/DE3462701D1/en
Priority to AU26337/84A priority patent/AU542081B2/en
Priority to CA000451474A priority patent/CA1218585A/en
Publication of JPS59190355A publication Critical patent/JPS59190355A/en
Publication of JPS622628B2 publication Critical patent/JPS622628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は鉄合金材料の表面に炭窒化物層、特に
第Va族元素の炭窒化物層を形成させる表面硬化
処理方法に関するもので、簡易な処理により、か
つ短時間に炭窒化物層を形成せしめることを目的
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface hardening treatment method for forming a carbonitride layer, particularly a carbonitride layer of Group Va elements, on the surface of an iron alloy material. The purpose of this is to form a carbonitride layer on the carbonitride layer.

発明者らは先に、0.2重量%以上の炭素を含む
鉄合金材料を周期律表第Va族元素を含む溶融塩
浴、粉末、ガス等によつて処理して鉄合金材料の
表面に第Va族元素の炭化物層を形成せしめる表
面硬化処理方法を開発し、この方法は工具や金型
などの寿命向上のために広く用いられている。
The inventors first treated an iron alloy material containing 0.2% by weight or more of carbon with a molten salt bath, powder, gas, etc. containing Group Va elements of the periodic table to form a group Va element on the surface of the iron alloy material. We have developed a surface hardening treatment method that forms a carbide layer of group elements, and this method is widely used to extend the life of tools and molds.

この方法は外部より供給したバナジウム、ニオ
ビウムまたはタンタルの第Va族元素と鉄合金材
料中の炭素を熱拡散せしめてこれ等を結合せし
め、第Va族元素の炭化物層を形成せしめるもの
であるが、一つの問題は、炭化物層直下の母材中
に炭素量が炭化物層形成のために消費されて減少
し、以後の母材焼入れ硬化に際して層直下の部分
の硬さが母材内部のそれに対して低くなる傾向が
生じることである。このため上記の方法により表
面処理された材料を大きな応力が負荷される用途
に用いると層直下の部分が変形して層にクラツク
が生じ、また層が剥離するおそれがある。また、
鉄合金被処理材料が径が1mm以下の棒材であると
か、あるいは鋭利な刃物の刃先のように薄肉の場
合には表面処理により材料全体の炭素が減少し、
材料全体に焼きが入りにくくなる。
In this method, group Va elements such as vanadium, niobium, or tantalum supplied from the outside and carbon in the iron alloy material are bonded together by thermal diffusion to form a carbide layer of group Va elements. One problem is that the amount of carbon in the base material directly under the carbide layer is consumed and reduced to form the carbide layer, and when the base material is subsequently quenched and hardened, the hardness of the part directly under the layer becomes smaller than that inside the base material. This means that there is a tendency for the value to decrease. For this reason, if a material surface-treated by the above method is used in applications where a large stress is applied, the portion immediately below the layer may deform, causing cracks in the layer or peeling of the layer. Also,
If the iron alloy material to be treated is a bar with a diameter of 1 mm or less, or if it is thin like the edge of a sharp knife, surface treatment will reduce the carbon content of the entire material.
It will be difficult to bake the entire material.

一方、窒素を含む炭化物、即ち炭窒化物からな
る層は炭化物層に比べて靭性に富むことが近年知
られるようになり、炭化物被覆に代えて炭化物被
覆が行なわれる傾向がある。この炭窒化物被覆処
理の方法としては現在四塩化チタン等によるガス
法が用いられているが、作業衛生上の対策が必要
であるとともに処理が面倒であり、かつ装置も高
価である。
On the other hand, it has recently become known that a layer made of a nitrogen-containing carbide, ie, a carbonitride, has higher toughness than a carbide layer, and there is a tendency for a carbide coating to be used instead of a carbide coating. A gas method using titanium tetrachloride or the like is currently used as a method for carbonitride coating, but this requires measures for work hygiene, is troublesome, and requires expensive equipment.

そこで本発明は先に開発した炭化物層形成方法
を更に発展せしめて、鉄合金材料の表面に第Va
族元素の炭窒化物からなる表面層と窒素を固溶し
た鉄合金からなる内層とを形成せしめる有効な方
法を開発したものである。
Therefore, the present invention further develops the previously developed method for forming a carbide layer to form a Va layer on the surface of an iron alloy material.
An effective method has been developed for forming a surface layer made of group element carbonitride and an inner layer made of an iron alloy containing nitrogen as a solid solution.

即ち本発明の表面硬化処理方法は、鉄合金材料
の表面に窒化処理を施し、窒化処理された材料に
第Va族元素を含む処理剤中で熱拡散処理を施
し、第Va族元素と材料中の炭素および窒素を処
理温度での化学的親和性によつて結合せしめるこ
とで処理材の表面に第Va族元素の炭窒化物から
なる層と窒素を固溶した鉄合金からなる層を形成
せしめるのである。
That is, in the surface hardening treatment method of the present invention, the surface of an iron alloy material is subjected to nitriding treatment, and the nitrided material is subjected to thermal diffusion treatment in a treatment agent containing a group Va element. By combining carbon and nitrogen through chemical affinity at the treatment temperature, a layer consisting of carbonitride of group Va elements and a layer consisting of an iron alloy containing nitrogen as a solid solution are formed on the surface of the treated material. It is.

鉄合金材料としては、少くとも0.2重量%の炭
素を含むものを用いる。何故なら、良質な炭窒化
物層を形成するには、鉄合金材料中に0.2重量%
以上の炭素が含有されている必要があるからであ
る。なお、炭素の含有が0.2重量%以下であつて
も、窒化処理に先立つて、あるいは窒化処理時ま
たは処理後に浸炭処理を行なつて、炭窒化物形成
処理を行なう前に表面部の炭素量を0.2重量%以
上に増加させておいてもよい。
As the iron alloy material, one containing at least 0.2% by weight of carbon is used. This is because in order to form a high-quality carbonitride layer, 0.2% by weight is required in the iron alloy material.
This is because the above amount of carbon needs to be contained. Even if the carbon content is 0.2% by weight or less, carburizing may be performed prior to nitriding, during or after nitriding to reduce the amount of carbon on the surface before carbonitride formation. It may be increased to 0.2% by weight or more.

窒化処理は、ガス窒化、ガス軟窒化、塩浴軟窒
化、グロー放電窒化など、如何なる方法でもよ
い。窒化層の窒素濃度は高い方が望ましく、また
窒化層深さは深い方が望ましい。窒化処理後に浸
炭処理を行なう場合には、浸炭処理中に材料中の
窒素が内部深くに拡散移動して材料表面部の窒素
が減少するので、窒化処理は十分に深く、窒素濃
度が高くなるように行なわれるべきであり、かつ
浸炭処理は短時間で行なわれるべきである。
The nitriding treatment may be performed using any method such as gas nitriding, gas soft nitriding, salt bath soft nitriding, glow discharge nitriding, or the like. It is desirable that the nitrogen concentration of the nitrided layer is high, and the depth of the nitrided layer is desirably deep. When carburizing is performed after nitriding, the nitrogen in the material diffuses deep into the material during carburizing, reducing the amount of nitrogen on the surface of the material. The carburizing treatment should be carried out in a short period of time.

炭窒化物層形成処理は、溶融塩浸漬法、溶融塩
電解法、粉末パツク法、スラリー法、流動槽炉法
などで行なうことができ、処理剤中の第Va族元
素と鉄合金材料中の炭素および窒素を結合せしめ
る。処理温度は600℃程度以上、材料の融点以下
で行ない、実用上800℃〜1200℃程度が望まし
い。処理時間は30分〜24時間程度である。電解法
では陰極電流密度0.01〜3A/cm2程度が適当であ
る。
Carbonitride layer formation treatment can be performed by molten salt immersion method, molten salt electrolysis method, powder pack method, slurry method, fluidized bath furnace method, etc. Combines carbon and nitrogen. The treatment temperature is about 600°C or higher and below the melting point of the material, and practically 800°C to 1200°C is desirable. Processing time is about 30 minutes to 24 hours. In the electrolytic method, a cathode current density of about 0.01 to 3 A/cm 2 is appropriate.

処理温度を高く、処理時間を長くすると形成さ
れる表面層は厚くなるが、層厚さの増大とともに
層に微細な穴状の欠陥が生じる傾向が認められ、
耐ピツチング性、耐摩耗性を低下せしめる。欠陥
が著しく認められる限界厚さは第Va族元素の種
類、窒化条件、鉄合金材料の種類、炭窒化物層形
成処理条件に支配されて一概に言えないが、10μ
m以下であればほとんど上記欠陥の問題は生じな
い。
When the treatment temperature is increased and the treatment time is increased, the surface layer formed becomes thicker, but as the layer thickness increases, it is observed that fine hole-like defects tend to occur in the layer.
Decreases pitting resistance and wear resistance. The critical thickness at which defects are significantly observed cannot be definitively stated as it depends on the type of Group Va element, nitriding conditions, type of iron alloy material, and carbonitride layer forming treatment conditions, but it is 10 μm.
If it is less than m, the above defect problem will hardly occur.

本発明の処理によるときは、鉄合金材料の表面
に耐摩耗性、靭性にすぐれた第Va族の炭窒化物
よりなる被覆層が形成される。また本発明の処理
では層形成には母材中の炭素とともに窒素が第
Va族元素と結合することによりなされるので、
炭化物層形成の場合よりも所定の層厚さが得られ
る時間が短縮される。また、本発明では炭窒化物
層の直下に窒素を固溶した鉄合金からなる層が形
成されるので表面層直下部分でも充分な焼入れ硬
さを得ることが出来る。従つて薄肉の材料でも母
材に充分な焼入硬化を与えることができる。
When the treatment of the present invention is performed, a coating layer made of Group Va carbonitride having excellent wear resistance and toughness is formed on the surface of the iron alloy material. In addition, in the process of the present invention, nitrogen is used together with carbon in the base material to form the layer.
This is done by combining with Va group elements, so
The time required to obtain a given layer thickness is shorter than in the case of carbide layer formation. Furthermore, in the present invention, since a layer made of an iron alloy containing nitrogen as a solid solution is formed directly below the carbonitride layer, sufficient quenching hardness can be obtained even in the portion directly below the surface layer. Therefore, even a thin material can be sufficiently quenched and hardened to the base material.

実験例 1 直径20mmのJIS SKD61試片(無処理試片)お
よびこれに塩浴窒化処理を施した試片(窒化処理
試片)を準備した。上記の塩浴窒化処理は、浴組
成が73%(NaCH+KCN)、15%KCl、12%
Na2CO3で560℃の塩浴中に2時間浸漬する条件で
行なつた。なお本実施例および以下の実施例にお
いて%は重量%である。次に、これ等試片を酸化
バナジウム(V2O5)20%および炭化ボロン
(B4C)10%を含有せしめた1000℃の溶融硼砂浴
に30分〜16時間浸漬後取出して油冷した。付着浴
剤を洗滌除去後、断面を研磨して表面に形成され
た層の厚さを測定した。8μmおよび6μm厚さ
の層は窒化処理試片ではそれぞれ8時間および4
時間で形成されたが、無処理試片ではそれぞれ16
時間および8時間と2倍の時間がかかつた。母材
断面の硬さ分布測定結果は第1図に示す如くで、
線Bに示す無処理試片では形成層(バナジウムの
炭化物層)直下では硬さの低下がみられたが、線
Aに示す窒化処理試片ではこのような硬さの低下
はほとんど認められなかつた。
Experimental Example 1 A JIS SKD61 specimen with a diameter of 20 mm (untreated specimen) and a specimen subjected to salt bath nitriding treatment (nitrided specimen) were prepared. The above salt bath nitriding treatment has a bath composition of 73% (NaCH + KCN), 15% KCl, 12%
The test was carried out under the condition of immersion in a Na 2 CO 3 salt bath at 560° C. for 2 hours. Note that in this example and the following examples, % is % by weight. Next, these specimens were immersed in a 1000°C molten borax bath containing 20% vanadium oxide (V 2 O 5 ) and 10% boron carbide (B 4 C) for 30 minutes to 16 hours, and then taken out and cooled in oil. did. After washing off the adhering bath agent, the cross section was polished and the thickness of the layer formed on the surface was measured. The 8 μm and 6 μm thick layers were tested for 8 hours and 4 hours, respectively, on the nitrided specimens.
16 hours each in the untreated specimen.
It took twice as long, 8 hours. The hardness distribution measurement results of the cross section of the base material are shown in Figure 1.
In the untreated specimen shown in line B, a decrease in hardness was observed immediately below the formation layer (vanadium carbide layer), but in the nitrided specimen shown in line A, almost no such decrease in hardness was observed. Ta.

また窒化処理試片(硼砂浴処理1時間)の場
合、断面のX線マイクロアナライザー分析では第
2図に示すように層中にはVとともにC、Nが認
められ、X線回折で求められた格子常数から形成
された層はV(C、N)で示されるバナジウムの
炭窒化物層であることが確められた。窒素量は10
%に達した。また、炭窒化物層の直下には窒素を
固溶した鉄合金からなる層が形成され、これは第
1図の線Aの硬さの低下しない部分に相当した。
In addition, in the case of the nitrided specimen (borax bath treatment for 1 hour), cross-sectional X-ray microanalyzer analysis revealed C and N along with V in the layer as shown in Figure 2, which was determined by X-ray diffraction. The layer formed from the lattice constant was confirmed to be a carbonitride layer of vanadium, denoted V(C,N). The amount of nitrogen is 10
% has been reached. Further, a layer made of an iron alloy containing nitrogen as a solid solution was formed immediately below the carbonitride layer, and this corresponded to the portion where the hardness did not decrease as indicated by line A in FIG.

実験例 2 ガス組成がH2:N2=2:1、圧力が5toorの雰
囲気中において550℃、3時間の条件でイオン窒
化された直径7mmのS45C試片および無処理の
S45C試片について20%のFe―V粉(82%バナジ
ウム含有、−100メツシユ)の添加された900℃の
溶融硼砂浴中で30分〜16時間浸漬処理した。断面
での厚さ観察からこの場合も窒化処理試片での層
の成長速度は無処理試片のそれに比べて大(約
1.5倍)であることがわかつた。また、窒化処理
試片には、V(C、N)よりなる表面層とその直
下に窒素を含む鉄合金からなる内層とが形成され
ており、無処理片における如き層直下の硬さの低
下はほとんど認められなかつた。
Experimental Example 2 S45C specimens with a diameter of 7 mm were ion-nitrided at 550°C for 3 hours in an atmosphere with a gas composition of H 2 :N 2 = 2:1 and a pressure of 5 torr, and an untreated S45C specimen.
The S45C specimen was immersed for 30 minutes to 16 hours in a molten borax bath at 900°C to which 20% Fe-V powder (containing 82% vanadium, -100 mesh) was added. Observation of the thickness in the cross section shows that the growth rate of the layer on the nitrided specimen is faster than that on the untreated specimen (approximately
1.5 times). In addition, the nitrided specimen has a surface layer made of V (C, N) and an inner layer made of an iron alloy containing nitrogen formed immediately below it, which reduces the hardness directly under the layer as in the untreated specimen. was hardly recognized.

実験例 3 実験例1と同様のSKD61の無処理試片および
窒化処理試片を準備した。そしてこれ等を、鉄―
ニオビウム―タンタル(Fe―Nb―Ta)粉末(5
%ニオビウム、11%タンタル含有、−100メツシ
ユ)20%が添加された1000℃の溶融硼砂浴中に30
分〜4時間浸漬した。この場合も4μm、5μm
の層を形成するのに窒化処理試片はそれぞれ1時
間、2時間、無処理試片では2時間、4時間を要
した。
Experimental Example 3 An untreated specimen and a nitrided specimen of SKD61 similar to those in Experimental Example 1 were prepared. And these, iron-
Niobium-tantalum (Fe-Nb-Ta) powder (5
% niobium, 11% tantalum, −100% mesh) in a molten borax bath at 1000 °C with the addition of 20%
Soaked for minutes to 4 hours. In this case too, 4μm, 5μm
It took 1 hour and 2 hours for the nitrided sample to form the layer, and 2 hours and 4 hours for the untreated sample, respectively.

窒化処理試片について、上記浴中で30分の熱拡
散処理をした場合、第3図に示すようにX線マイ
クロアナライザー分析によつて表面層にはCと同
じくNが含有されていることが確められた。Ta
もNbも同じ程度の濃度変化を示しており、X線
回折結果を総合すると、Nb、Ta(C、N)で表
される炭窒化物からなる表面層と窒素を固溶した
鉄合金からなる内層が形成されていると判断され
た。第4図に示すように無処理試片(線B)では
層直下の硬度は減少するが、窒化処理試片(線
A)ではかかる硬度減少は認められなかつた。
When the nitrided specimen was subjected to thermal diffusion treatment for 30 minutes in the above bath, X-ray microanalyzer analysis revealed that the surface layer contained N as well as C, as shown in Figure 3. Confirmed. Ta
Both Nb and Nb show similar concentration changes, and when the X-ray diffraction results are taken together, the surface layer consists of carbonitrides represented by Nb and Ta (C, N), and an iron alloy containing nitrogen as a solid solution. It was determined that an inner layer was formed. As shown in FIG. 4, the hardness directly under the layer in the untreated specimen (line B) decreased, but no such decrease in hardness was observed in the nitrided specimen (line A).

実験例 4 実験例1と同様にして窒化処理したSKD61試
片を酸化ニオビウム(Nb2O5)10%添加の1000℃
の溶融硼砂浴に浸漬しこれを陰極、黒鉛容器を陽
極として0.05A/cm2の陰極電流密度で2時間電解
処理した。形成された層は第5図の顕微鏡写真に
示すように滑らかな表面の層で、Nb(C、N)
の炭窒化物からなることが確められた。また、表
面層である炭窒化物層の直下には、窒素を含む鉄
合金からなる内層が形成されており、表面層直下
の硬さの低下はほとんど認められなかつた。
Experimental Example 4 An SKD61 specimen nitrided in the same manner as in Experimental Example 1 was heated at 1000°C with the addition of 10% niobium oxide (Nb 2 O 5 ).
This was immersed in a molten borax bath and electrolytically treated for 2 hours at a cathode current density of 0.05 A/cm 2 using the graphite container as a cathode and an anode. The formed layer has a smooth surface as shown in the micrograph in Figure 5, and is composed of Nb(C,N).
It was confirmed that it consists of carbonitrides. Furthermore, an inner layer made of an iron alloy containing nitrogen was formed directly below the carbonitride layer, which is the surface layer, and almost no decrease in hardness was observed immediately below the surface layer.

実験例 5 浴組成が73%(NaCN+KCNO)、15%KCl、12
%Na2CO3の塩浴中で570℃、90分侵漬する条件で
塩浴窒化処理されたS45C試片を、窒素ガスで保
護された10%Fe―V粉(82%バナジウム含有、−
100メツシユ)添加の塩化バリウム(BaCl2)から
なる1000℃の浴に、30分浸漬処理した。形成され
た3μm厚さの層についてX線マイクロアナライ
ザーによる分析を行なつた結果、第6図に示すよ
うにV、NとCを含むV(C、N)で表わされる
炭窒化物層であることが確められた。また顕微鏡
組織観察によつて母材の層に接した部分に、窒素
の存在を示す組織が観察され、表面層直下の硬さ
の低下はほとんど認められなかつた。
Experimental example 5 Bath composition is 73% (NaCN + KCNO), 15% KCl, 12
A S45C specimen that had been nitrided in a salt bath of 570°C for 90 minutes with 10% Fe-V powder (containing 82% vanadium, -
The sample was immersed for 30 minutes in a 1000°C bath containing barium chloride (BaCl 2 ) added with 100 mesh. Analysis of the formed 3 μm thick layer using an X-ray microanalyzer revealed that it was a carbonitride layer represented by V (C, N) containing V, N and C, as shown in Figure 6. This was confirmed. Microscopic structure observation revealed that a structure indicating the presence of nitrogen was observed in the portion in contact with the base material layer, and almost no decrease in hardness was observed immediately below the surface layer.

実験例 6 50%NH3、20%N2、15%H2、15%CO混合ガス
中において570℃、150分の条件でガス軟窒化処理
を施したSKD11丸棒試片および無処理のSKD11
丸棒試片を、ステンレス鋼容器に入れた−100メ
ツシユのFe―V粉(82%バナジウム含有、−100
メツシユ)と10%の硼フツ化カリウム(KBF4
粉からなる混合粉末に埋設し、容器ごと大気炉で
600℃、16時間加熱した。容器を炉から取出して
空冷後、粉末中から試片を取出した。表面に形成
された層の厚さを測定したところ、窒化処理片で
は2〜3μm、無処理片では0.7μmであり、窒
化処理片の方が厚かつた。窒化処理片についてX
線マイクロアナライザーで分析したところ、第7
図に示すように層はVとN、Cからなつており、
V(C、N)炭窒化物層であることが確められ
た。
Experimental example 6 SKD11 round bar specimen subjected to gas soft nitriding treatment at 570°C for 150 minutes in a mixed gas of 50% NH 3 , 20% N 2 , 15% H 2 , 15% CO and untreated SKD11
A round bar specimen was placed in a stainless steel container with -100 mesh of Fe-V powder (containing 82% vanadium, -100 mesh).
10% potassium borofluoride (KBF 4 )
Bury the container in a mixed powder and heat it in an atmospheric furnace.
Heated at 600°C for 16 hours. The container was taken out from the furnace and after air cooling, a test piece was taken out from the powder. When the thickness of the layer formed on the surface was measured, it was 2 to 3 μm for the nitrided piece and 0.7 μm for the untreated piece, and the nitrided piece was thicker. About the nitrided piece
When analyzed with a line microanalyzer, the seventh
As shown in the figure, the layer consists of V, N, and C.
It was confirmed that the layer was a V(C,N) carbonitride layer.

実験例 7 NH3中において500℃、60時間の条件でガス窒
化処理を施したS45C丸棒および無処理のS45C丸
棒を実験例6と同様の粉末中に埋設して、650
℃、16時間加熱した。表面に形成された層の厚さ
を測定したところ、窒化処理片では5μm、無処
理片では2.5μmであり、窒化処理片の方が厚か
つた。第8図に示すようにこの場合も窒化処理片
に形成された層はV、N、Cからなつていること
が認められV(C、N)層が最表面に形成されて
いることが確かめられた。
Experimental Example 7 An S45C round bar that had been gas nitrided in NH 3 at 500°C for 60 hours and an untreated S45C round bar were buried in the same powder as in Experimental Example 6.
℃ for 16 hours. When the thickness of the layer formed on the surface was measured, it was 5 μm for the nitrided piece and 2.5 μm for the untreated piece, with the nitrided piece being thicker. As shown in Figure 8, the layer formed on the nitrided piece was also found to be composed of V, N, and C, confirming that the V(C,N) layer was formed on the outermost surface. It was done.

実験例 8 実験例7と同様の条件でガス窒化処理された
SK4丸棒を、Fe―V(82%バナジウム含有、−
100メツシユ)に5%の塩化アンモニウム
(NH4Cl)を添加した混合粉処理剤を用いて1000
℃、5時間処理した。表面に形成された層の厚さ
を測定したところ15μmであり、同一処理剤中で
処理した無処理のSK4丸棒に形成された層厚さが
11μmであるのに対し、著しく厚かつた。第9図
に示すようにV、N、Cから層が形成されてお
り、X線回折ではVC、VNに相当する回折線が認
められ、表面層はV(C、N)の炭窒化物である
ことが確められた。また表面層である炭窒化物層
の直下には窒素を含む鉄合金からなる内層が形成
されており、表面層直下の硬さの低下はほとんど
認められなかつた。
Experimental Example 8 Gas nitriding was performed under the same conditions as Experimental Example 7.
Fe-V (containing 82% vanadium, -
1000 mesh) using a mixed powder treatment agent with 5% ammonium chloride (NH 4 Cl) added.
℃ for 5 hours. The thickness of the layer formed on the surface was measured and was 15 μm, which is the same as that of the untreated SK4 round bar treated in the same treatment agent.
11 μm, it was significantly thicker. As shown in Figure 9, a layer is formed from V, N, and C, and diffraction lines corresponding to VC and VN are observed in X-ray diffraction, and the surface layer is made of V(C,N) carbonitride. One thing was confirmed. Further, an inner layer made of an iron alloy containing nitrogen was formed immediately below the carbonitride layer, which is the surface layer, and almost no decrease in hardness was observed immediately below the surface layer.

実験例 9 −100メツシユのFe―Nb―Ta(51%ニオビウ
ム、11%タンタル含有)と10%のKBF4の混合粉
末を用いて実験例6と同様な条件で窒化された
SK4棒を1000℃、5時間処理した。表面に形成さ
れた層の厚さは13μm、同時に同一条件で処理し
た無処理SK4丸棒表面に形成された層の厚さは11
μmであつて、窒化処理を施すことにより、層の
成長速度が大きかつた。形成された表面層は、第
10図に示すようにNb、Ta、C、Nからなつて
おり、Nb、Ta(C、N)が形成されていること
が確かめられた。また、炭窒化物層の直下には、
窒素を固溶した鉄合金からなる層が形成されてお
り、このため層直下の硬さの低下はほとんど認め
られなかつた。
Experimental Example 9 -Nitrided under the same conditions as Experimental Example 6 using a mixed powder of 100 mesh Fe-Nb-Ta (containing 51% niobium, 11% tantalum) and 10% KBF4 .
The SK4 bar was treated at 1000°C for 5 hours. The thickness of the layer formed on the surface was 13μm, and the thickness of the layer formed on the surface of the untreated SK4 round bar treated under the same conditions was 11μm.
μm, and the growth rate of the layer was high by performing the nitriding treatment. The formed surface layer was composed of Nb, Ta, C, and N, as shown in FIG. 10, and it was confirmed that Nb and Ta (C, N) were formed. In addition, directly below the carbonitride layer,
A layer made of an iron alloy containing nitrogen as a solid solution was formed, and therefore, there was hardly any decrease in hardness immediately below the layer.

実験例 10 アルミナ(Al2O3)40%、Fe―V(82%バナジ
ウム含有、−100メツシユ)55%、塩化アンモニウ
ム(NH4Cl)5%からなる混合粉をエチルアルコ
ールでエチルセルロースを溶かした溶媒を用いて
スラリー化した。実験例7と同じ条件でガス窒化
されたSK4に3〜5mm厚みに上記スラリーを塗布
した後、ステンレス製容器中に装入し、アルゴン
雰囲気中にて1000℃、5時間加熱した。表面に形
成された層の厚さの測定結果から、窒化処理試片
での層の成長速度は、同一条件で処理した無処理
試片に比べて約1.5倍であることがわかつた。形
成された表面層をX線マイクロアナライザーによ
る分析を行なつた結果、V(C、N)よりなつて
いることが確かめられた。この炭窒化物層の直下
には窒素を固溶した鉄合金からなる層が形成され
ており、このため層直下の硬さの低下はほとんど
認められなかつた。
Experimental example 10 A mixed powder consisting of 40% alumina (Al 2 O 3 ), 55% Fe-V (containing 82% vanadium, -100 mesh), and 5% ammonium chloride (NH 4 Cl) was dissolved in ethyl cellulose with ethyl alcohol. It was made into a slurry using a solvent. The slurry was applied to a thickness of 3 to 5 mm on SK4 gas nitrided under the same conditions as in Experimental Example 7, and then placed in a stainless steel container and heated at 1000° C. for 5 hours in an argon atmosphere. From the results of measuring the thickness of the layer formed on the surface, it was found that the growth rate of the layer on the nitrided specimen was approximately 1.5 times that of the untreated specimen treated under the same conditions. Analysis of the formed surface layer using an X-ray microanalyzer revealed that it was composed of V(C,N). Directly below this carbonitride layer, a layer made of an iron alloy containing nitrogen as a solid solution was formed, and therefore, almost no decrease in hardness was observed directly below the layer.

実験例 11 アルミナ(Al2O3)60%、Fe―V38.8%、
NH4Cl 1.2%からなる混合粉末を流動槽炉内に入
れ、槽の下部より導入したアルゴンガスで上記混
合粉末を流動状態とした。この流動槽炉内に実験
例1と同様に塩浴窒化処理されたSKD61棒およ
び無処理のSKD61棒を装入し、1000℃で8時間
保持後取出して空冷焼入れを施した。この表面に
形成された層の厚さは窒化処理試片では10μm、
無処理試片では8μmであつた。窒化処理
SKD61棒には第11図に示すようにV(C、
N)の炭窒化物層が形成された。この炭窒化物層
直下には窒素を含有する鉄合金からなる層が形成
されており、そのため層直下の硬さの低下はほと
んど認められなかつた。
Experimental example 11 Alumina (Al 2 O 3 ) 60%, Fe-V38.8%,
A mixed powder consisting of 1.2% NH 4 Cl was placed in a fluidized tank furnace, and the mixed powder was brought into a fluidized state with argon gas introduced from the bottom of the tank. SKD61 rods subjected to salt bath nitriding treatment and untreated SKD61 rods were charged into this fluidized bath furnace in the same manner as in Experimental Example 1, and after being held at 1000° C. for 8 hours, they were taken out and air-cooled and quenched. The thickness of the layer formed on this surface was 10 μm for the nitrided specimen.
The thickness of the untreated specimen was 8 μm. Nitriding treatment
The SKD61 rod has V(C,
A carbonitride layer of N) was formed. A layer made of a nitrogen-containing iron alloy was formed immediately below this carbonitride layer, and therefore, almost no decrease in hardness was observed immediately below the layer.

実験例 12 直径8mmピツチのSKH9製標準ねじ切りタツプ
を、V2O530%、B4C15%を含む溶融硼砂浴で1025
℃、1時間浸漬処理し、表面にバナジウムの炭化
物層を形成させた。その後真空炉で1190℃、30分
加熱し、ガス冷却により母材を焼入れ硬化させ
た。
Experimental example 12 A standard thread cutting tap made of SKH9 with a pitch of 8 mm in diameter was heated to 1025 mm in a molten borax bath containing 30% V 2 O 5 and 15% B 4 C.
℃ for 1 hour to form a vanadium carbide layer on the surface. Thereafter, the base material was heated in a vacuum furnace at 1190°C for 30 minutes, and the base material was quenched and hardened by gas cooling.

また上記標準ねじ切りタツプ浴組成が53%
NaCNO、12%KCl、35%CaCl2の塩浴中でに560
℃、20分の条件で塩浴軟窒化処理を施した後、溶
融硼砂浴で上記と同様の処理を行ない表面にバナ
ジウムの炭窒化物層を形成し、母材焼入れ硬化を
行なつた。
In addition, the standard thread cutting tap bath composition above is 53%.
560 in a salt bath of NaCNO, 12% KCl, 35% CaCl2
After performing salt bath soft nitriding treatment at ℃ for 20 minutes, the same treatment as above was performed in a molten borax bath to form a vanadium carbonitride layer on the surface, and the base material was quenched and hardened.

SK45C材のねじ切りを行なつたところ、市販
の窒化処理タツプの寿命は約1500個(孔あけ
数)、上記炭化物層を形成したタツプは約2500
個、上記炭窒化層を形成したタツプは約3000個で
あつた。本例によつても、本発明によれば、表面
層直下の部分には、窒素を含む鉄合金からなる層
も形成され、充分な焼入れ硬化を行なうことがで
きることが分る。
When thread cutting was performed on SK45C material, the lifespan of commercially available nitrided taps was approximately 1,500 (number of holes drilled), and the lifespan of taps with the carbide layer formed was approximately 2,500.
There were approximately 3,000 taps on which the carbonitrided layer was formed. In this example as well, it can be seen that according to the present invention, a layer made of an iron alloy containing nitrogen is also formed in the portion immediately below the surface layer, and sufficient quench hardening can be performed.

以上説明したように本発明は鉄合金材料に予め
窒化処理を施し、これに外部から第Va族元素を
供給して熱拡散により第Va族元素と材料中の窒
素および炭素を結合せしめて第Va族元素の炭窒
化物よりなる表面層と窒素を含む鉄合金よりなる
層を形成せしめるものであり、材料には表面状態
の良好な炭窒化物層が形成される。また、形成層
直下の部分にも充分な焼入れ硬化を行なうことが
できる。更に処理も短時間で行ない得る。本発明
は切削工具等に適用して工具寿命を大きく向上さ
せることができる。
As explained above, in the present invention, an iron alloy material is nitrided in advance, a group Va element is supplied from the outside, and the group Va element is combined with nitrogen and carbon in the material through thermal diffusion. A surface layer made of a carbonitride of group elements and a layer made of an iron alloy containing nitrogen are formed, and a carbonitride layer with a good surface condition is formed on the material. In addition, sufficient quench hardening can be performed on the portion immediately below the forming layer. Furthermore, processing can be carried out in a short time. The present invention can be applied to cutting tools and the like to greatly improve tool life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第4図は、実験例1および実験例
3において、本発明により処理された鉄合金材料
の母材部分の硬さを示す図、第2図、第3図、第
6図、第7図、第8図、第9図、第10図、およ
び第11図はそれぞれ実験例1、3、5、6、
7、8、9および10において本発明により処理さ
れた鉄合金材料の表面部のX線マイクロアナライ
ザー分析結果を示す図、第5図は実験例4におい
て本発明の処理により形成された表面層の断面を
示す顕微鏡写真(400倍)である。
1 and 4 are diagrams showing the hardness of the base metal portion of the iron alloy material treated according to the present invention in Experimental Example 1 and Experimental Example 3, FIG. 2, FIG. 3, FIG. 6, Figures 7, 8, 9, 10, and 11 are experimental examples 1, 3, 5, and 6, respectively.
Figures 7, 8, 9, and 10 show the results of X-ray microanalyzer analysis of the surface portion of the iron alloy material treated according to the present invention. This is a micrograph (400x) showing a cross section.

Claims (1)

【特許請求の範囲】 1 0.2重量%以上の炭素を含む鉄合金材料の表
面に窒化処理を施した後、該鉄合金材料に第Va
族元素を含む処理剤を用いた熱拡散処理を施し、
鉄合金材料表面に周期律表第Va族元素の炭窒化
物からなる表面層とその直下に窒素を固溶した鉄
合金からなる内層とを形成させることを特徴とす
る鉄合金材料の表面硬化処理方法。 2 上記熱拡散処理は、第Va族元素と硼酸塩と
を含む溶融塩浴処理剤中で行なう特許請求の範囲
第1項記載の鉄合金材料の表面硬化処理方法。 3 上記熱拡散処理は、第Va族元素を含む溶融
塩浴中に鉄合金材料を浸漬することにより行なう
特許請求の範囲第1項記載の鉄合金材料の表面硬
化処理方法。 4 上記熱拡散処理は、第Va族元素を含む溶融
塩浴中で鉄合金材料を陰極とし、陰極電流密度
0.01〜3A/cm2で電解処理により行なう特許請求
の範囲第2項記載の鉄合金材料の表面硬化処理方
法。 5 上記熱拡散処理は、第Va族元素を含む粉末
処理剤中に鉄合金材料を埋設し、または、鉄合金
材料にスラリー状の粉末処理剤を塗布し、または
第Va族元素を含む粉末処理剤を流動状態として
その中に鉄合金材料を出し入れすることにより行
なう特許請求の範囲第1項記載の鉄合金材料の表
面硬化処理方法。
[Claims] 1. After nitriding the surface of an iron alloy material containing 0.2% by weight or more of carbon, the iron alloy material has a Va.
A thermal diffusion treatment is performed using a treatment agent containing group elements,
A surface hardening treatment for an iron alloy material, characterized by forming a surface layer made of carbonitride of group Va elements of the periodic table on the surface of the iron alloy material, and an inner layer made of an iron alloy containing nitrogen as a solid solution immediately below the surface layer. Method. 2. The surface hardening method for iron alloy materials according to claim 1, wherein the thermal diffusion treatment is carried out in a molten salt bath treatment agent containing a Group Va element and a borate. 3. The surface hardening treatment method for iron alloy material according to claim 1, wherein the thermal diffusion treatment is performed by immersing the iron alloy material in a molten salt bath containing Group Va elements. 4 The above thermal diffusion treatment uses an iron alloy material as a cathode in a molten salt bath containing Group Va elements, and the cathode current density is
3. The method for surface hardening of iron alloy materials according to claim 2, wherein the surface hardening treatment is carried out by electrolytic treatment at 0.01 to 3 A/cm 2 . 5 The above thermal diffusion treatment is performed by embedding the iron alloy material in a powder treatment agent containing Group Va elements, applying a slurry powder treatment agent to the iron alloy material, or performing powder treatment containing Group Va elements. 2. A method for surface hardening treatment of an iron alloy material according to claim 1, which is carried out by placing the agent in a fluidized state and inserting and removing the iron alloy material therein.
JP6279683A 1983-04-08 1983-04-08 Method for hardening surface of iron alloy material Granted JPS59190355A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6279683A JPS59190355A (en) 1983-04-08 1983-04-08 Method for hardening surface of iron alloy material
EP19840103561 EP0122529B1 (en) 1983-04-08 1984-03-30 A method for surface hardening a ferrous-alloy article and the resulting product
DE8484103561T DE3462701D1 (en) 1983-04-08 1984-03-30 A method for surface hardening a ferrous-alloy article and the resulting product
AU26337/84A AU542081B2 (en) 1983-04-08 1984-04-02 Hardening of ferrous alloys by coating with carbo-nitride of vanadiam, niobiam or tantalum
CA000451474A CA1218585A (en) 1983-04-08 1984-04-06 Method for surface hardening a ferrous-alloy article and the resulting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279683A JPS59190355A (en) 1983-04-08 1983-04-08 Method for hardening surface of iron alloy material

Publications (2)

Publication Number Publication Date
JPS59190355A JPS59190355A (en) 1984-10-29
JPS622628B2 true JPS622628B2 (en) 1987-01-21

Family

ID=13210667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279683A Granted JPS59190355A (en) 1983-04-08 1983-04-08 Method for hardening surface of iron alloy material

Country Status (5)

Country Link
EP (1) EP0122529B1 (en)
JP (1) JPS59190355A (en)
AU (1) AU542081B2 (en)
CA (1) CA1218585A (en)
DE (1) DE3462701D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU570799B2 (en) * 1984-05-17 1988-03-24 Toyota Chuo Kenkyusho K.K. Vapour phase coating of carbide in fluidised bed
JPS6270561A (en) * 1985-09-24 1987-04-01 Toyota Central Res & Dev Lab Inc Surface treatment of iron alloy material
AU582000B2 (en) * 1985-06-17 1989-03-09 Toyota Chuo Kenkyusho K.K. Treating the surface of iron alloy materials
JPS6280258A (en) * 1985-10-03 1987-04-13 Toyota Central Res & Dev Lab Inc Method and apparatus for surface treatment
US4818351A (en) * 1986-07-30 1989-04-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for the surface treatment of an iron or iron alloy article
CN105331926B (en) * 2015-11-05 2018-03-20 广西大学 N C Cr V RE multicomponent thermochemical treatment materials for 45 steel surface reinforcements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000814B (en) * 1977-07-07 1982-03-17 Toyoda Chuo Kenkyusho Kk Coating ferrous articles
JPS5514839A (en) * 1978-07-14 1980-02-01 Kawasaki Heavy Ind Ltd Treating method for ion nitriding
GB2055404B (en) * 1979-06-26 1983-02-16 Lucas Industries Ltd Gas nitriding steel
US4342605A (en) * 1979-07-05 1982-08-03 Honda Giken Kogyo Kabushiki Kaisha Gas soft-nitriding method

Also Published As

Publication number Publication date
EP0122529B1 (en) 1987-03-18
DE3462701D1 (en) 1987-04-23
AU542081B2 (en) 1985-02-07
EP0122529A1 (en) 1984-10-24
AU2633784A (en) 1984-10-11
JPS59190355A (en) 1984-10-29
CA1218585A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
EP0264448B1 (en) Method of treating the surface of iron alloy materials
EP0252479B1 (en) Method for surface treatment and treating material therefor
US3634145A (en) Case-hardened metals
US3719518A (en) Process of forming a carbide layer of vanadium, niobium or tantalum upon a steel surface
JP2011504548A (en) Method for boronation of coatings using a fast electrolysis process
US4453987A (en) Method for producing edged tools
US4818351A (en) Method for the surface treatment of an iron or iron alloy article
JPS622628B2 (en)
US3922405A (en) Method for forming of a carbide layer of a V-a group element of the periodic table on the surface of an iron, ferrous alloy or cemented carbide article
US3671297A (en) Method of chromizing in a fused salt bath
CA1036976A (en) Anodically dissolving group v-a element into molten borate bath
US3885059A (en) Method for forming a carbide layer of a IV-b group element of the periodic table on the surface of a cemented carbide article
US3912827A (en) Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article
US2237314A (en) Process of making cadmized bearings
US5653822A (en) Coating method of gas carburizing highly alloyed steels
US3885064A (en) Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article
JP3939451B2 (en) Method for salt bath treatment of iron-based materials
EP0063386B1 (en) Method for forming a carbide layer on the surface of a ferrous alloy article or a cemented carbide article
JPH05140725A (en) Treatment for surface of titanium material
US4804445A (en) Method for the surface treatment of an iron or iron alloy article
JPS61291962A (en) Surface treatment of iron alloy material
US3959092A (en) Method for a surface treatment of cemented carbide article
CA1052317A (en) Electrolytic formation of group va carbide on an iron, ferrous alloy or cemented carbide article
JPH03202460A (en) Surface treatment of iron alloy material and treating agent
JPS6141984B2 (en)