JP2000119839A - Boriding treating method for steel member surface - Google Patents

Boriding treating method for steel member surface

Info

Publication number
JP2000119839A
JP2000119839A JP10300368A JP30036898A JP2000119839A JP 2000119839 A JP2000119839 A JP 2000119839A JP 10300368 A JP10300368 A JP 10300368A JP 30036898 A JP30036898 A JP 30036898A JP 2000119839 A JP2000119839 A JP 2000119839A
Authority
JP
Japan
Prior art keywords
steel member
gas
boron
boring
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10300368A
Other languages
Japanese (ja)
Inventor
Moroo Nakagawa
師夫 中川
Yukio Saito
幸雄 斉藤
Junji Sakai
淳次 酒井
Osamu Shimotamura
修 下タ村
Takehisa Kimura
武久 木村
Hironori Shimogama
宏徳 下釜
Tsutomu Nishijo
勉 西場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Parker Netsushori Kogyo KK
Original Assignee
Hitachi Ltd
Parker Netsushori Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Parker Netsushori Kogyo KK filed Critical Hitachi Ltd
Priority to JP10300368A priority Critical patent/JP2000119839A/en
Publication of JP2000119839A publication Critical patent/JP2000119839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance and wear resistance of a steel member without causing its deformation and the cracking and peeling of a film by coating the steel member surface with a boriding treating agent, executing heating to form a compd. of iron and boron and introducing gas from the outside at one time of the heating or cooling. SOLUTION: The surface of a steel member such as large steel parts or the like is coated with a boriding treating agent contg. a boron supplying source and a boriding accelerator, which is heated at about 900 deg.C to form a compd. of iron and boron. As the boron feeding source, amorphous boron, FeB, B4C, borax or the like are used. Moreover, as the boriding accelerator, NH4, Cl, KBF4 or the like is used, and, preferably, it is used jointly with a boriding conditioner. In this boriding treatment, at the time of the heating and/or cooling, gas is introduced from the outside. This gas introduction is executed preferably at the time between the start of the boriding or the finishing temp. and the maximum treating temp. Moreover, as the introducing gas, inert gas or reducing gas is preferable. In this way, the prolongation of the service life of a steel member such as parts in a bath of a continuous hot dip metal plating device or the like can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼部材表面の硼
化処理法に関し、特に連続溶融金属めっき装置において
シンクロールやサポートロールなどの浴中部品として用
いられる大型の鉄鋼部材表面の硼化処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boring treatment method for a steel member surface, and more particularly to a boring treatment method for a large steel member surface used as a bath part such as a sink roll and a support roll in a continuous hot-dip metal plating apparatus. About the law.

【0002】[0002]

【従来の技術】連続溶融金属めっき装置は、めっきしよ
うとする鋼板をロールなどを介して連続的に溶融金属か
らなるめっき浴中を通過させ、鋼板の表面にめっきを施
すのに用いられる。
2. Description of the Related Art A continuous hot-dip metal plating apparatus is used for continuously passing a steel sheet to be plated through a plating bath made of a molten metal via a roll or the like and plating the surface of the steel sheet.

【0003】めっき浴中で使用されるサポートロールや
シンクロール等の部品の材料としては、一般に耐食性に
優れた鋳鉄、ステンレス鋼、高クロム鋼などの鉄鋼材料
が用いられて来たが、溶融金属による腐食作用と鋼板と
の摩擦により摩耗が激しい。これを改善するために、サ
−メット、セラミックス等を溶射法、化学蒸着法(CV
D)や物理蒸着法(PVD)を利用して金属の表面を被
覆することが試みられている。例えば、特開昭61−3
7955号公報に見られる如くセラミックスをプラズマ
溶射することにより、耐食性、耐熱性、耐摩耗性等に優
れた金属浴用ロールを製造する技術があり、また、特開
昭62−127457号公報には、金属母材の表面に形
成されたセラミックスやサーメットの被膜を、レ−ザ光
線を照射して部分溶融させることにより、金属母材の高
温耐食性を向上させる試みがなされている。
[0003] As materials for components such as support rolls and sink rolls used in a plating bath, steel materials such as cast iron, stainless steel and high chromium steel, which are generally excellent in corrosion resistance, have been used. Wear is severe due to the corrosive action of steel and friction with the steel plate. In order to improve this, cermets, ceramics, etc. are sprayed by chemical spraying or chemical vapor deposition (CV).
Attempts have been made to coat metal surfaces using D) or physical vapor deposition (PVD). For example, JP-A-61-3
There is a technique for producing a metal bath roll excellent in corrosion resistance, heat resistance, abrasion resistance, etc. by plasma spraying ceramics as seen in JP-A-7955. Attempts have been made to improve the high-temperature corrosion resistance of the metal base material by irradiating a laser beam to partially melt the ceramic or cermet coating formed on the surface of the metal base material.

【0004】鉄鋼材料の表面にセラミックス膜を形成す
る方法としては、CVD、PVDや溶射法等、多くの方
法が開発されている。しかし、CVDやPVDでは、浴
中部品で必要とされる数十μm以上の厚膜を形成するの
は困難である。プラズマ溶射法では、厚膜は形成できる
が、被膜には小さなピンホ−ルが存在するため、ピンホ
−ルを通して溶融金属が浸入し、母材を腐食する恐れが
ある。また、被膜は剥離し易く、信頼性に乏しい。
[0004] As a method of forming a ceramic film on the surface of a steel material, many methods such as CVD, PVD and thermal spraying have been developed. However, in CVD or PVD, it is difficult to form a thick film having a thickness of several tens μm or more required for parts in a bath. In the plasma spraying method, a thick film can be formed. However, since a small pinhole exists in the coating, there is a possibility that molten metal may penetrate through the pinhole and corrode the base material. Further, the coating is easily peeled off and has poor reliability.

【0005】めっき浴中で使用されるロール等浴中部品
の表面保護のためには、緻密で密着性の良い膜厚数十μ
m以上の被膜又は層を形成する必要がある。そのために
は母材と表面被膜又は層が化学的反応で結合されている
ことが望ましい。
In order to protect the surface of parts in a bath such as a roll used in a plating bath, a film having a thickness of several tens μ
m or more coatings or layers must be formed. For this purpose, it is desirable that the base material and the surface coating or layer are bonded by a chemical reaction.

【0006】緻密なセラミックス層(窒化物、硼化物や
炭化物)を形成するには次のような方法がある。窒化物
層を形成する方法としてはタフトライド処理やイオン窒
化処理がある。更に、硼化物層を形成する方法としては
粉末法浸ボロン処理(例えば、日本金属学会講演概要
1971−10)及び溶融塩法浸ボロン処理(例えば、
日本金属学会講演概要 1972−4)等がある。ま
た、炭化物層を形成する方法としてはハロゲン化物を含
む気体中で加熱してチタン炭化物を被覆する方法[例え
ば、アイニヘ・アイゲンシャフテン・デル・ベルクスス
トフコンビナシオン・スタール・ミットチタンカルビド
ベルツク、メタロベルフラッチェ 14(1960)2
29頁:Einige Eigenschaften der Werkstoffkombinat
ion Stahl mit Titankarbiduberzug,Metalloberflache
14(1960)229]や溶融浴に炭化物を形成す
る金属を溶かし、それに鉄鋼材料を浸漬し、鉄鋼材料か
ら炭素が拡散して金属と結合し、炭化物を形成するする
方法[例えば、新井 透:金属材料 13,3(197
3)98]等がある。
There are the following methods for forming a dense ceramic layer (nitride, boride or carbide). As a method of forming a nitride layer, there are a tuftride treatment and an ion nitridation treatment. Further, as a method for forming a boride layer, there is a powder method immersion boron treatment (for example,
1971-10) and a molten salt method immersion boron treatment (for example,
Abstract of the Japan Institute of Metals 1972-4). Further, as a method of forming a carbide layer, a method of coating titanium carbide by heating in a gas containing a halide [e.g., Ainihe Eigenshaften del Bergsstoff combinational stadium mitt titanium carbidberg, Metallobell flache 14 (1960) 2
Page 29: Einige Eigenschaften der Werkstoffkombinat
ion Stahl mit Titankarbiduberzug, Metalloberflache
14 (1960) 229] or a method in which a metal that forms carbide is melted in a molten bath, a steel material is immersed therein, and carbon is diffused from the steel material to combine with the metal to form carbide [for example, Toru Arai: Metallic materials 13, 3 (197
3) 98].

【0007】なお、ロール等の浴中部品全体をセラミッ
クスで作ることも考えられるが、浴中部品は一般に大型
であり、全体をセラミックスで作ることは、技術的にも
難しく、経済的でもない。
Although it is conceivable to make the whole in-bath parts such as rolls with ceramics, the in-bath parts are generally large and it is technically difficult and not economical to make the whole in ceramics.

【0008】[0008]

【発明が解決しようとする課題】窒化物、硼化物、炭化
物等のセラミックスの中で、溶融金属に対する耐食性の
点では硼化物がもっとも優れている。本発明は、ロール
等の浴中部品表面の必要な部分のみを硼化処理すること
により、ロール鉄鋼部材の耐腐食性や耐摩耗性を改善し
ようとするものである。
Among ceramics such as nitrides, borides and carbides, borides are the most excellent in terms of corrosion resistance to molten metal. The present invention is intended to improve the corrosion resistance and wear resistance of a rolled steel member by boring only a necessary portion of a surface of a part in a bath such as a roll.

【0009】しかし、特開平7−188884に基づい
て、大型鋼材の表面に硼化鉄膜をつけた結果、変形や膜
の割れ・剥離が発生した。すなわち、大型鋼材を小型鋼
材と同じプロセスで硼化処理を行った結果、表面に割れ
が発生したのである。
However, as a result of applying an iron boride film to the surface of a large steel material based on Japanese Patent Application Laid-Open No. Hei 7-18884, deformation, cracking and peeling of the film occurred. That is, as a result of boring a large steel material in the same process as a small steel material, cracks occurred on the surface.

【0010】従って、大型部品にも適用可能な硼化処理
技術の開発が必要であった。本発明の目的は、変形や膜
の割れ・剥離が無く、大型鉄鋼部品にも適用可能な硼化
処理技術を提供することにある。また、本発明の別の目
的は、本発明の部品を用いることにより溶融金属めっき
装置浴中部品の長寿命化を達成することにある。
[0010] Therefore, there is a need to develop a boring technology that can be applied to large components. An object of the present invention is to provide a boring treatment technique which is free from deformation, film cracking and peeling, and can be applied to large steel parts. Another object of the present invention is to achieve a longer life of a component in a bath of a hot-dip metal plating apparatus by using the component of the present invention.

【0011】[0011]

【課題を解決するための手段】上記の課題は、鉄鋼部材
表面を硼化処理剤で覆い加熱することにより、鉄鋼部材
表面に鉄と硼素の化合物を形成する硼化処理において、
当該硼化処理中少なくとも加熱及びまたは冷却の際の一
時期に外部からガスを導入することにより達成される。
An object of the present invention is to provide a boride treatment for forming a compound of iron and boron on the surface of a steel member by covering the surface of the steel member with a boride treatment agent and heating the material.
This is achieved by introducing a gas from the outside at least at one time during heating and / or cooling during the boring treatment.

【0012】上記の課題はまた、鉄鋼部材表面を硼化処
理剤で覆い加熱することにより、鉄鋼部材表面に鉄と硼
素の化合物を形成する硼化処理において、加熱時に鉄鋼
部材の硼化が開始する近傍の温度から最高処理温度に至
るまで外部からガスを導入することにより達成される。
[0012] The above-mentioned problem is also caused by the fact that in a boride treatment of forming a compound of iron and boron on the surface of a steel member by covering the surface of the steel member with a boride treatment agent and heating, boring of the steel member starts upon heating. This is achieved by introducing a gas from the outside from a temperature in the vicinity to the maximum processing temperature.

【0013】上記の課題はまた、鉄鋼部材表面を硼化処
理剤で覆い加熱することにより、鉄鋼部材表面に鉄と硼
素の化合物を形成する硼化処理において、冷却時に最高
処理温度から鉄鋼部材の硼化が終了する近傍の温度に至
るまで外部からガスを導入することにより達成される。
[0013] Another object of the present invention is to provide a boride treatment for forming a compound of iron and boron on the surface of a steel member by covering the surface of the steel member with a boride treatment agent and heating the steel member. This is achieved by introducing a gas from the outside up to a temperature near the end of boration.

【0014】上記の課題はまた、鉄鋼部材表面を硼化処
理剤で覆い加熱することにより、鉄鋼部材表面に鉄と硼
素の化合物を形成する硼化処理において、加熱時に鉄鋼
部材の硼化が開始する近傍の温度から最高処理温度に至
るまで外部からガスを導入し、更に冷却時に最高処理温
度から硼素が処理剤から分解を終了する近傍の温度に至
るまで外部からガスを導入することにより達成される。
Another object of the present invention is to provide a boride treatment for forming a compound of iron and boron on the surface of a steel member by covering the surface of the steel member with a boride treatment agent and heating the steel member. This is achieved by introducing a gas from the outside to a temperature close to the maximum processing temperature, and then introducing a gas from the outside during the cooling to a temperature close to the end of the decomposition of boron from the processing agent from the maximum processing temperature. You.

【0015】本発明の硼化処理において、鉄鋼部材の硼
化が開始する温度または鉄鋼部材の硼化が終了する温度
は、700℃より高く800℃より低い温度である。硼
化が開始ないし終了する近傍の温度は、750℃付近で
ある。また、硼化処理の最高処理温度としては、900
℃を中心とした870℃以上1000℃以下の温度が最
適である。
In the boring treatment of the present invention, the temperature at which boring of the steel member starts or the temperature at which boring of the steel member ends is a temperature higher than 700 ° C. and lower than 800 ° C. The temperature near the start or end of boration is around 750 ° C. Further, the maximum treatment temperature of the boride treatment is 900
A temperature of 870 ° C or more and 1000 ° C or less centered on ° C is optimal.

【0016】本発明において、硼化処理の対象となるの
は、炭素鋼、合金鋼、ステンレス鋼、鋳鋼、鋳鉄などの
鉄鋼材料で作られた部材である。
In the present invention, the object to be borated is a member made of a steel material such as carbon steel, alloy steel, stainless steel, cast steel and cast iron.

【0017】本発明において、ガスの導入は加熱時、冷
却時のいずれでも良いが、加熱時と冷却時の双方におい
てガスを導入することが望ましい。また、導入するガス
の種類については、酸素を含むガスを導入すると母材の
表面が酸化され健全な硼化物層が形成されないので、ア
ルゴンなどの不活性ガス、水素などの還元性ガス、窒素
等を用いることが望ましい。
In the present invention, the gas may be introduced at the time of heating or at the time of cooling, but it is desirable to introduce the gas at both the time of heating and the time of cooling. Regarding the type of gas to be introduced, when a gas containing oxygen is introduced, the surface of the base material is oxidized and a sound boride layer is not formed. Therefore, an inert gas such as argon, a reducing gas such as hydrogen, a nitrogen gas, or the like. It is desirable to use

【0018】本発明において、硼化処理剤としては、硼
素供給源と硼化促進剤を含む混合粉末を使用する。硼素
供給源としては、非晶質硼素、フェロボロン(Fe
B)、炭化ボロン(B4C)、硼砂(Na227)等が
あり、硼化促進剤としては塩化アンモニウム(NH4
l)、硼弗化ボロン(KBF4)等が使用できる。この
内、実用化され広く用いられている硼素供給源として炭
化ボロン(B4C)、硼化促進剤としてが硼弗化ボロン
(KBF4)が望ましい。硼化処理剤には、さらに炭化
珪素(SiC)などの硼化調整剤を配合するのが望まし
い。
In the present invention, as the boride treating agent, a mixed powder containing a boron source and a boride accelerator is used. As a boron source, amorphous boron, ferroboron (Fe
B), boron carbide (B 4 C), borax (Na 2 B 2 O 7 ), and the like. As the boration accelerator, ammonium chloride (NH 4 C)
1), boron borofluoride (KBF 4 ) or the like can be used. Of these, boron carbide (B 4 C) is preferable as a boron source practically and widely used, and boron borofluoride (KBF 4 ) is preferable as a boride accelerator. It is desirable to further blend a boride modifier such as silicon carbide (SiC) with the boride treating agent.

【0019】[0019]

【発明の実施の形態】本発明に至る経緯として、以下の
ような実験を行なった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following experiment was conducted as a process leading to the present invention.

【0020】[実験例1]外径250mm、内径210
mm、長さ300mmの炭素鋼(S45C)製の大型試
験片を試験片として用いた。
[Experimental example 1] Outer diameter 250 mm, inner diameter 210
A large test piece made of carbon steel (S45C) having a length of 300 mm and a length of 300 mm was used as a test piece.

【0021】硼素供給源としてB4C、硼化促進剤とし
てKBF4、硼化調整剤としてSiCを混合した粉末か
らなる硼化処理剤を外径330mm、内径310mm、
長さ450mmのステンレス鋼(SUS316)製のケ
ースに詰め、その中に大型試験片を入れて加熱速度30
0℃/hで加熱し900℃の温度に7時間保持した後、
100℃/hの冷却速度で大型試験片を冷却した結果、
図1の写真に示すようにほぼ全表面に亘って割れが発生
した。
A boride treatment agent comprising a powder obtained by mixing B 4 C as a boron supply source, KBF 4 as a boride accelerator, and SiC as a boride regulator has an outer diameter of 330 mm and an inner diameter of 310 mm.
A stainless steel (SUS316) case with a length of 450 mm is packed, and a large test piece is put in the case.
After heating at 0 ° C / h and holding at 900 ° C for 7 hours,
As a result of cooling a large test piece at a cooling rate of 100 ° C./h,
As shown in the photograph of FIG. 1, cracks occurred over almost the entire surface.

【0022】この大型試験片を切断してK3[Fe(C
N)]6、K4[Fe(CN)]6、KOH、H2Oの混合
試薬を用いて腐食した断面を光学顕微鏡で観察した結果
(倍率:200倍)、図2に示すように試験片の表面に
厚さ120〜170μmの2層の硼化鉄膜が形成されて
おり、その最表面では黒く腐食された30〜70μmの
多孔質の硬くて脆いFeB層が存在し、それより内部で
は明るく腐食された緻密質のFe2B層が存在すること
がわかった。更に、割れの深さを調査した結果、割れは
最表面のFeB膜内に留まっていることもわかった。
The large test piece is cut into K 3 [Fe (C
N)] 6, K 4 [ Fe (CN)] 6, KOH, results of corroded section using a mixed reagent of H 2 O was observed with an optical microscope (magnification: 200 times), the test as shown in FIG. 2 A two-layer iron boride film having a thickness of 120 to 170 μm is formed on the surface of the piece, and a black, corroded, 30 to 70 μm porous hard and brittle FeB layer is present on the outermost surface, and the inner surface is formed therefrom. Then, it was found that a dense Fe 2 B layer corroded brightly was present. Further, as a result of examining the depth of the crack, it was found that the crack remained in the outermost FeB film.

【0023】本実験結果から大型部材では、冷却時に表
面に引張りの熱応力が発生するのでFeB膜の割れを防
止するためには冷却速度を遅くし、熱応力を小さくする
必要があることが判った。
From the results of this experiment, it was found that, in the case of large members, tensile thermal stress is generated on the surface during cooling, so that it is necessary to reduce the cooling rate and reduce the thermal stress in order to prevent cracking of the FeB film. Was.

【0024】[実験例2]実験例1と同一材質、同一寸
法の大型試験片を用いて、加熱は実験例1と同じにし、
900℃から650℃までの冷却速度を30℃/hとし
て650℃に5時間保持した。更に、30℃/hの冷却
速度で室温近傍まで冷却した。
[Experimental Example 2] Using a large test piece of the same material and dimensions as in Experimental Example 1, heating was the same as in Experimental Example 1,
The cooling rate from 900 ° C to 650 ° C was maintained at 650 ° C for 5 hours at a rate of 30 ° C / h. Further, it was cooled to around room temperature at a cooling rate of 30 ° C./h.

【0025】その結果、表面の割れを防止することが出
来た。これは、硼化物層に発生する引張りの熱応力を少
なくするための処理で、鉄鋼部材のパーライト変態が開
始する近傍の温度に鉄鋼部材が所定の温度分布になるま
で保持することにより、硼化物層に発生する有害な割れ
の防止が可能であることが判った。
As a result, cracks on the surface could be prevented. This is a process for reducing the tensile thermal stress generated in the boride layer. By maintaining the steel member at a temperature near the start of the pearlite transformation of the steel member until the steel member has a predetermined temperature distribution, the boride is reduced. It has been found that harmful cracks generated in the layer can be prevented.

【0026】しかし、図3の写真に示すように粒状の剥
離が多数発生した。剥離の深さを測定した結果、30〜
80μmあった。また、実験例1と同様に断面の組織を
観察した結果、図4に示すように試験片の表面に厚さ1
40〜190μmの2層の硼化鉄膜が形成されており、
その最表面では黒く腐食された40〜100μmの多孔
質の硬くて脆いFeB層が存在し、それより内部では明
るく腐食された緻密質のFe2B層が存在しており、F
eB層内でしかもFeBとFe2B層の界面近傍で剥離
が起こっていることがわかった。これは、FeB層とF
2B層では物理・機械・熱的特性が異なるために界面
に発生するせん断応力によるものと解釈される。
However, as shown in the photograph of FIG. 3, a large number of granular peelings occurred. As a result of measuring the peeling depth, 30 to
It was 80 μm. As a result of observing the cross-sectional structure in the same manner as in Experimental Example 1, as shown in FIG.
A two-layer iron boride film of 40 to 190 μm is formed,
On the outermost surface, there is a porous hard and brittle FeB layer of 40 to 100 μm which has been corroded black, and there is a bright and corroded dense Fe 2 B layer inside thereof, and F
It was found that peeling occurred in the eB layer and near the interface between the FeB and Fe 2 B layers. This is because the FeB layer and F
Since the physical, mechanical, and thermal characteristics of the e 2 B layer are different, it is interpreted that the e 2 B layer is caused by shear stress generated at the interface.

【0027】従って、本実験結果から、FeB層を可能
な限り薄くするか、Fe2B層の単一層とすることが必
要であることが判った。
Therefore, it was found from the results of this experiment that it is necessary to make the FeB layer as thin as possible or to form a single Fe 2 B layer.

【0028】[実験例3]直径10mm、長さ20mm
の炭素鋼(S45C)製の小型試験片を用いて、硼化が
開始される温度及びFeB生成に及ぼす温度の影響を調
べる実験を行なった。大型試験片を用いてもFeBの生
成については同じ結果となるはずである。
[Experimental Example 3] Diameter 10 mm, length 20 mm
An experiment was conducted to examine the effects of the temperature on the start of boride and the temperature on FeB formation using a small test piece made of carbon steel (S45C). The same result should be obtained for FeB formation even with a large specimen.

【0029】硼素供給源としてB4C、硼化促進剤とし
てKBF4、硼化調整剤としてSiCを混合した粉末か
らなる硼化処理剤をケースに詰め、その中に小型試験片
を入れて加熱速度300℃/hで加熱し600℃、70
0℃、800℃、900℃、1000℃の各温度に5h
保持した後、100℃/hの冷却速度で小型試験片を冷
却した。
A boride treating agent composed of a powder obtained by mixing B 4 C as a boron supply source, KBF 4 as a boride accelerator, and SiC as a boride regulator is packed in a case, and a small test piece is put in the case and heated. Heat at 300 ° C / h at 600 ° C, 70
5 hours at each of 0 ° C, 800 ° C, 900 ° C, and 1000 ° C
After the holding, the small test piece was cooled at a cooling rate of 100 ° C./h.

【0030】この小型試験片を切断してK3[Fe(C
N)]6、K4[Fe(CN)]6、KOH、H2Oの混合
試薬を用いて腐食した断面を光学顕微鏡で観察し(倍
率:200倍)、FeB層の厚さとFeB+Fe2B層
の厚さを測定した結果を図5に示す。
The small test piece was cut and cut into K 3 [Fe (C
N)] 6, K 4 [ Fe (CN)] 6, KOH, a corroded section using a mixed reagent of H 2 O and observed under an optical microscope (magnification: 200 times), the thickness of the FeB layer and FeB + Fe 2 B FIG. 5 shows the result of measuring the thickness of the layer.

【0031】図5から700℃以下では硼化物層は形成
されず、800℃以上の温度では処理温度が高いほど硼
化物層の厚さは厚くなっている。この結果より、硼化が
開始する近傍の温度は、700℃より高く800℃より
低い温度であることが判る。硼化処理は硼素の拡散反応
により進行し、保持時間が長くなれば硼化物層の厚さも
厚くなる。
From FIG. 5, no boride layer is formed below 700 ° C., and at temperatures above 800 ° C., the higher the processing temperature, the thicker the boride layer. From this result, it is found that the temperature near the start of boride is a temperature higher than 700 ° C. and lower than 800 ° C. The boride treatment proceeds by a boron diffusion reaction, and the longer the holding time, the thicker the boride layer.

【0032】しかし、FeB層の厚さは処理温度が高く
なっても殆ど変化していない。従って、FeBの割合
[(FeB/(FeB+Fe2B)]は、処理温度が高
いほど減少している。これは、低温では鋼材内部への硼
素の拡散速度が遅いため、表面層に硼素量の多いFeB
が多くなるためと考えられる。
However, the thickness of the FeB layer hardly changes even when the processing temperature increases. Therefore, the ratio of FeB [(FeB / (FeB + Fe 2 B)] decreases as the treatment temperature increases, because the diffusion rate of boron into the steel material is low at low temperatures, and the amount of boron in the surface layer is low. More FeB
It is considered that the number of

【0033】[実験例4]実験例3と同一材質、同一寸
法の試験片を用いて900℃から650℃までの冷却速
度を30℃/hとして650℃に5時間保持した。更
に、30℃/hの冷却速度で室温近傍まで冷却した。
[Experimental Example 4] Using test pieces of the same material and dimensions as in Experimental Example 3, the cooling rate from 900 ° C to 650 ° C was kept at 650 ° C for 5 hours at a rate of 30 ° C / h. Further, it was cooled to around room temperature at a cooling rate of 30 ° C./h.

【0034】試験片を切断してK3[Fe(CN)]6
4[Fe(CN)]6、KOH、H2Oの混合試薬を用
いて腐食した断面を光学顕微鏡で観察し(倍率:200
倍)、FeB層の厚さとFeB+Fe2B層の厚さを測
定した。その結果を図6に示し、比較のため図5に示し
た900℃から100℃/hの冷却速度で冷却した試験
片の結果を併記した。
The test piece was cut to obtain K 3 [Fe (CN)] 6 ,
A cross section corroded with a mixed reagent of K 4 [Fe (CN)] 6 , KOH, and H 2 O was observed with an optical microscope (magnification: 200).
Times), the thickness of the FeB layer and the thickness of the FeB + Fe 2 B layer were measured. The results are shown in FIG. 6, and for comparison, the results of the test pieces cooled at a cooling rate of 900 ° C./h from 900 ° C. shown in FIG. 5 are also shown.

【0035】図6より、冷却速度を遅くした場合は速い
場合に比較してFeBの割合が極端に多いことがわかっ
た。これは、冷却過程で硼素量の多い層が表面に形成さ
れそのまま鋼材内部への拡散がなされないまま冷却され
る結果と考えられる。従って、硼素の分解が行われてい
る温度範囲を出来るだけ速く冷却する必要がある。しか
し、実験例1に示したごとく冷却速度が速いと大型部品
では硼化物層に割れが生じるので割れ防止対策が必要で
ある。
From FIG. 6, it was found that the rate of FeB was extremely large when the cooling rate was slower than when it was fast. This is considered to be a result of a layer containing a large amount of boron being formed on the surface during the cooling process and being cooled without being directly diffused into the steel material. Therefore, it is necessary to cool the temperature range in which the decomposition of boron is performed as quickly as possible. However, as shown in Experimental Example 1, when the cooling rate is high, cracks occur in the boride layer in large parts, so that measures for preventing cracks are necessary.

【0036】これまでの実験例から、適正処理温度に加
熱する過程と処理温度から冷却する過程で鉄と硼素との
反応を抑制することにより、加熱や冷却速度を遅くして
も表面層に硼素量の多いFeBの生成を少なくすること
が可能であれば、大型部品の変形・割れ・剥離等を防止
できるものと考えられる。
According to the experimental examples described above, the reaction between iron and boron is suppressed in the process of heating to the proper processing temperature and in the process of cooling from the processing temperature, so that boron can be added to the surface layer even if the heating or cooling rate is reduced. It is considered that if the generation of a large amount of FeB can be reduced, deformation, cracking, peeling, and the like of a large component can be prevented.

【0037】鉄鋼材料を、硼素供給源としてB4C、硼
化促進剤としてKBF4、硼化調整剤としてSiCを混
合した粉末からなる硼化処理剤とともにケースに詰めて
加熱する方法は、固体法としてして知られているが、鉄
と硼素によるFeB生成反応は局部的にガス化反応を伴
うものであることが推測されたので、このガス化反応を
抑制する方法として、処理中に外部から硼化処理に寄与
しないガスを導入することを考え、本発明に到達したも
のである。
A method of heating a steel material by packing it in a case together with a boride treatment agent comprising a powder obtained by mixing B 4 C as a boron supply source, KBF 4 as a boride accelerator, and SiC as a boride regulator, and heating the solid material It is known that the reaction of producing FeB by iron and boron is locally accompanied by a gasification reaction. The present invention has been achieved by considering the introduction of a gas that does not contribute to the boride treatment.

【0038】[0038]

【実施例】以下に、本発明の実施例について説明する
が、本発明はこれらの実施例の範囲に限定されるもので
はない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the scope of these examples.

【0039】[実施例1]実験例1と同じく外径250
mm、内径210mm、長さ300mmの炭素鋼(S4
5C)製の大型試験片を試験片として用いた。
Example 1 The outer diameter was 250 as in Example 1.
mm, inner diameter 210mm, length 300mm carbon steel (S4
5C) large test piece was used as the test piece.

【0040】硼素供給源としてB4C、硼化促進剤とし
てKBF4、硼化調整剤としてSiCを混合した粉末か
らなる硼化処理剤を外径330mm、内径310mm、
長さ450mmのステンレス鋼(SUS316)製のケ
ースに詰め、その中に大型試験片を入れて加熱速度30
0℃/hで最高処理温度900℃まで加熱した。そして
鉄鋼部材の硼化が開始する近傍の温度である750℃か
ら最高処理温度900℃までの昇温加熱中は、ケースの
下部から2l/minのアルゴンガスを導入した。
A boride treatment agent comprising a powder obtained by mixing B 4 C as a boron supply source, KBF 4 as a boride accelerator, and SiC as a boride regulator, has an outer diameter of 330 mm and an inner diameter of 310 mm.
A stainless steel (SUS316) case with a length of 450 mm is packed, and a large test piece is put in the case.
It was heated at 0 ° C / h to a maximum treatment temperature of 900 ° C. During the heating from 750 ° C., which is the temperature near the start of boring of the steel member, to 900 ° C., a 2 l / min argon gas was introduced from the lower part of the case.

【0041】900℃の温度に10時間保持し、900
℃から650℃までの冷却速度を30℃/hとして65
0℃に5時間保持した。更に、30℃/hの冷却速度で
室温近傍まで冷却した。但し、最高処理温度900℃か
ら鉄鋼部材の硼化が終了する近傍の温度である750℃
までの降温冷却中は加熱時と同様にケースの下部から5
l/minのアルゴンガスを導入した。
The temperature is maintained at 900 ° C. for 10 hours,
The cooling rate from 30 ° C to 650 ° C is 30 ° C / h and 65
It was kept at 0 ° C. for 5 hours. Further, it was cooled to around room temperature at a cooling rate of 30 ° C./h. However, 750 ° C., which is a temperature near the end of boring of steel members from the maximum processing temperature of 900 ° C.
During cooling down to the same temperature as when heating,
1 / min of argon gas was introduced.

【0042】その結果、図7の写真に示すごとく、表面
の割れや剥離が無く、変形も少ない硼化処理部品が得ら
れた。また、試験片を切断してK3[Fe(CN)]6
4[Fe(CN)]6、KOH、H2Oの混合試薬を用
いて腐食した断面を光学顕微鏡で観察した結果(倍率:
200倍)、図8に示すように試験片の表面に厚さ16
0〜210μmの2層の厚い硼化鉄膜が形成されている
にも拘わらず、その最表面で黒く腐食されたFeB層は
10〜30μmで図4に比較して極端に減少している。
As a result, as shown in the photograph of FIG. 7, a borated part having no surface cracking or peeling and little deformation was obtained. Further, the test piece was cut into K 3 [Fe (CN)] 6 ,
The result of observing a cross section corroded using a mixed reagent of K 4 [Fe (CN)] 6 , KOH and H 2 O with an optical microscope (magnification:
200 times), as shown in FIG.
In spite of the formation of the two thick iron boride films of 0 to 210 μm, the FeB layer corroded black on the outermost surface is 10 to 30 μm, which is extremely reduced as compared with FIG.

【0043】すなわち、加熱及び冷却過程で硼化反応を
抑制するガスを導入することにより大型部品を徐熱・徐
冷してもFeBを少なくすることができるので、変形や
割れ剥離のない部品を作ることが可能となった。
That is, by introducing a gas that suppresses the boration reaction during the heating and cooling processes, FeB can be reduced even when a large component is gradually heated and cooled. It became possible to make.

【0044】本実施例では、加熱、冷却のいずれでもガ
スを導入したが、加熱時のみ、または冷却時のみにガス
を導入しても効果があることを確認した。しかし、加
熱、冷却時のいずれにもガスを導入する方が望ましい。
また、導入するガスの種類についても検討した。その結
果、酸素を含むガスを導入すると母材の表面が酸化され
健全な硼化物層が形成されないので、アルゴンなどの不
活性ガス、水素などの還元性ガス、窒素ガスであること
が望ましいことが判った。
In this embodiment, the gas was introduced during both heating and cooling. However, it was confirmed that introducing the gas only during heating or only during cooling was effective. However, it is desirable to introduce a gas during both heating and cooling.
The type of gas to be introduced was also studied. As a result, when a gas containing oxygen is introduced, the surface of the base material is oxidized and a sound boride layer is not formed. Therefore, it is preferable to use an inert gas such as argon, a reducing gas such as hydrogen, or a nitrogen gas. understood.

【0045】[実施例2]図9に溶融亜鉛浴に接する部
品例を示す。すなわち、ストリップ1に溶融亜鉛めっき
を連続的に施す設備において、ストリップ1はスナウト
2を経てめっき浴槽3の中のめっき浴4に導かれ、シン
クロール5により方向を変えられ、サポートロール6を
経てめっき浴4から引き出された後、ワイピングノズル
7によりめっき厚みが調整される。溶融亜鉛めっき装置
に用いられる部品のうちで、めっき浴と接触しながら回
転しているシンクロール5やその軸受部8及びサポート
ロール6やその軸受け部9に溶損、摩耗が多い。溶損、
摩耗が進むと鋼板の走行中にストリップ1の振動が大き
くなり均一な亜鉛付着が不可能となる。本発明の方法に
よれば、セラミックス一体では製造困難な大型品にで
も、均一な硼化物層を形成することが可能となった。
Embodiment 2 FIG. 9 shows an example of parts in contact with a molten zinc bath. That is, in a facility for continuously applying hot-dip galvanizing to the strip 1, the strip 1 is guided to the plating bath 4 in the plating bath 3 via the snout 2, changed direction by the sink roll 5, and passed through the support roll 6. After being drawn out of the plating bath 4, the plating thickness is adjusted by the wiping nozzle 7. Among the components used in the hot-dip galvanizing apparatus, the sink roll 5 rotating in contact with the plating bath, its bearing portion 8, and the support roll 6 and its bearing portion 9 are often melted and worn. Erosion,
As the wear progresses, the vibration of the strip 1 increases during the running of the steel sheet, and uniform zinc deposition becomes impossible. According to the method of the present invention, it has become possible to form a uniform boride layer even on a large product that is difficult to manufacture with ceramics integrally.

【0046】本発明の結果を確認するために連続溶融亜
鉛めっき用シンクロール及びサポートロールに適用した
結果について述べる。シンクロールは胴径700mm、
サポートロールは胴径200mm、胴長は両ロールとも
1600mmで、材質はいずれもS45Cを用いた。両
ロールとも前処理として900℃で10時間保持後炉冷
した。その後、機械加工を行った。硼化処理は、ロール
をステンレス鋼(SUS316)製の円筒状ケースの中
央にセットし、硼素供給源としてB4C、硼化促進剤と
してKBF4、硼化調整剤としてSiCを混合した粉末
からなる硼化処理剤をロールとケースの隙間に充填し、
加熱速度を300℃/hとた。そして、鉄鋼部材の硼化
が開始する近傍の温度である750℃から最高処理温度
900℃までの加熱中は、ケースの下部からシンクロー
ルの場合15l/min、サポートロールの場合5l/
minのアルゴンガスを導入した。900℃の温度に1
0時間保持し、900℃から650℃までの冷却速度を
30℃/hとして650℃に5時間保持した。更に、3
0℃/hの冷却速度で室温近傍まで冷却した。但し、最
高処理温度900℃から鉄鋼部材の硼化が終了する近傍
の温度である750℃までの冷却中は、加熱時と同様に
ケースの下部からアルゴンガスを導入した。
In order to confirm the results of the present invention, results applied to a sink roll and a support roll for continuous galvanizing will be described. The sink roll has a body diameter of 700 mm,
The support roll had a body diameter of 200 mm, the body length was 1600 mm for both rolls, and the material used was S45C. Both rolls were held at 900 ° C. for 10 hours as a pretreatment and then cooled in a furnace. Thereafter, machining was performed. Boride process sets the roll in the center of a cylindrical case made of stainless steel (SUS316), B 4 C as a boron source, KBF 4 as boride accelerator, from a powder of a mixture of SiC as a boride modifier Fill the gap between the roll and the case
The heating rate was 300 ° C./h. During heating from 750 ° C., which is the temperature near the start of boring of the steel member to the maximum treatment temperature of 900 ° C., 15 l / min for the sink roll and 5 l / min for the support roll from the bottom of the case.
min argon gas was introduced. 1 at 900 ° C
The temperature was maintained for 0 hour, and the cooling rate from 900 ° C. to 650 ° C. was maintained at 650 ° C. for 5 hours at a rate of 30 ° C./h. Furthermore, 3
It cooled to near room temperature at a cooling rate of 0 ° C./h. However, during cooling from the maximum treatment temperature of 900 ° C. to 750 ° C., which is a temperature near the end of boring of the steel member, argon gas was introduced from the lower part of the case in the same manner as during heating.

【0047】但し、硼化処理剤の混合粉末の厚さは25
mmとし、吊り下げ方式により処理した。その結果、シ
ンクロールの変形量は20μm、サポートロールの変形
量は50μmであり、割れや剥離のない健全なロールが
得られた。各ロールの胴端で硼化層の厚さを測定した結
果、160μm〜180μmであり、仕上げ研磨にて加
工修正可能な変形量であった。
However, the thickness of the mixed powder of the boride treating agent is 25
mm, and processed by a hanging method. As a result, the amount of deformation of the sink roll was 20 μm and the amount of deformation of the support roll was 50 μm, and a sound roll free of cracks and peeling was obtained. As a result of measuring the thickness of the boride layer at the body end of each roll, the thickness was 160 μm to 180 μm, which was a deformation amount that could be corrected by finish polishing.

【0048】これらのロールを470℃の連続溶融亜鉛
めっき装置に組み入れ、連続100時間使用した結果、
両ロールの軸部損耗は全く見られず、また胴部にはドロ
スなどの付着もなく良好であった。
These rolls were incorporated into a continuous hot-dip galvanizing apparatus at 470 ° C. and used continuously for 100 hours.
The shaft portions of both rolls were not worn at all, and the body portions were good with no adhesion of dross or the like.

【0049】[0049]

【発明の効果】本発明によれば、従来、変形や硼化物層
の割れや剥離で大型部品に適用できなかった硼化処理が
可能となり、大型部品にも健全な硼化物層を形成するこ
とが出来る。
According to the present invention, a boride treatment which could not be applied to a large component due to deformation or cracking or peeling of the boride layer can be performed, and a sound boride layer can be formed on a large component. Can be done.

【0050】これにより、めっき浴中で使用される浴中
部品は耐腐食性、耐摩耗性を有する高信頼性、長寿命と
なる。また、連続亜鉛めっき浴中ロールとして使用した
結果、従来のセラミックス部品より取り扱いが簡単で、
ロール交換も少なく、また亜鉛浴の汚染も少なく、安定
した亜鉛めっき鋼板が得られる。更に、めっき浴中部品
ばかりでなく、その他の大型部品にも健全な硼化物層を
形成することにより、耐食・耐摩耗性を要求される部品
としての用途がある。
Thus, the in-bath components used in the plating bath have high corrosion resistance and abrasion resistance, and have a long life. In addition, as a result of using it as a roll in a continuous galvanizing bath, it is easier to handle than conventional ceramic parts,
A stable galvanized steel sheet can be obtained with less roll exchange and less contamination of the zinc bath. Furthermore, not only parts in the plating bath but also other large parts have a sound boride layer, so that they are used as parts requiring corrosion resistance and wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例1で硼化処理した割れのある大型鋼材表
面の写真
FIG. 1 is a photograph of the surface of a large cracked steel material that has been borated in Experimental Example 1.

【図2】実験例1で硼化処理した大型鋼材の断面光学顕
微鏡写真(倍率:200倍)
FIG. 2 is a cross-sectional optical micrograph (magnification: 200 times) of a large steel material borated in Experimental Example 1.

【図3】実験例2で硼化処理した剥離のある大型鋼材表
面の写真
FIG. 3 is a photograph of the surface of a large-sized steel material having a peel that has been borated in Experimental Example 2.

【図4】実験例2で硼化処理した大型鋼材の断面光学顕
微鏡写真(倍率:200倍)
FIG. 4 is a cross-sectional optical micrograph of a large steel material borated in Experimental Example 2 (magnification: 200 times).

【図5】実験例3におけるFeB層の厚さとFeB+F
2B層の厚さの測定結果
FIG. 5 shows the thickness of FeB layer and FeB + F in Experimental Example 3.
Measurement result of e 2 B layer thickness

【図6】実験例4におけるFeB層の厚さとFeB+F
2B層の厚さの測定結果
FIG. 6 shows the thickness of FeB layer and FeB + F in Experimental Example 4.
Measurement result of e 2 B layer thickness

【図7】実施例1で硼化処理して健全な大型鋼材の表面
写真
FIG. 7 is a photograph of the surface of a large-sized steel material that has been borated and sounded in Example 1.

【図8】実施例1で硼化処理した大型鋼材の断面光学顕
微鏡写真(倍率:200倍)
FIG. 8 is an optical micrograph of a cross section of a large steel material borated in Example 1 (magnification: 200 times).

【図9】溶融亜鉛浴に接する部品例を示した説明図FIG. 9 is an explanatory view showing an example of parts in contact with a molten zinc bath.

【符号の説明】 1 ストリップ 2 スナウト 3 めっき浴槽 4 めっき浴 5 シンクロール 6 サポートロール 7 ワイピングノズル 8 シンクロール軸受部 9 サポートロール軸受部[Description of Signs] 1 Strip 2 Snout 3 Plating Bathtub 4 Plating Bath 5 Sink Roll 6 Support Roll 7 Wiping Nozzle 8 Sink Roll Bearing 9 Support Roll Bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 幸雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 酒井 淳次 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 下タ村 修 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 木村 武久 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 下釜 宏徳 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 西場 勉 神奈川県川崎市川崎区田町3−13−10 パ ーカー熱処理工業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yukio Saito 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Junji Sakai 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Osamu Shimomura 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Plant (72) Inventor Takehisa Kimura Ibaraki Prefecture Hitachi 1-1, Yokocho, Hitachi-shi, Hitachi, Ltd.Hitachi Plant (72) Inventor Hironori Shimogama 3-1-1, Yachimachi, Hitachi-City, Hitachi, Ibaraki Pref. Hitachi, Ltd.Hitachi Plant (72) Inventor Tsutomu Nishiba 3-13-10 Tamachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Pref.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】鉄鋼部材表面を硼化処理剤で覆い加熱する
ことにより、鉄鋼部材表面に鉄と硼素の化合物を形成す
る硼化処理において、当該硼化処理中少なくとも加熱及
びまたは冷却の際の一時期に外部からガスを導入するこ
とを特徴とする鉄鋼部材表面の硼化処理法。
In a boration treatment for forming a compound of iron and boron on the surface of a steel member by covering the surface of the steel member with a boride treatment agent and heating the material, at least heating and / or cooling during the boration treatment is performed. A boring treatment method for a steel member surface, wherein a gas is externally introduced at one time.
【請求項2】請求項1において、加熱時に鉄鋼部材の硼
化が開始する近傍の温度から最高処理温度に至るまで外
部からガスを導入することを特徴とする鉄鋼部材表面の
硼化処理法。
2. The method for boring a steel member surface according to claim 1, wherein a gas is externally introduced from a temperature near the start of boring of the steel member during heating to a maximum processing temperature.
【請求項3】請求項1において、冷却時に最高処理温度
から鉄鋼部材の硼化が終了する近傍の温度に至るまで外
部からガスを導入することを特徴とする鉄鋼部材表面の
硼化処理法。
3. The method of boring a steel member surface according to claim 1, wherein a gas is externally introduced during cooling from a maximum processing temperature to a temperature near the end of boring of the steel member.
【請求項4】請求項1において、加熱時に鉄鋼部材の硼
化が開始する近傍の温度から最高処理温度に至るまで外
部からガスを導入し、更に冷却時に最高処理温度から鉄
鋼部材の硼化が終了する近傍の温度に至るまで外部から
ガスを導入することを特徴とする鉄鋼部材表面の硼化処
理法。
4. The method according to claim 1, wherein a gas is introduced from the outside from a temperature near the start of boring of the steel member during heating to a maximum processing temperature, and further, the boring of the steel member is reduced from the maximum processing temperature during cooling. A boring treatment method for a steel member surface, wherein a gas is introduced from the outside up to a temperature near the end.
【請求項5】導入するガスとして、不活性ガス及びまた
は還元性ガスを用いることを特徴とする請求項1から4
のいずれかに記載の鉄鋼部材表面の硼化処理法。
5. The method according to claim 1, wherein an inert gas and / or a reducing gas is used as the gas to be introduced.
The boring treatment method for a steel member surface according to any one of the above.
【請求項6】硼化処理剤が、硼素供給源と硼化促進剤を
含むことを特徴とする請求項1から4のいずれかに記載
の鉄鋼部材表面の硼化処理法。
6. The boride treating method for a steel member surface according to claim 1, wherein the boride treating agent contains a boron source and a boride accelerator.
【請求項7】硼素供給源として非晶質硼素、フェロボロ
ン(FeB)、炭化ボロン(B4C)または硼砂(Na2
27)、硼化促進剤として塩化アンモニウム(NH4
Cl)または硼弗化ボロン(KBF4)を用いる請求項
6に記載の鉄鋼部材表面の硼化処理法。
7. A boron source comprising amorphous boron, ferroboron (FeB), boron carbide (B 4 C) or borax (Na 2 ).
B 2 O 7 ), ammonium chloride (NH4
7. The method for boring a steel member surface according to claim 6, wherein Cl) or boron borofluoride (KBF 4 ) is used.
【請求項8】鉄鋼部材が、連続溶融金属めっき装置にお
いて用いられる浴中部品である請求項1から7のいずれ
かに記載の鉄鋼部材表面の硼化処理法。
8. The boring treatment method for a steel member surface according to claim 1, wherein the steel member is a part in a bath used in a continuous hot-dip metal plating apparatus.
JP10300368A 1998-10-07 1998-10-07 Boriding treating method for steel member surface Pending JP2000119839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300368A JP2000119839A (en) 1998-10-07 1998-10-07 Boriding treating method for steel member surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10300368A JP2000119839A (en) 1998-10-07 1998-10-07 Boriding treating method for steel member surface

Publications (1)

Publication Number Publication Date
JP2000119839A true JP2000119839A (en) 2000-04-25

Family

ID=17883946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300368A Pending JP2000119839A (en) 1998-10-07 1998-10-07 Boriding treating method for steel member surface

Country Status (1)

Country Link
JP (1) JP2000119839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105779A (en) * 2005-10-14 2007-04-26 Press Kogyo Co Ltd Press forming die and its surface treating method
US10870912B2 (en) 2017-03-14 2020-12-22 Bwt Llc Method for using boronizing reaction gases as a protective atmosphere during boronizing, and reaction gas neutralizing treatment
US11192792B2 (en) 2017-03-14 2021-12-07 Bwt Llc Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
CN114703447A (en) * 2022-04-01 2022-07-05 江苏科技大学 One-phase Fe2Boronizing agent for B tissue and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105779A (en) * 2005-10-14 2007-04-26 Press Kogyo Co Ltd Press forming die and its surface treating method
US10870912B2 (en) 2017-03-14 2020-12-22 Bwt Llc Method for using boronizing reaction gases as a protective atmosphere during boronizing, and reaction gas neutralizing treatment
US11192792B2 (en) 2017-03-14 2021-12-07 Bwt Llc Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
CN114703447A (en) * 2022-04-01 2022-07-05 江苏科技大学 One-phase Fe2Boronizing agent for B tissue and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Bindumadhavan et al. Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications
WO1997032053A1 (en) A method of forming spray deposit
JP2000119839A (en) Boriding treating method for steel member surface
JP2758707B2 (en) Thermal spray coating for hot dip galvanizing bath
JP3390776B2 (en) Surface modification method for steel using aluminum diffusion dilution
JP3379041B2 (en) Equipment in plating bath and manufacturing method
JP5596334B2 (en) Roll for hot metal plating bath
JP4598499B2 (en) Manufacturing method of composite layer covering member
JP2826220B2 (en) Components for molten zinc bath
JP2986590B2 (en) Thermal spray powder materials and thermal spray coatings with excellent resistance to molten metal
JP2567137B2 (en) Composite film coated member having excellent wear resistance and molten metal resistance and method for producing the same
JP2006307298A (en) Nitride film and film-forming method therefor
JPH0413854A (en) Wear and corrosion resistant roll in molten zinc bath
US3726705A (en) Process for galvanizing a ferrous metal article
JP3338734B2 (en) Melting-resistant metal member and method of manufacturing the same
JP2593426B2 (en) Melting zinc erosion resistant alloy and its manufacturing method and application
JP2000034552A (en) Hot dip metal coating device
JP4224150B2 (en) Roll member for molten metal plating bath and method for producing the same
JPH06346208A (en) Hot-dip metal coating device
JPH1180924A (en) Roll, parts and their production as well as continuous hot dip metal coating device and method for operating the same
JPH06212379A (en) Production of immersing member into hot dip galvanizing bath and its production
JP2852186B2 (en) Surface treatment method for continuous casting mold and continuous casting mold
JP3284953B2 (en) Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus
Yusnenti et al. Silicanizing process on mild steel substrate by using Tronoh silica sand: microstructure, composition and coating growth
JPH1058122A (en) Ladle for aluminum melting furnace and manufacture thereof