JPS5819681A - Rotary furnace - Google Patents

Rotary furnace

Info

Publication number
JPS5819681A
JPS5819681A JP11850081A JP11850081A JPS5819681A JP S5819681 A JPS5819681 A JP S5819681A JP 11850081 A JP11850081 A JP 11850081A JP 11850081 A JP11850081 A JP 11850081A JP S5819681 A JPS5819681 A JP S5819681A
Authority
JP
Japan
Prior art keywords
furnace
metal
gas
raw materials
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11850081A
Other languages
Japanese (ja)
Inventor
福島 勤
清 川崎
佐々木 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP11850081A priority Critical patent/JPS5819681A/en
Priority to BR8204221A priority patent/BR8204221A/en
Priority to IN838/CAL/82A priority patent/IN158178B/en
Priority to US06/403,049 priority patent/US4414026A/en
Priority to PH27653A priority patent/PH21357A/en
Publication of JPS5819681A publication Critical patent/JPS5819681A/en
Priority to US06/519,901 priority patent/US4515352A/en
Priority to IN549/CAL/86A priority patent/IN160231B/en
Priority to PH34570A priority patent/PH25070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原料が装入された炉体を回転して原料を製錬
する回転炉KIlするものである、従来、例えば高炭素
7エロクロムを製造するには、高炭素フエロクロム鉱石
と、コークス等の還元剤及び石灰石、珪石等の造滓剤を
原料とし、これをサブマージドアーク型亀気炉に連続的
に装入して製錬している0この製錬方法では、高炭素フ
ェロクロム生wL1トン轟シの電力消費量は約3o00
〜3700KWHを必簀とし、典型的な電力消費産業で
あゐといえる。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a rotary furnace KIl for smelting raw materials by rotating a furnace body charged with raw materials. This smelting method uses carbon ferrochrome ore, a reducing agent such as coke, and a slag-forming agent such as limestone and silica stone as raw materials, and smelts it by continuously charging it into a submerged arc furnace. So, the power consumption of high carbon ferrochrome raw wL 1 ton Todoroki is about 3o00
It can be said that it is a typical power consuming industry, requiring up to 3,700 KWH.

省エネルギー技術が叫ばれている昨今、液体燃料から電
気エネルギーに変換する効率が着しく低い電力を、多量
に使用することを避ける技術の開発は、急務を資する重
要@題である。
Nowadays, energy-saving technology is being called for, and the development of technology that avoids the use of large amounts of inefficient and low-efficiency electricity when converting liquid fuel into electrical energy is an urgent and important issue.

このような観点から、例えば養分@ 44−23.71
31号公報にみられるように、回転炉を使用した11融
遺元法による合金鉄あるいは合金鋼の製造方法が提案さ
れている。この回転炉は、第1図に示すように、外周が
鉄皮2で囲まれ、両側に原料の装入06と燃料吹錬用ラ
ンス5の取付口4を設け、炉体1をローラ6によ〕−転
しうるように構成し、鉄皮2の内面には耐火物7が張ら
牡ている。そして回転炉内に原料8を装入し、炉体1を
回転しなからランス5より天井の耐火物に向けて、天然
ガス又は重油と酸素及び還元反応によシ生属する一酸化
炭素とII!累を吹付けて燃焼させ、その輻射熱により
原料を製錬している。
From this point of view, for example, nutrients @ 44-23.71
As seen in Publication No. 31, a method for manufacturing alloy iron or alloy steel by the 11-fusion method using a rotary furnace has been proposed. As shown in FIG. 1, this rotary furnace has an outer periphery surrounded by an iron shell 2, a charging port 06 for raw materials and an attachment port 4 for a fuel blowing lance 5 on both sides, and a furnace body 1 attached to a roller 6. The iron skin 2 has a refractory material 7 lined on its inner surface. Then, the raw material 8 is charged into the rotary furnace, and while the furnace body 1 is rotating, it is directed from the lance 5 to the refractory on the ceiling. ! The material is smelted using the radiant heat that is smelted by spraying and burning it.

このよう金回転炉においては、次のような問題があり、
実用上種々支障を生じている。
These gold rotary furnaces have the following problems:
This has caused various problems in practical use.

(1)安価で安定した供給が期待される石炭あるいはコ
ークスを使用できない〇 (2)実験の結果によれば、炉内の耐火物はその表面温
度が1900℃を超えると、スラグにょる侵洞が大とな
って消耗量が急激に増大することが明らかになったが、
この回転炉においては、耐火物の表向温度は2000℃
以上に達するため消耗が激しく、度々交換しなければな
らないので補修費が嵩むばか夛でなく、交換の次めのロ
スタイムも大きい。
(1) Coal or coke, which are expected to be cheap and stable in supply, cannot be used. (2) According to the results of experiments, when the surface temperature of the refractory in the furnace exceeds 1900°C, slag will cause cavitation. It became clear that the amount of consumption increased rapidly as the
In this rotary furnace, the surface temperature of the refractory is 2000℃
As it reaches this point, it is subject to heavy wear and has to be replaced frequently, which not only increases repair costs, but also causes significant loss of time after replacement.

(3)  耐火物からの輻射熱により原料を溶解してい
るので、吹錬に時間がかかる。
(3) Since the raw materials are melted by radiant heat from the refractory, blowing takes time.

(4)還元剤として使用する炭素の形番で、C飽和の金
I14が生成される〇 本発明は、このような問題点を解決するtめになさrt
几もので、回転炉の炉体の内壁に、複数個の小孔又は多
孔質の耐火物を充填し几小孔を設け、この小孔からガス
及び/又は燃料を吹込むことに↓り、 (υ 安価で供給が安定している石炭、コークスを、使
用する。
(4) C-saturated gold I14 is produced depending on the type of carbon used as a reducing agent. The present invention is designed to solve these problems.
It is a method in which the inner wall of the rotary furnace body is filled with a plurality of small holes or porous refractories to form small holes, and gas and/or fuel is injected through the small holes. (υ Use coal and coke, which are cheap and have a stable supply.

(2)炉内の耐火物の過熱を防止し、消耗量の低減を線
かる。
(2) Prevents overheating of refractories in the furnace and reduces consumption.

(3)  燃料と酸素を吹込んで原料の溶解を促進させ
、吹錬時間を短縮して生産性の向上をはかる0(4)生
成した金属中の脱炭を行なう。
(3) Inject fuel and oxygen to promote melting of raw materials, shorten blowing time and improve productivity. (4) Decarburize the produced metal.

ことを目的としたものである。以下図面によp本発明を
説明する。
It is intended for this purpose. The present invention will be explained below with reference to the drawings.

第2図は本発明に係る回転炉の原理的縦断面図、183
図はその人−ム断wIWIAである0図において、10
紘炉体、11は鉄皮、12はその内面に張らrtた耐火
物、16は炉体10の両側に設けた酸素吹込口及び原料
の装入口であるo14は鉄皮11と耐火物12を貫通し
几小孔で、必袈に応じて多孔質の耐火物を充填してもよ
い。21は酸素吹錬用のラン、ス、22はメタル、25
はスラグ、24は還元剤である。このように構成した回
転炉を回転すると、第3図に示すようにメタル22、ス
ラグ23、還元剤24は當w#Aの範囲にあり、Bの範
囲は空間になっている。
FIG. 2 is a theoretical longitudinal sectional view of the rotary furnace according to the present invention, 183
The figure is the person-mu section wIWIA in the 0 figure, 10
A furnace body, 11 is an iron shell, 12 is a refractory placed on its inner surface, 16 is an oxygen inlet and a raw material charging port provided on both sides of the furnace body 10, and o14 is an iron shell 11 and a refractory 12. A small through-hole may be filled with porous refractory material as required. 21 is a run for oxygen blowing, 22 is metal, 25
is a slag, and 24 is a reducing agent. When the rotary furnace constructed in this way is rotated, the metal 22, slag 23, and reducing agent 24 are in the range w#A, and the range B is space, as shown in FIG.

第4図は炉体10に設けた小孔14の実施例で、(a)
は孔14にパイプ15を挿通し、と扛をガスパイプ19
に接続したもの、(b)は小孔14に鉄皮17で被覆し
几多孔質耐火物16を挿通し、ガスパイプ19にW!続
したもの、(C)は小孔14に外管18と内管18mと
からなる二重管を挿通し、それぞれガスパイプ19.2
0に接続したものである。
FIG. 4 shows an example of the small hole 14 provided in the furnace body 10, (a)
Insert the pipe 15 into the hole 14, and insert the gas pipe 19 into the hole 14.
In (b), the small hole 14 is covered with an iron skin 17 and the porous refractory 16 is inserted, and the gas pipe 19 is connected to the W! In (C), a double pipe consisting of an outer pipe 18 and an inner pipe 18m is inserted into the small hole 14, and each gas pipe 19.2
It is connected to 0.

本発明紘、上記のように構成した回転炉の小孔に、表1
に示すようなガスを吹込むことを特徴とするものである
According to the present invention, Table 1 is applied to the small hole of the rotary furnace configured as described above.
It is characterized by blowing gas as shown in the figure below.

次に本発明の回転−を使用し尺フェロクロム製造の実施
例について説明する0 実施例−1 本実施例は、中炭素フェロクロムの製造例で、次の方法
で製造した0 回転炉は、第5−及び第′6図に示す構造のもので、内
径1密、外径2 m s長さ5mで内面にマグクロレン
ガの耐火物12を約6051の薄さで内張すした両日回
転炉を、−転軸を水平に保ち、8r、Ipで回転した0
この回転炉には、長さ方向に50a+毎に5か所、円周
上に等間隔で6か所、計60か所に鉄IL11から耐火
物12を経て炉内に通ずる小孔14を設け、第4図の実
施例に示すように、各小孔14をガス源に通ずるパイプ
19に接続し次ものである0 先ず予熱した鉱石、フラックス及び石炭とコークスを次
の割合で混合し、炉内に装入し7joCriE石: 1
90011w、焼石灰=254麺、珪石:26助、銑滓
:5に4、石炭:400−、コークス:40〇次に吹錬
al嵩吹込用ランス21から讃素を吹込むとP1時に、
炉内のメタル、スラグ生成部分(Aの範囲)と空間部分
(Bの範囲)の各小孔14からそ扛ぞn空気を流す。こ
こに、メタル、スラグ生成部分に空気を流したのは、原
料の溶解促進のため、また空間部分に流し九のは耐火物
表面の冷却の九めである。
Next, an example of manufacturing ferrochrome using the rotary furnace of the present invention will be described. Example 1 This example is an example of manufacturing medium carbon ferrochrome. - and a two-day rotary furnace of the structure shown in Fig. Keeping the axis of rotation horizontal, rotated at 8r, Ip 0
This rotary furnace is provided with small holes 14 that lead from the iron IL 11 through the refractory 12 and into the furnace at 5 locations every 50 mm in the length direction and 6 locations at equal intervals on the circumference, for a total of 60 locations. As shown in the embodiment of FIG. 4, each small hole 14 is connected to a pipe 19 leading to a gas source. 7joCriE stones charged inside: 1
90011w, burnt lime = 254 noodles, silica: 26 suke, pig iron slag: 5 to 4, coal: 400-, coke: 400 Next, Sanso is injected from the blowing al bulk injection lance 21, and at P1,
Air is caused to flow through each of the small holes 14 in the metal and slag producing area (range A) and the space area (range B) in the furnace. Here, air is flowed into the metal and slag generation areas to promote dissolution of the raw materials, and air is flowed into the space to cool the refractory surface.

MIA吹錬開始後約28分で原料は溶解し、スラグ温度
は1620℃に達しtoこの時点で追加コークスを30
0に4装入し、tた、メタル、スラグ生成部分及び空間
部分の小孔14からの吹込ガスを空気から排ガス(#ガ
ス十N5)K変更した0酸素吹錬開始後約60分でスラ
グ温度は1710cに違し皮0この時点でのメタル生成
量は990にで、メタルの化学!iH1,はs 54−
0 * Cr−a8 % C−36−596Feであつ
7H。
Approximately 28 minutes after the start of MIA blowing, the raw material melts and the slag temperature reaches 1620°C.
The gas blown into the small hole 14 in the metal, slag generation area and space was changed from air to exhaust gas (#gas 1N5). Approximately 60 minutes after the start of oxygen blowing, the slag The temperature was 1710c and the amount of metal produced at this point was 990c, and the chemistry of metal! iH1, is s 54-
0*Cr-a8% C-36-596Fe and 7H.

60分後から製錬が終了するまで、メタル、スラダ生I
li、s分(ムノ範18″)o小孔14からAr+Os
を流し、空間部分(Bの範i!B)の小孔14から排ガ
ス流した。80分で吹錬を終了し、出湯した0このとき
のメタル、スラグ量及び化学組成は、そfぞれ次の通り
であった〇 メタル:9401j 化学組成: 55−2%Crt4.0%C、39,0%
Fe。
From 60 minutes until the end of smelting, Metal, Slada Raw I
li, s minute (muno range 18'') o small hole 14 to Ar+Os
was allowed to flow, and exhaust gas was allowed to flow from the small holes 14 in the space portion (range B!B). The blowing was completed in 80 minutes and the hot water was tapped.The metal, slag amount, and chemical composition at this time were as follows:〇Metal: 9401j Chemical composition: 55-2%Crt4.0%C ,39,0%
Fe.

1、21! Sl スラグ: 13004 化学組成:2.2%Cry’s e 16 * 5io
ts 27 %Ca0s28 % ノ1A5t Os 
 、 2 6  %  RagO第7図は上記実施例1
における時間の経過とガス吹込量、メタル生成量、原料
・スラグ温度、酸素吹錬量との関係を示す線図である〇 実施例−2 本実施例は、縦木不飽和の高炭素フェロクロムの馬造例
で、次の方法で製造した。
1, 21! Sl slag: 13004 Chemical composition: 2.2%Cry's e 16*5io
ts 27%Ca0s28% ノ1A5tOs
, 26% RagO Figure 7 shows the above Example 1.
This is a diagram showing the relationship between the passage of time and the gas injection amount, metal production amount, raw material/slag temperature, and oxygen blowing amount. The Umazo example was manufactured by the following method.

回転炉社、第8図に示す構造のもので、内径1m、外径
2m、長さSvnで、内面にマグクロレンガを約601
の厚さで内張りし九片口回転炉を、回転軸を20°傾斜
し、8 F−p−m−で回転した0この回転炉には、長
さ方向に5051毎に5か所、円周上に等間隔で6か所
、計30か所に鉄皮11から耐大物12.を経て炉内に
通ずる小孔14を設け、各小孔14を外管18と内管1
8aからなる二重管(外径:15−1内径11 sm 
)でガス源に接続したものである。
Rotary Furnace Co., Ltd., with the structure shown in Figure 8, with an inner diameter of 1 m, an outer diameter of 2 m, and a length of Svn.
A rotary furnace with nine openings lined with a thickness of There are 11 iron shells to 12 large objects in 6 places at equal intervals on the top, 30 places in total. A small hole 14 is provided that communicates with the inside of the furnace through the outer tube 18 and the inner tube 1.
Double pipe consisting of 8a (outer diameter: 15-1 inner diameter 11 sm
) connected to the gas source.

二重管とガス源の接続例を第9図及びW、10図に示す
0第9図(a) −(b) 、 (c)は、外管18の
ガスパイプ19とガス源との接続例で、外管用接続装置
30は、メタル、スラグ生成部分への外管用ガス人口6
3、空間部分への外管用ガス人口34とこれに通ずる溝
33m、34aを有する固定ブロック31と、外管用ガ
スパイプ19に通ずる複数の小孔191を有する回転ブ
ロック32とからなシ、両者を一体に連結して回転炉の
回転に伴ない、回転ブロック62を固定ブロック31の
趨向に沿って回転摺動させ、ガス源からのガスを外管1
8を経て炉内のメタル、スラグ生成部分及び空間部分へ
供給するようKし次ものである〇 @ 101@(a)、 (b) 、 (e)は、内管1
8mのガスパイプ20とガス源との接続例で、内管用接
続装置35社、メタル、スラグ生成部分への内管用ガス
入口38、空間部分への内管用ガス入口39、これに通
ずる溝38a、39凰を有するドーナツ状の固定ブロッ
ク56と、内管用ガスパイプ20に通ずる複数の小孔2
0mを有するドーナツ状の回転ブロック37とからなり
、回転炉の回転に伴ない回転ブロック37を固定プロ゛
ツク66の端面に沿って回転させ、ガス源からのガスを
内管18aを経て炉内のメタル、スラグ生成部分及び空
間部分へ供給するものである0なお、外管用ガス通路6
3m、34mはドーナツ状の内管接続装置35の中央空
間部40内に配置されている。
Examples of connections between the double pipe and the gas source are shown in FIGS. 9, W, and 10. FIGS. The outer pipe connecting device 30 connects the outer pipe gas to the metal and slag generating parts.
3. A fixed block 31 having a gas port 34 for the outer pipe into the space and grooves 33m and 34a leading thereto, and a rotating block 32 having a plurality of small holes 191 leading to the gas pipe 19 for the outer pipe, both of which are integrated. As the rotary furnace rotates, the rotary block 62 is rotated and slid along the direction of the fixed block 31, and the gas from the gas source is transferred to the outer tube 1.
8 to the metal, slag generating section and space section of the furnace.
This is an example of a connection between an 8 m gas pipe 20 and a gas source, with 35 internal pipe connection devices, a gas inlet 38 for the inner pipe to the metal and slag generation part, a gas inlet 39 for the inner pipe to the space part, and grooves 38a and 39 leading to this. A donut-shaped fixed block 56 with a sill and a plurality of small holes 2 communicating with the inner gas pipe 20.
The rotary block 37 is rotated along the end face of the fixed block 66 as the rotary furnace rotates, and the gas from the gas source is passed through the inner pipe 18a into the furnace. In addition, the outer pipe gas passage 6
3m and 34m are arranged in the central space 40 of the doughnut-shaped inner tube connecting device 35.

上記のように構成した回”転炉内に、予熱した鉱石及び
7ラツクスを、石炭、コークスと次の割合で混合し、原
料装入口16より炉内に装入した○Cr鉱石、:190
01に、焼石灰:254k、珪石:26−1鉄滓:5却
、石炭: 4004.コークス:400−0 次に吹錬酸素吹込用ランス21から酸素を吹込むと同時
に、空間部分(Bの範i!l)及びメタル、スラグ生H
,部分(Aの範囲)の小孔14の外管18から微粉炭と
水のa合物を、また内管18&から0意を流して原料の
溶解を促進させ窺〇鐵素吹錬−始後約20分で原料は溶
解し、スラグ温度は#1600℃に達したにの時点で追
加コークスを300〜鋏入し、メタル、スラグ生成部分
(ムO範S)の処置18から微粉炭と水Of&合物を、
内管18&から偽を流し、空間部分(Bの範1!i)の
外管18と内管18mからそれぞn水蒸気t 11 L
 7t o ml素吹錬開始後約55分で、スラグ1a
ta約1730℃に達しmeこのときのメタル生成量は
約980Ifで、メタルの組庫は、5A6*Cr、a 
5 fkc、 57.2 %Feでめつ次。
Preheated ore and 7 lacs were mixed with coal and coke in the following ratio into the rotary converter configured as above, and the mixture was charged into the furnace through the raw material charging port 16. ○Cr ore: 190
01, burnt lime: 254k, silica: 26-1 iron slag: 5k, coal: 4004. Coke: 400-0 Next, at the same time oxygen is blown from the blowing oxygen injection lance 21, the space part (range B!l) and metal, slag raw H
, A mixture of pulverized coal and water is flowed from the outer pipe 18 of the small hole 14 in the part (range A), and a mixture of water is flowed from the inner pipe 18 & to promote the dissolution of the raw materials. After about 20 minutes, the raw material melted and the slag temperature reached #1600°C, at which point additional coke was added at 300 °C and pulverized coal was added from treatment 18 of the metal and slag generation part (MUO S). Water of & compounds,
Water is flowed from the inner pipe 18 &, and n water vapor t 11 L is flowed from the outer pipe 18 and the inner pipe 18m of the space part (range 1!i of B), respectively.
Approximately 55 minutes after the start of 7t o ml slag 1a
ta reached about 1730°C.The amount of metal produced at this time was about 980If, and the metal assembly was 5A6*Cr,a
5 fkc, 57.2% Fe.

さらに、この時点から製錬が終了する壕で、メタル、ス
ラグ生成部分(ムの範8)の小孔14の外管18 K 
Ar+01ガスを、内管1Bmにムr +(h +水′
s党を流し、空@部分(Bの範III)の外管18と内
管18.にそれぞれ水蒸気を眞し7jo約75分で吹錬
を終了し、出湯し九。このときのメタル、スラグ量及び
化学総或は、それぞれの過多であり’ft。
Furthermore, in the trench where the smelting ends from this point, the outer pipe 18 of the small hole 14 in the metal and slag generation part (range 8 of the metal) is removed.
Ar + 01 gas is added to the inner pipe 1Bm + (h + water'
Drain the outer tube 18 and inner tube 18 of the empty part (B range III). Steam was applied to each of the baths, and the blowing was completed in about 75 minutes, and the hot water was poured out. At this time, the amount of metal, slag, and chemical total or each is excessive.

メタル童:94011 化学組成:53.2%Cr、7.4%C136,51G
Fa、 1.0%Siスラグ貴:125Q陶 化学組成ニー1.5%CrzOs、 17IIi810
x、28%CaO,2816At冨0..2511Mg
0 w、11図は、上記実施例゛における経過時間と、ガス
吹込量、メタル生成量、原料 スラグ温度及びlI!素
吹錬量との関係を示す11図である。
Metal Dou: 94011 Chemical composition: 53.2%Cr, 7.4%C136,51G
Fa, 1.0%Si slag noble: 125Q ceramic composition 1.5%CrzOs, 17IIi810
x, 28%CaO, 2816At richness 0. .. 2511Mg
0 w, Figure 11 shows the elapsed time, gas injection amount, metal production amount, raw material slag temperature, and lI! in the above example. FIG. 11 is a diagram showing the relationship with the amount of bare blowing.

上記の説明では、炉体に設けた小孔から特定のガスを吹
込む場合について述べ友が、本発明は表1に示す容積の
ガスを使用できる。また、フェロクロムの製造例につい
て説明したが、本発明はその他の金属の製造に実施して
も同様の効果を挙けることができるOさらに、炉体に設
は几小孔とカス源との接続例を第450.第9図及び第
10図に示したが、本発明はこれに限定するものではな
く、同様の機能を奏するものであれに他の手段を用いて
もよい0 以上詳述し穴ように、本発明によれば次のような効果を
挙けることができるO (υ 安価で供給が安定している6巌、コークスを使用
できる〇 (2)炉体に設けた小孔からガスを吹込んで耐火物の表
向を冷却するようにしたので、耐火物の寿命を大aec
jt長できる、このため補修費用を軽減し、かつ補修の
ためのロスタイムを減少で息子〇 (3)小孔から燃料と駿嵩を吹込んで原料の溶解を促進
させたので、吹錬時間を短縮し、生産性を同上できる◎ (4)生地した金属中の脱炭が可能になシ、例えば7〜
8%Cの高炭素7エロクロムから3〜4g6Cの中R票
フェロクロムが可能になっりc
In the above description, the case where a specific gas is blown through a small hole provided in the furnace body is described, but the present invention can use the gas in the volume shown in Table 1. In addition, although an example of manufacturing ferrochrome has been described, the present invention can also be applied to the manufacture of other metals to achieve similar effects.Furthermore, the furnace body is equipped with a small hole and a connection between the scum source and the like. An example is No. 450. Although shown in FIGS. 9 and 10, the present invention is not limited thereto, and other means may be used as long as they perform similar functions. According to the invention, the following effects can be achieved. (υ) It is possible to use coke, which is cheap and has a stable supply. Since the surface of the object is cooled, the lifespan of the refractory can be extended by a EEC.
This reduces repair costs and reduces loss time for repairs.(3) Fuel and bulk are injected through small holes to promote melting of raw materials, reducing blowing time. (4) It is possible to decarburize the processed metal, for example, from 7 to
From 8% C high carbon 7 erochrome, 3 to 4 g 6C medium R grade ferrochrome is now possible c

【図面の簡単な説明】[Brief explanation of the drawing]

島1図は従来の回転炉の一例の!1断面図、第2図線本
発明に係る回転炉のN理的縦断面図、第3図はそ0A−
Alllf面図、第4図−)、伽)、(c)紘炉体に設
は几小孔の実−施例を示す縦断面図、第5図は本発明実
施例の縦断面図、纂6図はそのB−B断面図、W41W
jA線本発明笑施例による時間の経過と各賛素の関係を
示す線図、Jl!8図は本発明の別の実施例の縦断面図
、$9図(a)、山ン、(。)及び第1υ図(a)、伽
)、(c)は上記実施例の二重管とカス源との接続例を
示す側面図及び分解平面図、第11図は本発明の別の実
施例の時間の経過と各要素の関係を示す線図である。 10:炉体、11:鉄皮、12:耐火物、14:小孔、
19.20:ガス接続管、21:吹錬酸素吹込用ランス
、60:外管用接続装置、65:内管用接続装置。 代理人 弁理士 佐 藤 正 年 第7図 第8図
Island 1 is an example of a conventional rotary furnace! 1 and 2 are vertical sectional views of the rotary furnace according to the present invention, and FIG.
(c) Vertical cross-sectional view showing an embodiment of small holes provided in the furnace body, and Figure 5 is a vertical cross-sectional view of an embodiment of the present invention. Figure 6 is the BB sectional view, W41W
JA line A diagram showing the relationship between the passage of time and each element according to the present invention and examples, Jl! Figure 8 is a longitudinal sectional view of another embodiment of the present invention, Figure 9 (a), ridges (.), and Figures 1υ (a), (c) are double pipes of the above embodiment. FIG. 11 is a side view and an exploded plan view showing an example of the connection between the device and the waste source, and FIG. 11 is a diagram showing the relationship between each element over time in another embodiment of the present invention. 10: Furnace body, 11: Iron shell, 12: Refractory, 14: Small hole,
19.20: Gas connecting pipe, 21: Blowing oxygen injection lance, 60: Outer pipe connecting device, 65: Inner pipe connecting device. Agent: Patent Attorney Tadashi Sato Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)  炉体に鉄皮及び耐火物を貫通して炉PgK開
口する被数個のガス吹込用小孔又は多孔質の耐火物を充
填した小孔を設けたことを特徴とする金属合金のfII
拳還元又は精錬用横11若くは傾斜層1転炉0
(1) A metal alloy characterized in that the furnace body is provided with several small gas injection holes or small holes filled with porous refractory that penetrate through the iron shell and refractory to open the furnace PgK. fII
11 horizontal or sloped bed 1 converter 0 for fist reduction or refining
(2)炉体に鉄皮及び耐火物を貫通して炉内に開口する
複数個のガス吹込用小孔又は多孔質の耐火物を充填し几
小孔を設け、炉のP3mlがメタル、フラックス浴及び
還元剤と接していない上部の前記小孔から空気等の冷却
媒体を吹込んで、炉の円WJK内張りした前記耐火物の
過熱を防止することを特徴とする金属合金0@融還元又
は精錬用−11着くは傾斜I!回転炉〇
(2) The furnace body is provided with a plurality of small gas injection holes that penetrate the steel shell and refractories and open into the furnace, or are filled with porous refractories and have small holes filled with metal and flux. A metal alloy 0@melting reduction or refining characterized in that a cooling medium such as air is blown into the small hole in the upper part that is not in contact with the bath and the reducing agent to prevent overheating of the refractory lined with the circle WJK of the furnace. -11 Arrival is slope I! Rotary furnace〇
(3)  炉体に鉄皮及び耐火物を貫通して炉内に開口
するII数個のガス吹込用小孔又は多孔質の耐火物を充
填し露小孔を設け、炉Pgに装入し良鉱石75ックス等
の原料が溶解する前は溶解を促進するため燃料又は燃料
とIII!累を混合し次ものを吹込み、前記原料の溶解
後の還元期には生成する金属中の訳素管酸化するため上
部の空間部分から冷却用ガスをまた下部のメタル及びス
ラグ生底部分からは酸化性ガスを吹込むことを特徴とす
る回転炉。
(3) Fill the furnace body with several small holes for gas injection that penetrate the shell and refractories and open into the furnace, or fill with porous refractories and provide small dew holes, and charge into the furnace Pg. Before raw materials such as good ore 75x are dissolved, fuel or fuel is used to promote dissolution. After the raw materials have been melted, the following materials are blown into the mixture, and during the reduction period after the raw materials are melted, cooling gas is supplied from the upper space to oxidize the raw materials in the metal that is produced, and from the lower metal and slag raw bottom part. A rotary furnace characterized by blowing oxidizing gas.
(4)炉体に鉄皮及び耐火物を貫通して炉内に開口する
複数個のガス吹込用小孔又は多孔質の耐火物を充填した
小孔を設け、該小孔を二重管構造とし、炉内に装入した
原料の溶解期にはPM記二重管の円管から酸素をtた外
管からは燃料を吹込んで溶解を促進させ、前記原料の還
元期にはメタル及びスラグ生成部分に前記内管から*素
等の酸化性ガスをまた外管からアルゴン等の冷却用ガス
を吹込んで金属中の炭素を脱炭させることを特徴とする
回転炉。
(4) A plurality of small holes for gas injection or small holes filled with porous refractory material are provided in the furnace body to penetrate through the steel skin and refractories and open into the furnace, and the small holes are formed into a double pipe structure. During the melting stage of the raw materials charged into the furnace, fuel is injected from the outer tube containing oxygen from the PM double pipe to promote melting, and during the reducing stage of the raw materials, metal and slag are A rotary furnace characterized in that carbon in the metal is decarburized by injecting an oxidizing gas such as elemental gas from the inner pipe into the production part and a cooling gas such as argon from the outer pipe.
JP11850081A 1981-07-21 1981-07-30 Rotary furnace Pending JPS5819681A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP11850081A JPS5819681A (en) 1981-07-30 1981-07-30 Rotary furnace
BR8204221A BR8204221A (en) 1981-07-21 1982-07-20 PROCESS FOR THE PRODUCTION OF FERROCROME AND ROTARY OVEN USED FOR THE SAME
IN838/CAL/82A IN158178B (en) 1981-07-21 1982-07-21
US06/403,049 US4414026A (en) 1981-07-30 1982-07-29 Method for the production of ferrochromium
PH27653A PH21357A (en) 1981-07-30 1982-07-30 Method for the production of ferrochromium
US06/519,901 US4515352A (en) 1981-07-30 1983-08-03 Rotary furnace used for the production of ferrochromium
IN549/CAL/86A IN160231B (en) 1981-07-21 1986-07-21
PH34570A PH25070A (en) 1981-07-30 1986-12-09 Rotary furnace used for the production of ferrochromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11850081A JPS5819681A (en) 1981-07-30 1981-07-30 Rotary furnace

Publications (1)

Publication Number Publication Date
JPS5819681A true JPS5819681A (en) 1983-02-04

Family

ID=14738202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11850081A Pending JPS5819681A (en) 1981-07-21 1981-07-30 Rotary furnace

Country Status (1)

Country Link
JP (1) JPS5819681A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137248A (en) * 1974-09-26 1976-03-29 Victor Company Of Japan Kogakubiimu no shotenchoseihoshiki

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137248A (en) * 1974-09-26 1976-03-29 Victor Company Of Japan Kogakubiimu no shotenchoseihoshiki

Similar Documents

Publication Publication Date Title
CN101649366B (en) Method and device for making iron by smelting reduction
US4515352A (en) Rotary furnace used for the production of ferrochromium
JPS5819681A (en) Rotary furnace
CN106086294B (en) Swinging oxygen side blown converter double-furnace-body double smelting device
US1352580A (en) Manufacture of steel
JPH0377251B2 (en)
JPS609815A (en) Production of high chromium alloy by melt production
GB1290436A (en)
GB1086196A (en) Reduction of iron ore
RU2548871C2 (en) Method for direct production of metals from materials containing iron oxides (versions) and device for implementing it
Dutta et al. Steelmaking Processes
JPS631367B2 (en)
JP3121894B2 (en) Metal melting furnace
JPS6167708A (en) Refining method of iron alloy
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
SU922156A1 (en) Method for steel melting in convertor
JPS6213513A (en) Refining method in refining furnace provided with top blowing lance
JPH0768574B2 (en) Metal oxide smelting reduction method and smelting reduction furnace
JPH02213407A (en) Production of molten iron
JPS62156213A (en) Construction of spout for preliminary refining of molten iron
JPH06940B2 (en) Method for smelting reduction refining of high manganese iron alloy
JPS6254164B2 (en)
JPS6121838Y2 (en)
JPS58197208A (en) Melt reduction method of metallic oxide ore
JPH09202911A (en) Method for melting scrap under condition excellent in thermal efficiency