JPS58196814A - Backwashing method in electromagnetic filter type filter tower - Google Patents

Backwashing method in electromagnetic filter type filter tower

Info

Publication number
JPS58196814A
JPS58196814A JP7774182A JP7774182A JPS58196814A JP S58196814 A JPS58196814 A JP S58196814A JP 7774182 A JP7774182 A JP 7774182A JP 7774182 A JP7774182 A JP 7774182A JP S58196814 A JPS58196814 A JP S58196814A
Authority
JP
Japan
Prior art keywords
water
tower
electromagnetic
filter
backwashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7774182A
Other languages
Japanese (ja)
Other versions
JPS6049006B2 (en
Inventor
Kazuyuki Ito
和行 伊藤
Katsuya Ebara
江原 勝也
Shoji Kubota
昌治 久保田
Kenkichi Izumi
健吉 和泉
Sankichi Takahashi
燦吉 高橋
Yoshie Takashima
高島 義衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7774182A priority Critical patent/JPS6049006B2/en
Publication of JPS58196814A publication Critical patent/JPS58196814A/en
Publication of JPS6049006B2 publication Critical patent/JPS6049006B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To exclude fine particles in good efficiency, by carrying out backwashing operation after water containing fine particles having zeta potential with inverse polarity with respect to fine particles in raw water is passed through and recirculated to a filter tower. CONSTITUTION:The supply of raw water is stopped while valves 11, 12 are closed. In the next step, an electromagnetic coil 3 is stopped while valves 13, 14 are closed and water in a filter tower 1 is pressed out by usual backwashing operation. The valves 13, 14 are closed while valves 21, 22 are opened and water containing Fe3O4 being fine particles having negative zeta potential is passed through and recirculated to the filter tower 1 for 30min. After the passage and the recirculation of the injected fine particle-containing water is finished, the valves 21, 22 are closed while the valves 13, 14 are opened to carry out backwashing operation again to press out water in the filter tower 1.

Description

【発明の詳細な説明】 この発明は、濾過塔の内部に磁性体を充填し、その外部
周囲に電磁コイルを配設してなる電磁フィルタ型F、i
M塔において、前記磁性体に捕捉蓄積された微粒子を効
率よ〈濾過場外へ排除する電磁フィルタ型濾過塔の逆流
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electromagnetic filter type F, i, which is formed by filling the inside of a filtration tower with a magnetic material and arranging an electromagnetic coil around the outside of the filter tower.
The present invention relates to a backflow method for an electromagnetic filter type filtration tower in which fine particles captured and accumulated by the magnetic material are efficiently removed from the filtration field in the M tower.

一般にt磁フィルタ型p過嗜は、p過堪内に磁性体倉光
横し、濾過塔の周囲に配置した電磁コイルで磁界を発生
させ、磁化された前記磁性体によって、通水される原水
中に含有する常磁性や強磁性の微粒子を吸着捕捉し、#
微粒子を原水から分離除去するものである。而して、p
通塔の稼働で充填磁性体に微粒子が逐次蓄積されると、
濾過塔の圧力損失の上昇、処理水質の悪化等を招くこと
になるので、電磁フィルタ型(fi過通塔、その磁性体
に捕捉されている微粒子f:い退場外へ排除させる逆洗
操作を1li11当な時間間隔をおいて実施するように
している。
In general, in a T-magnetic filter type P filter, a magnetic material is placed horizontally inside the P filter, and a magnetic field is generated by an electromagnetic coil placed around the filter tower. It adsorbs and captures paramagnetic and ferromagnetic fine particles contained in the #
It separates and removes fine particles from raw water. Therefore, p
When fine particles are accumulated in the filled magnetic material due to the operation of the passing tower,
This will lead to an increase in the pressure loss of the filtration tower and a deterioration of the quality of the treated water. The tests are carried out at reasonable time intervals.

@1図は、代表的な電磁フィルタ型濾過堪を用いている
水処理フローの説明図で、該水処理フローにおいて実施
される通常の逆洗方法について以下にJg要を説明する
Figure @1 is an explanatory diagram of a water treatment flow using a typical electromagnetic filter type filtration tank.Jg essential points will be explained below regarding the normal backwashing method implemented in this water treatment flow.

p通塔lの樟鋤中、微粒子を含む原水は、弁11を−と
して濾過塔1の下部から電磁フィルタに供給される。こ
の電値フィルタは、F、i[1内に充填された磁性細線
、磁性多孔板尋の磁性体2を含み、該磁性体2は電磁コ
イル3によって励磁されでいる。I濾過場lに通水され
る原水は、そのなかに首肩されでいるN磁性や強磁性の
微粒子が励磁された磁性体2よる成層捕捉によって分離
除去され濾過塔1の上部から弁12を通り処理水とじて
排出される。
Raw water containing fine particles in the camphor of P-tower L is supplied to the electromagnetic filter from the lower part of filtration tower 1 with valve 11 set to -. This electric value filter includes a magnetic body 2 such as magnetic thin wires and a magnetic porous plate filled in F, i[1, and the magnetic body 2 is excited by an electromagnetic coil 3. The raw water flowing into the filtration field 1 is separated and removed by stratified trapping by the excited magnetic material 2, in which N magnetic and ferromagnetic fine particles are separated and removed. It is discharged as street treated water.

上記原水の通水梶働によって磁性体2に捕捉された微粒
子をp過堪1外へ排除する逆洗操作は、以下に説明する
手順で実施される。まず弁11.12を閉じて原水の通
水を停止し、電磁コイル3を停止する。次に弁13.1
4を開とし、弁13からは3〜5 kg/crm2の加
圧空気を濾過塔1の上部から供給し、Pi7Ii塔l内
の水を一挙に弁14t−通してF遇#!r1の外部へ排
出する。この時、電磁フィルタの逆洗が行なわれるが、
その逆洗流速は、通常の通水時流速の4〜10倍に4達
し、また気液混合流となる効果もめって、磁性体2に捕
捉されている微粒子を強制的に剥離し、逆洗水とともに
一過塔外へ排出する。
The backwashing operation for removing the fine particles captured by the magnetic body 2 from the p-transistor 1 by the water flow of the raw water is carried out according to the procedure described below. First, the valves 11 and 12 are closed to stop the flow of raw water, and the electromagnetic coil 3 is stopped. Then valve 13.1
4 is opened, pressurized air of 3 to 5 kg/crm2 is supplied from the upper part of the filtration tower 1 from the valve 13, and the water in the Pi7Ii tower 1 is passed all at once through the valve 14t to be fed into the air. Discharge to the outside of r1. At this time, the electromagnetic filter is backwashed,
The backwash flow rate reaches 4 to 10 times the flow rate during normal water flow, and the effect of creating a gas-liquid mixed flow often forcibly separates fine particles captured by the magnetic material 2 and reverses the flow rate. It is discharged to the outside of the transit tower along with the washing water.

第2図は、上記した手順で実施された逆洗方法による逆
洗効率と逆洗回数との関係の1例を示すグラフである。
FIG. 2 is a graph showing an example of the relationship between the backwashing efficiency and the number of times of backwashing according to the backwashing method performed according to the above-described procedure.

ただし、逆洗効率を次式で定義する0 W(−):逆洗効流 A :磁性体に捕捉された微粒子量 B :逆洗によって排除された微粒子量N  :ilp
洗回数 第2図から明らかなように、逆洗効率1(剣は逆洗回数
Nが多くなるにつれて低下する。この逆洗効率の低下は
、磁性体に残留する微粒子の増加を意味するから、結果
として濾過塔の圧力損失の上昇、処理水質の悪化等の悪
影響を招くことになる。そして、特に原水中に常磁性微
粒子が多い場合には、磁力による常磁性微粒子の捕捉力
が小さいため、一層処理水實を悪化させるようになる。
However, the backwashing efficiency is defined by the following formula: 0 W(-): Backwashing effective flow A: Amount of particles captured by the magnetic material B: Amount of particles removed by backwashing N: ilp
As is clear from the number of washings in Figure 2, the backwashing efficiency decreases as the number of backwashes N increases. As a result, this will lead to adverse effects such as an increase in pressure loss in the filtration tower and deterioration of the quality of the treated water.In particular, if there are many paramagnetic particles in the raw water, the magnetic force will have little ability to capture the paramagnetic particles. This will further worsen the treated water quality.

この発明は、上記した実状に鑑みてなされたものである
が、逆流によって除去できない微粒子が磁性体表面に増
加して逆洗効率が低下する原因の一つとして、微粒子が
その表面に保有する正ま丸亀の表面電荷のために磁性体
と強力に付着していることにあるという知見に基づいて
いる。
This invention was made in view of the above-mentioned actual situation, but one of the reasons why the backwashing efficiency decreases due to the increase of fine particles that cannot be removed by backflow on the surface of the magnetic material is that the fine particles possess on the surface. This is based on the knowledge that mamarugame has a strong adhesion to magnetic materials due to its surface charge.

すなわち、この発明は、電磁フィルタm濾過塔における
逆洗を行なうに際し、磁性体に捕捉されている微粒子が
もつ表面電荷とは逆極性のぜ一タ電位を肩する微粒子の
含有水t濾過塔内に伽壌通水せl〜め、磁性体表面に捕
捉されている微粒子のt 有を中和し、しかる後逆洗操
作を実施すること特徴とするものである。
In other words, when backwashing an electromagnetic filter in a filtration tower, the present invention uses water in the filtration tower that contains particulates that has a zetta potential of opposite polarity to the surface charge of the particulates captured by the magnetic material. The method is characterized in that water is passed through the surface of the magnetic material to neutralize the particles trapped on the surface of the magnetic material, and then a backwashing operation is performed.

以下第3,4図を参照して、この発明の実施例につき祥
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 3 and 4.

後記する第1表に示す条件で、正のゼータ電位を有する
微粒子であるα−F・20.を含有する原水を第3図に
示す電磁フィルタ型濾過塔1に通水処理し、3日毎に逆
洗操作を行なったところ、逆洗回数5回で逆洗効率が6
0−に低下し九。そこで、以下に記す手順で本発明の1
実施例による逆洗方法を実施した。まず第3図において
、原水の供給を停止し、弁11,12を閉とした。次い
で電磁コイル3を停止し、弁13.14を開とし、通常
の逆洗操作により濾過塔1内の水を押し出した。引続き
弁13.14を閉とし、弁21.22を開とじて後記第
2表に示す条件で、負のゼータ電位を有する微粒子でお
るF・、04の含有水を30分間通水循壊し友。このと
き、電磁コイル3は励磁してもしなくても良いが、本実
施例のように注入する微粒子が強磁性微粒子である場合
は、電磁コイル3t−励磁することにより、該注入微粒
子を磁性体2へ効率よく付着させ得るという効果がある
・注入微粒子含有水の通水循環が終了した後、弁21.
22を閉とし、弁13.14を開として再び逆洗操作を
行なって濾過塔l内の水を押し出した。この操作で排出
された逆洗水中の微粒子の量ft#11足したところ、
注入微粒子の童より20%多いことがわかった。したが
って、以上に説明したこの発明の実施例によれば、電磁
フィルタの磁性体に残留していた微粒子の排除がなされ
ていることを確−できた。
α-F.20. which is a fine particle having a positive zeta potential under the conditions shown in Table 1 below. When the raw water containing the
It dropped to 0-9. Therefore, according to the procedure described below, one of the methods of the present invention is
The backwashing method according to the example was carried out. First, in FIG. 3, the supply of raw water was stopped and the valves 11 and 12 were closed. Next, the electromagnetic coil 3 was stopped, the valves 13 and 14 were opened, and the water in the filter tower 1 was pushed out by a normal backwash operation. Subsequently, valves 13 and 14 were closed, valves 21 and 22 were opened, and water containing F.,04 containing fine particles having a negative zeta potential was passed through and circulated for 30 minutes under the conditions shown in Table 2 below. . At this time, the electromagnetic coil 3 may or may not be excited, but if the particles to be injected are ferromagnetic particles as in this embodiment, the electromagnetic coil 3t is excited to make the injected particles into a magnetic material. 2. After the circulation of the injected fine particle-containing water is completed, the valve 21.
22 was closed, valves 13 and 14 were opened, and the backwashing operation was performed again to push out the water in the filter tower 1. When the amount of fine particles in the backwash water discharged by this operation was added ft#11,
It was found that the amount was 20% higher than that of the injected microparticles. Therefore, according to the embodiment of the present invention described above, it was confirmed that the particulates remaining in the magnetic material of the electromagnetic filter were removed.

第1表 第2表 次に、後記する第3表に示す条件で、負のゼータ電位を
有する微粒子であるF・、04を含有する原水を前記と
同様に通水処理し、3日毎に逆洗操作を行なったところ
、逆洗回数5回で逆洗効率がSOsに低下した。そζで
、前記の実施例と同様rC1今度は後記#I4表に示す
条件で、正のせ一メ電位を有する微粒子で、6るa−F
・20.の含有水を30分間通水循壊した後、前記同様
の逆洗操作を行なったところ、排出され九逆洗水中の微
粒子の量は、注入微粒子の量より15%多いことがわか
った。したがってこの実施例においても、電磁フィルタ
の磁性体に残留していた微粒子の排除がなされているこ
とt−確認でき九。
Table 1 Table 2 Next, under the conditions shown in Table 3 below, raw water containing F. When the washing operation was performed, the backwashing efficiency decreased to SOs after 5 times of backwashing. Then, as in the previous example, rC1 is now heated under the conditions shown in Table #I4 below, with fine particles having a positive potential, 6ru a-F.
・20. After circulating the water containing water for 30 minutes, the same backwash operation as described above was performed, and it was found that the amount of fine particles in the discharged backwash water was 15% greater than the amount of injected fine particles. Therefore, in this example as well, it can be confirmed that the particulates remaining in the magnetic material of the electromagnetic filter are removed.

lI/43表 第4表 なお、処理すべき原水中に、正、負両方のゼータ電位を
有する微粒子が混在している場合には、順次、負のゼー
タ電位を有する微粒子の注入と、正のゼータ電位を肩す
る微粒子の注入とを行なって、両種微粒子のそれぞれに
ついて電気的に中和し、しかる後逆洗操作を行なうか、
あるいは、内積値粒子のうち通常の逆洗操作で電磁フィ
ルタの磁性体2に最も多量に残留する微粒子荷電と逆極
性のゼータ電位を有する微粒子の含有水を注入すればよ
い。
I/43 Table 4 Note that if the raw water to be treated contains fine particles with both positive and negative zeta potentials, injection of fine particles with negative zeta potentials and injection of positive zeta potentials are performed sequentially. Either injecting fine particles that have a high zeta potential, electrically neutralizing both types of fine particles, and then performing a backwash operation, or
Alternatively, water containing particles having a zeta potential of opposite polarity to the charge of the particles remaining in the largest amount in the magnetic body 2 of the electromagnetic filter during a normal backwashing operation may be injected.

以上に説明したように本発明の実施例による逆流方法を
実施することによ抄、電磁フィルタm濾過塔における充
填磁性体に残留している微粒子を効率よく排除すること
ができる効果がある。
As explained above, by carrying out the backflow method according to the embodiment of the present invention, it is possible to efficiently remove fine particles remaining in the magnetic material packed in the electromagnetic filter m filtration tower.

第4図は、使用する電磁フィルタの構成において第3図
に示すものと異なるが、同じく本発明による逆洗方法の
説明図である。第4図に示す電磁フィルタが、第3図に
示す電磁フィルタと異なるのは、電磁コイルを、コイル
3Aとコイル3BとVC分割した点だけで、その他の点
は共通している。
FIG. 4 is an explanatory diagram of the backwashing method according to the present invention, although it differs from that shown in FIG. 3 in the configuration of the electromagnetic filter used. The electromagnetic filter shown in FIG. 4 differs from the electromagnetic filter shown in FIG. 3 only in that the electromagnetic coil is divided into coils 3A, 3B, and VC, and other points are common.

この濾過塔1において、本実施例による逆洗方法を実施
する手順を以下に説明する。
The procedure for carrying out the backwashing method according to this embodiment in this filtration tower 1 will be described below.

まず、原水の供給を停止し、弁11,12を閉とする。First, the supply of raw water is stopped and the valves 11 and 12 are closed.

次いでコイル3ム、3Bl停止し、弁13.14を開と
して逆洗操作によpv通塔1内の水を押し出す。引続い
て、コイル3Bのみを励磁し、弁21,22を開として
電磁フィルタの磁性体2に残麺する微粒子の句電の極性
に応じ、逆極性の正。
Next, coil 3m and 3Bl are stopped, valves 13 and 14 are opened, and water in the PV passage tower 1 is pushed out by backwashing operation. Subsequently, only the coil 3B is energized, and the valves 21 and 22 are opened so that the reverse polarity is positive depending on the polarity of the particles remaining on the magnetic body 2 of the electromagnetic filter.

貴いずれかのゼータ電位を有する微粒子含有水を通水循
環する。注入微粒子は磁性体2に徐々に付着し、励磁さ
れているコイル3Bの部分で大部分が捕捉され、特に、
注入微粒子が強磁性体である場合には、この部分で注入
微粒子がほぼ完全に捕捉されて循環水中に漏洩すること
はない。注入水の循環が終了した後、弁21.22を閉
とし、電磁コイルを全て停止する。そこで弁13,14
tNとして逆洗操作を行ない濾過塔l内の水を押し出す
Water containing fine particles having a certain zeta potential is passed through and circulated. The injected fine particles gradually adhere to the magnetic body 2, and most of them are captured by the excited coil 3B.
When the injected fine particles are ferromagnetic, the injected fine particles are almost completely captured in this part and do not leak into the circulating water. After the circulation of the injection water is completed, the valves 21 and 22 are closed and all electromagnetic coils are stopped. So valves 13 and 14
A backwash operation is performed at tN to push out the water in the filter tower 1.

第4図について説明した実施例によれば、励磁されたコ
イル3Bによ抄、磁性体2の上部で注入微粒子の大部分
が捕捉されることになるので、逆洗操作の際に注入微粒
子を効率よく磁性体に残留している微粒子と接触させ、
電気的な中和を促進させる効果があるほか、注入微粒子
を含む循環水によるPJ!1塔出口部分の汚染を防止で
きる効果がある。
According to the embodiment described with reference to FIG. 4, most of the injected fine particles are captured by the excited coil 3B at the top of the magnetic material 2, so the injected fine particles are removed during the backwashing operation. Efficiently contact the fine particles remaining on the magnetic material,
In addition to having the effect of promoting electrical neutralization, PJ using circulating water containing injected fine particles! This has the effect of preventing contamination at the outlet of the first column.

以上の説明から理解されるように、本発明によりは、1
jLd1フィルタmvs過塔の充填磁性体に残留してい
る微粒子を効率よく排除でき、濾過塔の圧力損失の上昇
を防止でき、−退場の稼働時における処理水質を安定に
保つことができる効果がめる。
As understood from the above explanation, according to the present invention, 1
jLd1 filter mvs Particulates remaining in the magnetic material packed in the filtration tower can be efficiently removed, an increase in pressure loss in the filtration tower can be prevented, and the quality of treated water can be kept stable during discharge operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁フィルタ型濾過塔における従来の逆洗方法
説明図、第2図は従来の逆洗方法による逆洗性能を示す
グラフ図、第3図および第4図は本発明による電磁フィ
ルタ型−通塔における逆洗方法説明図である。 1 ・′fIL磁フィルタ盤濾過塔、2・・・磁性体、
3°電婢コイル、 11〜14.21.22・・・弁。 第1図 第2図 グ(%) 第3図 第4図
Fig. 1 is an explanatory diagram of a conventional backwashing method in an electromagnetic filter type filtration tower, Fig. 2 is a graph showing backwashing performance by the conventional backwashing method, and Figs. 3 and 4 are an illustration of an electromagnetic filter type according to the present invention. - It is an explanatory diagram of a backwashing method in a passing column. 1 ・'fIL magnetic filter plate filtration tower, 2...magnetic material,
3° electric coil, 11-14, 21, 22... valve. Figure 1 Figure 2 (%) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、磁性体を充填した濾過塔の外周に電磁コイルを配設
してなる電磁フィルタ型濾過塔において、原水の1II
ti11通水後、逆洗操作により磁性体に捕捉されてい
る微粒子を濾過塔外に排除する方法であって、前記逆洗
操作前に、原水中の微粒子とは逆極性のゼータ電位を有
する微粒子の含有水を濾過塔に通水循環せしめ、しかる
後逆洗操作を行なうことを%鞍とする電磁フィルタ型濾
過塔における逆洗方法。 2、  *水中の微粒子の極性とト逆極性のゼータ電位
を有する微粒子含有水を濾過塔に通水循環せしめる際に
、電磁フィルタの電磁コイルを励磁することを特徴とす
る特iPf錆求の範囲第1項に記載の電磁フィルタ梨濾
過塔における逆洗方法。 3、磁性体を充填したPAQiの外周に電磁コイ゛ ル
1に懐数個に分割配設してなる電磁フィルタmr通塔に
おいて、原水の稼働通水後、逆洗操作により磁性体に捕
捉されている微粒子を濾過場外に排除する方法であって
、前記逆洗操作前に一部の電磁コイルを除く電磁コイル
の励磁を停止し、この状態で原水中の微粒子の極性とは
逆極性のゼータ電位/c市する微粒子含有水を濾過場に
通水循環せしめ、しかる後全部の電磁コイルの励磁を停
止して逆洗操作を行なうことを特徴とする電磁フィルタ
型−通塔における逆洗方法。
[Claims] 1. In an electromagnetic filter type filtration tower in which an electromagnetic coil is arranged around the outer periphery of a filtration tower filled with a magnetic material,
A method for removing particulates captured by a magnetic material from the filtration tower by a backwashing operation after water flow through the ti11, and before the backwashing operation, particulates having a zeta potential of opposite polarity to the particulates in the raw water are removed. A method of backwashing in an electromagnetic filter type filter tower, which involves circulating water containing water through the filter tower and then performing a backwash operation. 2. *Special iPf rust-seeking range No. 1 characterized in that the electromagnetic coil of the electromagnetic filter is excited when circulating particulate-containing water having a zeta potential of opposite polarity to the polarity of the particulates in the water through the filtration tower. A backwashing method in an electromagnetic filter pear filter tower according to item 1. 3. In the electromagnetic filter mr passage tower, which has an electromagnetic coil 1 divided into several pieces arranged around the outer periphery of PAQi filled with a magnetic substance, after the raw water has been passed through for operation, it is captured by the magnetic substance by a backwashing operation. In this method, excitation of the electromagnetic coils except for some electromagnetic coils is stopped before the backwashing operation, and in this state, zeta particles with a polarity opposite to that of the particles in the raw water are removed. A method of backwashing in an electromagnetic filter type tower, characterized in that water containing particulates having a potential of /c is circulated through a filtration field, and then excitation of all electromagnetic coils is stopped to perform a backwash operation.
JP7774182A 1982-05-10 1982-05-10 Backwashing method in electromagnetic filter type furnace tower Expired JPS6049006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7774182A JPS6049006B2 (en) 1982-05-10 1982-05-10 Backwashing method in electromagnetic filter type furnace tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7774182A JPS6049006B2 (en) 1982-05-10 1982-05-10 Backwashing method in electromagnetic filter type furnace tower

Publications (2)

Publication Number Publication Date
JPS58196814A true JPS58196814A (en) 1983-11-16
JPS6049006B2 JPS6049006B2 (en) 1985-10-30

Family

ID=13642326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7774182A Expired JPS6049006B2 (en) 1982-05-10 1982-05-10 Backwashing method in electromagnetic filter type furnace tower

Country Status (1)

Country Link
JP (1) JPS6049006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237876A (en) * 2013-06-07 2014-12-18 株式会社東芝 Pure nickel powder recovery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237876A (en) * 2013-06-07 2014-12-18 株式会社東芝 Pure nickel powder recovery method

Also Published As

Publication number Publication date
JPS6049006B2 (en) 1985-10-30

Similar Documents

Publication Publication Date Title
US4147632A (en) Augmenting and facilitating flushing in magnetic separation
US5151191A (en) Filtration process using hollow fiber membrane module
US4249994A (en) Method for unclogging an electromagnetic filter and an installation for carrying out said method
JPS58119314A (en) Magnetic separation method and apparatus therefor
JPS58196814A (en) Backwashing method in electromagnetic filter type filter tower
US3575294A (en) Counterflow, moving bed type, ion exchange apparatus
EP0318913B1 (en) Method of washing off magnetically separated particles
JPH0236283B2 (en)
JPH0236284B2 (en)
US4356093A (en) Method of increasing the effectiveness of or the effective production rate of a process by integrated feed
JPS6048213B2 (en) How to regenerate an electromagnetic filter
JPH09167752A (en) Method and device for chemical solution treatment
JPS6094111A (en) Mobile multistage magnetic separator
JPS6239003B2 (en)
JP3143839B2 (en) Treatment of radioactive liquid waste
JPH0585411U (en) Filter device
JPH0380525B2 (en)
JPS5712809A (en) Magnetic filter
JPS5817130B2 (en) Manufacturing method of ultra-high purity alumina
JPH10151446A (en) Raw water processing system
JPS6193994A (en) Device for removing impurity in liquid metal
JPS59313A (en) Separation of magnetic component and non-magnetic component
JPS59186618A (en) Magnetic separation apparatus
JPS5969121A (en) Washing method of magnetism separating device
JPH037407B2 (en)