JPH0236284B2 - - Google Patents

Info

Publication number
JPH0236284B2
JPH0236284B2 JP57232275A JP23227582A JPH0236284B2 JP H0236284 B2 JPH0236284 B2 JP H0236284B2 JP 57232275 A JP57232275 A JP 57232275A JP 23227582 A JP23227582 A JP 23227582A JP H0236284 B2 JPH0236284 B2 JP H0236284B2
Authority
JP
Japan
Prior art keywords
coolant
iron
electromagnetic filter
oil
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57232275A
Other languages
Japanese (ja)
Other versions
JPS59120218A (en
Inventor
Junichi Yano
Masahiro Oota
Hiroshi Matsushima
Takashi Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57232275A priority Critical patent/JPS59120218A/en
Publication of JPS59120218A publication Critical patent/JPS59120218A/en
Publication of JPH0236284B2 publication Critical patent/JPH0236284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • B21B45/029Liquid recovering devices
    • B21B45/0293Recovering coolants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉄鋼冷延クーラントの処理方法、更に
詳しくは、鉄鋼材料の冷延加工に使用されたクー
ラントを電磁フイルタで処理した後、該電磁フイ
ルタに捕捉された鉄分等を適宜に水蒸気や加圧空
気等で逆洗して排出し、排出された逆洗水を掻き
取り式磁気分離機で処理することにより、該クー
ラント中の有効成分である油分の持ち出しを極力
抑制しつつ、不純成分である鉄分をハンドリング
し易い状態で効率的に除去する鉄鋼冷延クーラン
トの処理方法に関する。 鉄鋼材料の冷延加工には、主として焼付きを防
止するため、クーラントが使用される。この種の
クーラントは、各種の動植物油を鉱油等の油分の
水性エマルジヨン様のものであるが、使用により
該クーラント中には、不純成分である鉄分が多量
に混入してくる。したがつて、使用後のクーラン
トの循環再使用に備え、該クーラント中から鉄分
を除去することが必要となるが、この際、鉄分の
除去がハンドリングし易い状態に且つ効率的に行
なわれ、併せて該クーラント中の有効成分である
油分の持ち出しの極力抑制されることが要請され
る。 従来、使用後の鉄鋼冷延クーラントは、デイス
ク型やドラム型等の永久磁石を用いた掻き取り式
磁気分離機で直接処理する方法が行なわれてい
る。 しかし、かかる従来法によると、鉄分の除去が
ハンドリングし易い状態でなされる利点を有する
が、その除去程度が不充分であり、特に鉄分とと
もに多量の油分が持ち出される欠点がある。 本発明は、叙上のような従来欠点を解消する、
改善された鉄鋼冷延クーラントの処理方法を提供
するものである。 以下、図面に基づいて本発明の構成を詳細に説
明する。 第1図は本発明による処理系統を例示する略視
図である。鉄鋼冷延設備1で使用されたクーラン
ト2は一旦タンク3に貯留され、該タンク3から
ポンプ4を介し、その一部がバルブ5を経由して
そのまま鉄鋼冷延設備1へ返されつつ、残部がバ
ルブ6を経由して電磁フイルタ7に供され、該電
磁フイルタ7で磁気分離処理されて、処理後のク
ーラントがバルブ8を経由して鉄鋼冷延設備1へ
と循環再使用されている。勿論、処理時はバルブ
5を閉め、全量処理とし、電磁フイルタ7の逆洗
時はバルブ6を閉め、バルブ5を開けてバイパス
させることもできる。 第2図は電磁フイルタ7を例示する拡大斜視
(一部断面切欠)図である。開口を有する容器7
a内において、上下のポールピース7bの間に支
持された磁性細線7cで構成される積層のフイル
ター部7dが装填されており、容器7aの外部に
励磁コイル7eが取付けられている。 本発明において、電磁フイルタ7は、第2図に
示すように、磁場空間内に充填された磁性細線7
cのまわりに高い磁場勾配を発生させて粒子を捕
捉する磁気分離機の総称であり、使用後のクーラ
ントを連続処理し、したがつてクーラント中の鉄
分の捕捉状態が継続するもので、処理中にフイル
ター部7dへ捕捉蓄積された鉄分等は、例えば一
定時間毎に、バルブ9、電磁フイルタ7及びバル
ブ10で形成される別系統により逆洗して排出さ
れる。 逆洗は、適宜に水蒸気や加圧空気等を用い、例
えば105℃程度の加熱水蒸気を吹き込んだ後に85
℃程度の温水を加圧空気とともに噴射することで
行なわれ、電磁フイルタ7から排出された逆洗水
11は一旦タンク12に貯留される。該逆洗水
は、電磁フイルタ7で捕捉された鉄分や該鉄分と
ともに抱き込まれた若干の油分等を含有するもの
で、タンク12からポンプ13を介し、掻き取り
式磁気分離機14へ供され、スラツジと処理水と
に分離される。分離されたスラツジは、鉄分を多
量に含むのに対して油分は極少量しか含まない極
めてハンドリングし易い状態のものである。そし
て一方の処理水は、油分を含む水性エマルジヨン
様のもので、該処理水は逆洗用水として再使用さ
れ、かかる再使用の繰り返しによつて油分濃度の
高くなつたものはクーラント用に鉄鋼冷延設備1
へ返される。 本発明における所期の目的に関し、使用後のク
ーラントからの鉄分の除去は電磁フイルタ処理の
第一段階で達成され、また除去された鉄分をハン
ドリングし易い状態にするのは掻き取り式磁気分
離機による第二段階で達成され、更に一連の処理
において系外へ持ち出される油分の抑制は第二段
階の補助を得て主に前記の第一段階で達成され
る。 本発明の前記した第一段階において、鉄分の除
去程度が向上し、鉄分とともに逆洗水中へ排出さ
れる油分の量を著るしく抑制することができる。
前述使用後のクーラントを永久磁石を用いた掻き
取り式磁気分離機で直接処理する従来法では通
常、鉄分の除去が50%(重量)程度で、しかも除
去した鉄分の約8倍量(重量)の油分が系外へ持
ち出される。これに対して本発明の第一段階で
は、処理条件により、鉄分の90%(重量)以上を
除去することができ、一方では除去した鉄分の約
1.5倍量(重量)程度にまで逆洗水中への油分の
排出を抑制することができるのである。 かかる結果は、永久磁石を用いた掻き取り式磁
気分離機による従来法では、その構成上、高い磁
場勾配が得難く、処理対象クーラントの流れは静
的且つ層流的で遅く、しかも捕捉れたものがその
都度系外へ排出されるに対し、本発明では、電磁
フイルタの構成上、磁性細線のまわりに高い磁場
勾配が形成され、該磁性細線に鉄分を捕捉すると
き、処理対象クーラントの流れが動的且つ乱流的
で、しかも高速であるため、油分の抱き込みそれ
自体が少ない上に、かかる捕捉状態が一定時間続
くため、一旦抱き込み捕捉された油分が再びクー
ラント中へ流れ込むからである。 その構成上、電磁フイルタは永久磁石を用いる
掻き取り式磁気分離機に比べ使用後のクーラント
を高流速で処理することができるが、本発明者ら
の試験によると、使用後のクーラントを高流速で
電磁フイルタによつて処理する際、その流速の程
度が油分の抱き込み捕捉による逆洗水中への排出
量に影響を及ぼすことが判つた。すなわち、流速
が600m/時以上になると、除去される鉄分単位
量当たりの逆洗水中への油分の排出量が著るしく
少なくなるのである。 本発明において流速とは、磁性細線で作られた
金網構造のものを積層するときのその目開き部分
の流速を指す。この様子を第3図に示す。第3図
は第2図のフイルター部を拡大してクーラントの
流れ状態を例示する略視図である。例えば、磁性
細線7cで作られた積層する金網の開孔率が50%
とすると、流速Aは流量をフイルター部7dの断
面積で除した値(一般にLVと称せられる)の2
倍になる。通常、金網の開孔率は40〜80%のもの
を用い、また金網には磁性細線を織つたものやエ
キスパンドメタル等がある。 第4図は、電磁フイルタ処理の効果をより具体
的にするため、1200ppmの鉄分と4.5%(重量)
の油分を含有する使用後の鉄鋼冷延クーラント
(牛脂系)をフイルタ径180mmφ、フイルタ断面積
0.025m2、金網の開孔率50%の電磁フイルタ(磁
場3KOe)により処理した際の、流速(m/時)
に対する、鉄分の除去率(重量%、図中黒印実
線)と除去した鉄分単位量当たりの逆洗水中への
油分の排出量(いずれも重量、図中白抜印破線)
との結果を例示するグラフである。この第2図か
らも明らかなように、鉄分の除去率は流速の増加
とともにほぼ直線関係で低下するが、流速が200
m/時程度であればその90%以上、また流速が
1200m/時という極めて高い場合でもその75%以
上を除去でき、除去した鉄分単位量当たりの逆洗
水中への油分の排出量は流速が600m/時以上で
急激に減少して1.5以下になり、流速が200m/時
でも4以下に抑制できている。 本発明の前記した第二段階において、除去され
た鉄分は極めてハンドリングし易い状態となり、
本発明に係る一連の処理でその系外へ持ち出され
る油分の量を更に一層抑制することができる。 第1表は、本発明の効果すなわち、使用後の鉄
鋼冷延クーラントを第一段階で電磁フイルタ処理
をし、該電磁フイルタから排出された逆洗水を第
二段階で掻き取り式磁気分離機で処理する場合の
効果をより具体的にするため、次のように行なつ
た試験区分1(従来法)と試験区分2(本発明)と
の処理結果を比較して例示するものである。 ●試験区分1:1500ppmの鉄分と3.5%(重量)
の油分を含有する使用後の鉄鋼冷延ク
ーラント(牛脂系)をそのまま直接、
掻き取り式分離機で処理した。 ●試験区分2:試験区分1と同じクーラントを、
フイルタ径180mmφ、フイルタ断面積
0.025m2、金網の開孔率50%の電磁フ
イルタ(磁場3KOe)により流速800
m/時(処理量10m3/時)で連続処理
した後、所定の運転停止操作を経て、
該電磁フイルタを逆洗し(105℃の加
熱水蒸気吹き込み、次いで80〜95℃の
温水を加圧空気とともに噴射)、逆洗
水100を排出して、該逆洗水を掻き
取り式磁気分離機で処理した。 ●掻き取り式磁気分離機による処理:永久磁石を
埋込んだデイスク型磁気分離機によ
り、スラツジをスクレバーで掻き取り
つつ、8m3/時処理を行なつた。
The present invention relates to a method for treating steel cold rolling coolant, and more specifically, after treating coolant used in cold rolling of steel materials with an electromagnetic filter, the iron, etc. captured by the electromagnetic filter is appropriately converted into water vapor or pressurized. By backwashing the coolant and discharging it with air, etc., and treating the discharged backwash water with a scraping type magnetic separator, the oil content, which is an active component in the coolant, is suppressed as much as possible, and the impurity component is removed. The present invention relates to a method for treating steel cold rolling coolant that efficiently removes iron in an easily handled state. Coolant is used in cold rolling of steel materials mainly to prevent seizure. This type of coolant is like an aqueous emulsion of various animal and vegetable oils and oils such as mineral oil, but as it is used, a large amount of iron, which is an impure component, becomes mixed into the coolant. Therefore, in preparation for circulating and reusing the coolant after use, it is necessary to remove iron from the coolant. Therefore, it is required that the oil content, which is an active ingredient in the coolant, be suppressed as much as possible. Conventionally, used steel cold rolling coolant has been directly treated with a scraping type magnetic separator using a permanent magnet such as a disk type or drum type. However, although this conventional method has the advantage that the iron content can be removed in a state that is easy to handle, it has the drawback that the extent of the removal is insufficient, and in particular, a large amount of oil content is carried out along with the iron content. The present invention solves the conventional drawbacks as described above.
An improved method for treating steel cold rolling coolant is provided. Hereinafter, the configuration of the present invention will be explained in detail based on the drawings. FIG. 1 is a schematic diagram illustrating a processing system according to the present invention. The coolant 2 used in the steel cold rolling equipment 1 is temporarily stored in a tank 3, and a part of it is returned to the steel cold rolling equipment 1 via a valve 5 from the tank 3 via a pump 4, while the rest is The coolant is supplied to an electromagnetic filter 7 via a valve 6, subjected to magnetic separation treatment by the electromagnetic filter 7, and the treated coolant is circulated and reused to the steel cold rolling equipment 1 via a valve 8. Of course, during processing, the valve 5 can be closed to process the entire amount, and when the electromagnetic filter 7 is backwashed, the valve 6 can be closed and the valve 5 can be opened for bypass. FIG. 2 is an enlarged perspective view (partially cut away in section) illustrating the electromagnetic filter 7. FIG. Container 7 with an opening
Inside a, a laminated filter section 7d composed of magnetic thin wires 7c supported between upper and lower pole pieces 7b is loaded, and an excitation coil 7e is attached to the outside of the container 7a. In the present invention, the electromagnetic filter 7 includes magnetic thin wires 7 filled in a magnetic field space, as shown in FIG.
It is a general term for magnetic separators that capture particles by generating a high magnetic field gradient around c, and continuously processes the coolant after use, so that the iron content in the coolant continues to be captured. Iron and the like captured and accumulated in the filter section 7d are backwashed and discharged by a separate system formed by the valve 9, the electromagnetic filter 7, and the valve 10, for example, at regular intervals. Backwashing can be done using steam, pressurized air, etc., as appropriate. For example, after blowing heated steam at about 105℃,
This is carried out by injecting hot water at about 0.degree. C. together with pressurized air, and the backwash water 11 discharged from the electromagnetic filter 7 is temporarily stored in a tank 12. The backwash water contains iron captured by the electromagnetic filter 7 and some oil trapped together with the iron, and is sent from the tank 12 via the pump 13 to the scraping type magnetic separator 14. , separated into sludge and treated water. The separated sludge contains a large amount of iron but only a small amount of oil, making it extremely easy to handle. On the other hand, the treated water is like an aqueous emulsion containing oil, and the treated water is reused as water for backwashing, and the water, which has a high oil concentration due to repeated reuse, is used for steel cooling as a coolant. Extension equipment 1
will be returned to. Regarding the intended purpose of the present invention, the removal of iron from the used coolant is achieved in the first stage of electromagnetic filter treatment, and the scraping type magnetic separator is used to make the removed iron easier to handle. The suppression of the oil content that is carried out of the system during a series of treatments is mainly achieved in the first stage with the aid of the second stage. In the first stage of the present invention, the degree of iron removal is improved, and the amount of oil discharged into the backwash water together with the iron can be significantly suppressed.
The conventional method of directly processing the used coolant with a scraping-type magnetic separator using permanent magnets usually removes about 50% (by weight) of iron, and moreover, the amount of iron removed is approximately 8 times (by weight). oil is taken out of the system. On the other hand, in the first stage of the present invention, more than 90% (weight) of the iron content can be removed depending on the processing conditions;
It is possible to suppress the discharge of oil into the backwash water by approximately 1.5 times the amount (weight). These results indicate that in the conventional method using a scraping-type magnetic separator using permanent magnets, it is difficult to obtain a high magnetic field gradient due to its configuration, and the flow of the coolant to be treated is static, laminar, and slow, and it is difficult to capture the coolant. In contrast, in the present invention, due to the structure of the electromagnetic filter, a high magnetic field gradient is formed around the magnetic wire, and when iron is captured by the magnetic wire, the flow of the coolant to be treated is Because the flow is dynamic, turbulent, and high-speed, not only is there little oil entrapment itself, but this state of entrapment continues for a certain period of time, so the oil that has been entrained and captured once again flows into the coolant. be. Due to its configuration, the electromagnetic filter can process used coolant at a higher flow rate than a scraping-type magnetic separator that uses permanent magnets. It was found that when processing with an electromagnetic filter, the flow rate affects the amount of oil emitted into the backwash water due to the entrapment and capture of oil. In other words, when the flow velocity is 600 m/hour or more, the amount of oil discharged into the backwash water per unit amount of iron removed is significantly reduced. In the present invention, the flow velocity refers to the flow velocity at the opening portion when wire mesh structures made of magnetic fine wires are laminated. This situation is shown in FIG. FIG. 3 is an enlarged schematic view of the filter section shown in FIG. 2, illustrating the flow state of the coolant. For example, the porosity of laminated wire mesh made of magnetic fine wire 7c is 50%.
Then, the flow velocity A is 2 of the flow rate divided by the cross-sectional area of the filter section 7d (generally referred to as LV).
Double. Usually, a wire mesh with a porosity of 40 to 80% is used, and wire meshes include those woven with magnetic fine wires and expanded metal. Figure 4 shows the iron content of 1200ppm and 4.5% (weight) in order to make the effect of electromagnetic filter treatment more concrete.
The used steel cold rolling coolant (beef tallow-based) containing oil content is passed through a filter with a diameter of 180 mm and a cross-sectional area of the filter.
0.025m 2 , flow rate (m/hour) when treated with an electromagnetic filter (magnetic field 3KOe) with a wire mesh porosity of 50%
iron removal rate (weight %, black solid line in the figure) and amount of oil discharged into backwash water per unit amount of iron removed (both by weight, white dashed line in the figure)
This is a graph illustrating the results. As is clear from Figure 2, the iron removal rate decreases in an almost linear relationship as the flow rate increases, but as the flow rate increases
If the flow rate is around m/hour, it is more than 90% of that, and if the flow rate is
Even at extremely high flow rates of 1,200 m/hour, more than 75% of the iron content can be removed, and the amount of oil discharged into the backwash water per unit amount of iron removed sharply decreases to 1.5 or less when the flow rate exceeds 600 m/hour. Even when the flow velocity is 200 m/hour, it can be suppressed to 4 or less. In the second step of the present invention, the removed iron becomes extremely easy to handle,
Through the series of treatments according to the present invention, the amount of oil carried out of the system can be further suppressed. Table 1 shows the effects of the present invention, in which the used steel cold rolling coolant is treated with an electromagnetic filter in the first stage, and the backwash water discharged from the electromagnetic filter is processed in the second stage by a scraping-type magnetic separator. In order to make the effects of the treatment more concrete, the results of the treatment in test section 1 (conventional method) and test section 2 (invention), which were conducted as follows, will be compared and illustrated. ●Test category 1: 1500ppm iron content and 3.5% (weight)
Directly use the used steel cold rolling coolant (beef tallow-based) containing oil.
Treated with a scraping separator. ●Test Category 2: Use the same coolant as Test Category 1,
Filter diameter 180mmφ, filter cross-sectional area
0.025m 2 , a flow rate of 800 using an electromagnetic filter (magnetic field 3KOe) with a wire mesh porosity of 50%
After continuous processing at a rate of m/hour (throughput 10m 3 /hour), after a prescribed operation stop operation,
The electromagnetic filter is backwashed (105℃ heated steam is blown in, then 80-95℃ hot water is injected together with pressurized air), 100% of the backwash water is discharged, and the backwash water is scraped off using a magnetic separator. Processed with. ●Processing using a scraping-type magnetic separator: A disk-type magnetic separator embedded with a permanent magnet was used to process 8 m 3 /hour while scraping the sludge with a scraper.

【表】 本発明において、掻き取り式磁気分離機は、デ
イスク型やドラム型等の型式を問わず、永久磁石
を用いて鉄分等を磁気分離し、分離したものをそ
の都度掻き取る方式の磁気分離機を総称するもの
であるが、電磁フイルタ処理を前提としてかかる
掻き取り式磁気分離機で処理する本発明による第
1表の如き好結果は、逆洗水中における鉄分と油
分の存在形態が、電磁フイルタで処理する前の段
階での鉄鋼冷延クーラントそれ自体における存在
形態と根本的に相違するからである。すなわち、
逆洗水中においては、水蒸気や加圧空気等による
逆洗によつて電磁フイルタから排出された鉄分と
油分とが物理的乃至機械的に既に分離しているか
又は分離し易い状態にあることに加え、一旦電磁
フイルタで捕捉された鉄分は磁化され、残留磁化
を有し、凝集して大きくなつているため、電磁フ
イルタに比べて性能の劣る掻き取り式磁気分離器
であつても、逆洗中において叙上の如き形態にあ
る鉄分を充分に分離できるのである。このような
結果は鉱油系クーラントでも同様であつた。
[Table] In the present invention, the scraping type magnetic separator is a magnetic separator that magnetically separates iron, etc. using a permanent magnet and scrapes off the separated material each time, regardless of the type such as a disk type or a drum type. This is a general term for separators, and the good results shown in Table 1 according to the present invention, which are performed using such a scraping type magnetic separator on the premise of electromagnetic filter treatment, indicate that the presence of iron and oil in the backwash water is This is because it is fundamentally different from the form of existence in the steel cold rolling coolant itself at a stage before being treated with an electromagnetic filter. That is,
In the backwash water, in addition to the fact that the iron and oil discharged from the electromagnetic filter by backwashing with water vapor, pressurized air, etc. have already been physically or mechanically separated or are in a state where they are likely to be separated. The iron once captured by the electromagnetic filter is magnetized, has residual magnetization, and aggregates to become larger. Therefore, even with a scraping-type magnetic separator whose performance is inferior to that of an electromagnetic filter, it cannot be used during backwashing. It is possible to sufficiently separate iron in the form described above. Similar results were obtained for mineral oil coolants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による処理系統を例示する略視
図、第2図は第1図の電磁フイルタを例示する拡
大斜視(一部断面切欠)図、第3図は第2図のフ
イルター部を拡大してクーラントの流れ状態を例
示する略視図、第4図は本発明における電磁フイ
ルタ処理での流速に対する鉄分の除去率と除去し
た鉄分単位量当たりの逆洗水中に排出された油分
の量との結果を例示するグラフである。 1…鉄鋼冷延設備、2…クーラント、3,12
…タンク、4,13…ポンプ、5,6,8,9,
10…バルブ、7…電磁フイルタ、7a…容器、
7b…ポールピース、7c…磁性細線、7d…フ
イルター部、7e…励磁コイル、11…逆洗水、
14…掻き取り式磁気分離機。
FIG. 1 is a schematic diagram illustrating a processing system according to the present invention, FIG. 2 is an enlarged perspective view (partially cut away in cross section) illustrating the electromagnetic filter of FIG. 1, and FIG. 3 is a diagram showing the filter section of FIG. Fig. 4 is an enlarged schematic diagram illustrating the flow state of the coolant, and Fig. 4 shows the iron removal rate and the amount of oil discharged into the backwash water per unit amount of iron removed with respect to the flow rate in the electromagnetic filter treatment of the present invention. This is a graph illustrating the results. 1... Steel cold rolling equipment, 2... Coolant, 3, 12
...Tank, 4,13...Pump, 5,6,8,9,
10... Valve, 7... Electromagnetic filter, 7a... Container,
7b...Pole piece, 7c...Magnetic thin wire, 7d...Filter section, 7e...Excitation coil, 11...Backwash water,
14...Scraping type magnetic separator.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鋼材料の冷延加工に使用されたクーラント
を、該クーラントの循環再使用に備え、電磁フイ
ルタで処理した後、該電磁フイルタに捕捉された
鉄分等を適宜に水蒸気や加圧空気等で逆洗して排
出し、排出された逆洗水を掻き取り式磁気分離機
で処理することを特徴とする鉄鋼冷延クーラント
の処理方法。
1 Coolant used in cold rolling of steel materials is treated with an electromagnetic filter in preparation for circulating and reusing the coolant, and then the iron, etc. captured by the electromagnetic filter is appropriately reversed with steam, pressurized air, etc. A method for treating steel cold rolling coolant, which comprises washing and discharging the coolant, and treating the discharged backwash water with a scraping-type magnetic separator.
JP57232275A 1982-12-24 1982-12-24 Treatment of coolant used in cold rolling of steel Granted JPS59120218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232275A JPS59120218A (en) 1982-12-24 1982-12-24 Treatment of coolant used in cold rolling of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232275A JPS59120218A (en) 1982-12-24 1982-12-24 Treatment of coolant used in cold rolling of steel

Publications (2)

Publication Number Publication Date
JPS59120218A JPS59120218A (en) 1984-07-11
JPH0236284B2 true JPH0236284B2 (en) 1990-08-16

Family

ID=16936681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232275A Granted JPS59120218A (en) 1982-12-24 1982-12-24 Treatment of coolant used in cold rolling of steel

Country Status (1)

Country Link
JP (1) JPS59120218A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273018A (en) * 1986-05-20 1987-11-27 Kawasaki Steel Corp Cleaning method for stainless rolling coolant
BE1010349A4 (en) * 1996-06-12 1998-06-02 Ponnet Luc Method for removing iron oxide originating from a water flow derived from surface cleansing of steel slabs
CN101913687B (en) * 2010-09-14 2012-07-25 成都源蓉科技有限公司 Stacked cylinder type wastewater magnetic separating and purifying device
CN102009072A (en) * 2010-10-27 2011-04-13 宝钢工程技术集团有限公司 System for preventing oil and water separation of emulsified liquid in magnetic filters
CN102765845A (en) * 2012-06-27 2012-11-07 中冶南方工程技术有限公司 Treatment device for hot-rolled stainless steel washing water
JP2014079711A (en) * 2012-10-17 2014-05-08 Toshiba Corp Magnetic separation system and magnetic separation device

Also Published As

Publication number Publication date
JPS59120218A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
JPH0236284B2 (en)
US4249994A (en) Method for unclogging an electromagnetic filter and an installation for carrying out said method
JPH0236283B2 (en)
EP0318913B1 (en) Method of washing off magnetically separated particles
JPH0671195A (en) Method and device for magnetic coagulation of impurity in liquid
JPH032004B2 (en)
US4424124A (en) Method and magnetic separator for removing weakly magnetic particles from slurries of minute mineral particles
DE69020469T2 (en) Method and device for separating non-metallic contaminants from liquid metals.
US4356093A (en) Method of increasing the effectiveness of or the effective production rate of a process by integrated feed
WO1995019847A1 (en) An electromagnetic purifier for removing ferromagnetic micropowder in the rolling oil
JPH037407B2 (en)
JPH0380525B2 (en)
JPH04219109A (en) Method for backwashing high-gradient magnetic separator
JPS61174910A (en) Washing of electromagnetic filter
DE3883190T2 (en) Method and device for refining molten metals.
RU2108868C1 (en) Electromagnetic separator-activator
SU110823A1 (en) Electromagnetic filter
JPH07328888A (en) Circulating reproducing device for metal work liquid
SU927277A1 (en) Method of cleaning liquid from mechanical impurities
JPS59127616A (en) Electromagnetic filter
JPS63231299A (en) Method of decontaminating radioactive granular waste
JPS6157248A (en) Apparatus for polishing and washing fine metal particles
JPS57180413A (en) Electromagnetic filter
JPH10118423A (en) Strainer device
JPS62168517A (en) Method for washing electromagnetic filter