JPS58196072A - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPS58196072A
JPS58196072A JP57078448A JP7844882A JPS58196072A JP S58196072 A JPS58196072 A JP S58196072A JP 57078448 A JP57078448 A JP 57078448A JP 7844882 A JP7844882 A JP 7844882A JP S58196072 A JPS58196072 A JP S58196072A
Authority
JP
Japan
Prior art keywords
internal electrode
electrode plate
electrostrictive
electrode plates
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57078448A
Other languages
Japanese (ja)
Inventor
Izumi Fukui
福井 泉
Takeshi Yano
健 矢野
Takeshige Hamatsuki
浜付 武重
Sadayuki Takahashi
高橋 貞行
Masatomo Yonezawa
米沢 正智
Atsushi Ochi
篤 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57078448A priority Critical patent/JPS58196072A/en
Priority to DE8383104556T priority patent/DE3378393D1/en
Priority to EP83104556A priority patent/EP0094078B1/en
Priority to CA000427828A priority patent/CA1206193A/en
Priority to AU14422/83A priority patent/AU553391B2/en
Priority to US06/493,583 priority patent/US4523121A/en
Publication of JPS58196072A publication Critical patent/JPS58196072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes

Abstract

PURPOSE:To obtain an element of large strains by a method wherein metallic films in contact with internal electrode plates are formed on the side surfaces of a lamination body wherein the end surfaces of the internal electrode plates are exposed, and these metallic films are connected to each other. CONSTITUTION:The internal electrode plate 31 is formed on the surface of an electrostrictive material film 1. Next, these are laminated in a fixed number and formed into an integral body by thermal press. The end surfaces of the electrode plate 31 are exposed on side surfaces. Then, Au pastes 32 and 32' are baked so as to contact the end surface of each electrode plate 31. The pastes 32 and 32' contact the electrode plates 31 at intervals of a layer. Lead wires are connected to the pastes 32 and 32' and thus connected to external terminals A and B.

Description

【発明の詳細な説明】 本発明は、縦効果を利用した電歪効果素子の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electrostrictive element that utilizes the longitudinal effect.

電歪効果の大きな材料を用いて第1図に示すよう竜積層
チップコンデンサ構造の素子を構成すると、低電圧で大
きな歪の発生する電歪効果素子が得られる。すなわち、
第1図(a) K示すように1電歪材料からなる膜また
は薄板10関に正の内部電極板2.負の内部電極板2′
を交互に挾んで積層し、内部電極板2,2′をそれぞれ
外部電極3,3′に接続した構造である。しかし、上述
の従来の電歪効果素子は、同図(b)の平面図から理解
されるように1内部電極板2と2′との霊なシ部分が素
子面の全面積より小となシ、周辺部分では両電極は重力
つていない、従って、外部電極3,3′間に電圧を印加
すると上記電極の重なシ部分のみ電界強度が強くな夛、
周辺部分の電界強度は弱い。このため素子周辺部分は変
形しないばかりでなく、素子全体の変形を阻害し材料固
有の歪量を得ることができないという欠点がある。さら
に1変形する部分と、変形しない部分との境界に応力集
゛中が起こシ、高電圧印加、〈夛返し印加または長時間
印加等によシ機械的Km子が破壊するという欠点もある
When an element having a double layered chip capacitor structure as shown in FIG. 1 is constructed using a material having a large electrostrictive effect, an electrostrictive effect element that generates a large strain at a low voltage can be obtained. That is,
As shown in FIG. 1(a), a film or thin plate made of an electrostrictive material 10 is connected to a positive internal electrode plate 2. Negative internal electrode plate 2'
In this structure, the internal electrode plates 2, 2' are connected to the external electrodes 3, 3', respectively. However, in the above-mentioned conventional electrostrictive effect element, as can be understood from the plan view of FIG. In the surrounding area, both electrodes are not subject to gravity. Therefore, when a voltage is applied between the external electrodes 3 and 3', the electric field strength is strong only in the area where the electrodes overlap.
The electric field strength in the surrounding area is weak. For this reason, there is a drawback that not only the peripheral portion of the element does not deform, but also the deformation of the entire element is inhibited, making it impossible to obtain the amount of strain specific to the material. Furthermore, there is a drawback that stress concentration occurs at the boundary between the deformed part and the undeformed part, and the mechanical Km element is destroyed by high voltage application, repeated application, long-time application, etc.

上述の欠点を改良するため、第2図(a) 、 (b)
K示すような構造にする仁とが考えられる。すなわち、
同図(a)K示すように1内部電極板2.2′を電歪材
料の膜(または薄板)1の全面に交互に形成して積層し
、複数の内部電極板2の端部を相互に接続して外部端子
Aに接続し、複数の内部電極l11t′は外部端子Bに
接続した構造である。従って同図(b) K示すように
内部電極板2および2′は素子全面に形成されているの
で、電極端子ム、B関に電圧を印加すると1電歪材料の
膜l内の電界分布が一様となシ、素子は均一に変形し、
応力集中も起こらない。
In order to improve the above-mentioned drawbacks, Figs. 2(a) and (b)
It is possible to create a structure as shown in K. That is,
As shown in Figure (a) K, one internal electrode plate 2.2' is alternately formed and laminated on the entire surface of the electrostrictive material film (or thin plate) 1, and the ends of the plurality of internal electrode plates 2 are mutually connected. The internal electrodes l11t' are connected to the external terminal A, and the internal electrodes l11t' are connected to the external terminal B. Therefore, as shown in Figure (b) K, the internal electrode plates 2 and 2' are formed on the entire surface of the element, so when a voltage is applied to the electrode terminals M and B, the electric field distribution within the electrostrictive material film l changes. Uniformly, the element deforms uniformly,
No stress concentration occurs.

すなわち、素子はほぼ材料固有の変形量を示しかつ破壊
しにくくなる。しかし、内部電極板2.2′Fi接近し
ているので、内部電極板2相互間および内部電極板2′
相互間を電気的に接続することが非常に難しい。
In other words, the element exhibits an amount of deformation that is almost inherent to the material and becomes difficult to break. However, since the internal electrode plates 2 and 2'Fi are close to each other, the internal electrode plates 2 and 2'
It is very difficult to make electrical connections between them.

本発明の目的は、上述の事情K11l!み、素子全面に
形成された内部電極板を交互に容易かつ安定に外部電極
板に接続することが可能な電歪効果素子の構造を提案す
ることにある。
The object of the present invention is the above-mentioned situation K11l! Therefore, it is an object of the present invention to propose a structure of an electrostrictive effect element in which internal electrode plates formed on the entire surface of the element can be alternately and easily and stably connected to external electrode plates.

本発明の電歪効果素子は、表面の全域に内部電極板が形
成された同一寸法の電歪材料のPAま九は樗   1 薄板がII数枚積層され、側WJに前記内部電極板の端
面を露出させた積層体の側面に前記内部電極板のそれぞ
れれに接触する小面積の金属膜を形成し、該金属膜間の
リード線接続により前記内部電極板を一層おきに電気的
接続したことを特徴とする。
The electrostrictive effect element of the present invention has an internal electrode plate formed over the entire surface thereof, and several thin plates of electrostrictive material of the same size are laminated, and the end face of the internal electrode plate is placed on the side WJ. A metal film having a small area that contacts each of the internal electrode plates is formed on the exposed side surface of the laminate, and the internal electrode plates are electrically connected every other layer by lead wire connections between the metal films. It is characterized by

次に1本発明について、図面を参照して詳細に説明する
Next, one embodiment of the present invention will be explained in detail with reference to the drawings.

第3図は、本発明の一実施例を示す断面図である。すな
わち、先ずマグネシウム・ニオブ酸鉛P b(iig、
、5Nbz73)Osを主成分とする電歪材料の予焼粉
本Kik11の有機バインダーを添加し、これを有機溶
媒中に分散させた泥漿を準備し、該泥漿を、通常の積層
チップコンデンサを製造する成績機によ如、マイラーフ
ィルム上に数100ミクロンの厚さに塗布乾燥後マイラ
ーフィル人から剥離して電歪材料膜%1を形成する。該
電歪材料膜%1の表面に、白金ペーストをスクリーン印
刷して内部電極板31を形成する。上記内部電極板31
が形成され大型歪材料膜\1を所定の枚数(通常数10
枚)積層し、熱プレスにより1体化し九後約1250℃
の温度で焼結すれば、電歪材料膜%1と内部電極板31
の積層体が得られる。
FIG. 3 is a sectional view showing one embodiment of the present invention. That is, first, magnesium lead niobate P b (iig,
, 5Nbz73) A pre-sintered powder of an electrostrictive material mainly composed of Os is added to the organic binder of Kik11 and dispersed in an organic solvent to prepare a slurry, and the slurry is used to manufacture a normal multilayer chip capacitor. The coating is applied to a Mylar film to a thickness of several 100 microns, dried, and then peeled off from the Mylar film to form an electrostrictive material film. The internal electrode plate 31 is formed by screen printing platinum paste on the surface of the electrostrictive material film %1. The internal electrode plate 31
is formed, and a predetermined number of large strained material films \1 (usually number 10) are formed.
1,250℃ after laminating them and combining them into one body by heat pressing.
If sintered at a temperature of
A laminate is obtained.

該積層体の側面を所要寸法に切断すれば、側面に内部電
極ri31の端面が露出する。それぞれの内部電極板3
1の端面に接触するように、銀ペース)32.32’を
fI8きつける。鋼ペースト32F!前記積層体の1つ
の側面上で内部電極板31に対して1つ飛びに接触して
お)、銀ペースト32′は前記積層体の他の1@面上で
上記銀ペースト32が焼きつゆられていない内部電極板
Km触している。
When the side surface of the laminate is cut to a required size, the end surface of the internal electrode ri31 is exposed on the side surface. Each internal electrode plate 3
Tighten silver paste) 32, 32' fI8 so that it contacts the end surface of 1. Steel paste 32F! The silver paste 32' is in contact with the internal electrode plates 31 on one side of the laminate at intervals), and the silver paste 32' is baked and deposited on the other side of the laminate. The internal electrode plate Km is not touched.

銀ペース)32にリード線を半田付は等によ多接続して
外部端子ムに接続し、銀ペースト32′は同様にリー、
ド線で接続されて外部端子BK接続され二 る、錯ぺ−ス)32.32’は、必ずしも積層体の異な
る側面上に焼きつけなくて、1つの側面上で交互に位置
をずらせて焼きつけても差支えない。
Connect the lead wire to the silver paste (silver paste) 32 by soldering, etc. and connect it to the external terminal.
The wires (32 and 32') connected by the lead wire and connected to the external terminal BK are not necessarily printed on different sides of the laminate, but are printed in alternating positions on one side. There is no problem.

なお、上記銀ペースト04代)′に1アル虐または金を
例えば蒸着によってそれぞれの内部電極板j1面に接触
させて、小面積の金属膜を形成すれば、IC等で用いら
れる熱圧着ま九鉱起音波圧着等によってリード線を接続
することができ、生産能率が飛躍的に増大する。
In addition, if a metal film of a small area is formed by contacting the silver paste 04) with gold or gold by vapor deposition on the first surface of each internal electrode plate, it can be used for thermocompression bonding used in ICs, etc. Lead wires can be connected using sonic crimping, etc., dramatically increasing production efficiency.

以上のように1本発明においては、素子の全面に内部電
極板が形成されているから、境界部分に応力集中を起こ
す仁とがなく低電圧で大きな歪を発生させることができ
る。そして、側面に露出した各内部電極板の露出端面に
接触するように小面積の金属膜が形成された構成とした
から、鋏金属NKリード線を半田付は等することが容易
となり、一層おきの内部電極板を容易に相互接続するこ
とができる。すなわち、低電圧によって大きな歪効果を
得る電歪効果素子の製造を容易にする効果がある。
As described above, in the present invention, since the internal electrode plate is formed on the entire surface of the element, there is no ridge that causes stress concentration at the boundary portion, and large strain can be generated at a low voltage. Since a small metal film is formed in contact with the exposed end surface of each internal electrode plate exposed on the side surface, it is easier to solder the scissor metal NK lead wire, and it is easier to solder the scissor metal NK lead wire. internal electrode plates can be easily interconnected. That is, this has the effect of facilitating the manufacture of an electrostrictive element that can obtain a large strain effect with a low voltage.

【図面の簡単な説明】 第1図は従来の積層チップコンデンサ型の電歪効果素子
の一例を示す断面図および平面図、第2図は各素子の全
面に内部電極板を形成し九積層型電歪効果素子を示す断
面図および平面図、第3図は本発明の一実施例を示す斜
視図である。 図において、1−・電歪材料の膜(または薄板入2.2
′・−・内部電極板、3,3′・・・外部電極、31・
・・内部電極板、32 、32’・−・銀ペースト、ム
、B−・外部端子。 裏1図 1 冥2 図 2(2つ 第3因
[Brief explanation of the drawings] Fig. 1 is a cross-sectional view and a plan view showing an example of a conventional multilayer chip capacitor type electrostrictive effect element, and Fig. 2 is a nine-layer type electrostrictive element with an internal electrode plate formed on the entire surface of each element. FIG. 3 is a cross-sectional view and a plan view showing an electrostrictive effect element, and a perspective view showing an embodiment of the present invention. In the figure, 1-・film of electrostrictive material (or thin plate 2.2
′・-・Internal electrode plate, 3, 3′・・External electrode, 31・
・・Internal electrode plate, 32, 32′・・・Silver paste, M, B−・・External terminal. Back 1 Figure 1 Mei 2 Figure 2 (Two third factors

Claims (1)

【特許請求の範囲】[Claims] 表面の全域に内部電極板が形成され九同−寸法の電歪材
料の膜ま九は薄板が複数枚積層され、側INK前記内部
電極板の端面を露出させた積層体の側面に前記内部電極
板のそれぞれKII触する小面積の金属膜を形成し、皺
金属膜関のリード#接続により前記内部電極板を一層お
きに電気的接続し九ことを特徴とする電歪効果素子。
An internal electrode plate is formed over the entire surface of the film, and a plurality of thin plates are stacked on each other, and the internal electrode plate is formed on the side surface of the laminate where the end face of the internal electrode plate is exposed. 9. An electrostrictive effect element characterized in that a metal film of a small area is formed so as to touch each of the plates, and the internal electrode plates are electrically connected every other layer by lead connections of the wrinkled metal film.
JP57078448A 1982-05-11 1982-05-12 Electrostrictive effect element Pending JPS58196072A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57078448A JPS58196072A (en) 1982-05-12 1982-05-12 Electrostrictive effect element
DE8383104556T DE3378393D1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
EP83104556A EP0094078B1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
CA000427828A CA1206193A (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element which withstands repeated application of pulses
AU14422/83A AU553391B2 (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element
US06/493,583 US4523121A (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element which withstands repeated application of pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078448A JPS58196072A (en) 1982-05-12 1982-05-12 Electrostrictive effect element

Publications (1)

Publication Number Publication Date
JPS58196072A true JPS58196072A (en) 1983-11-15

Family

ID=13662316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078448A Pending JPS58196072A (en) 1982-05-11 1982-05-12 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPS58196072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359363U (en) * 1986-10-06 1988-04-20
US5153477A (en) * 1990-02-26 1992-10-06 Hitachi Metals, Ltd. Laminate displacement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359363U (en) * 1986-10-06 1988-04-20
US5153477A (en) * 1990-02-26 1992-10-06 Hitachi Metals, Ltd. Laminate displacement device

Similar Documents

Publication Publication Date Title
JPS62274681A (en) Electrostrictive effect element
JPS6317354B2 (en)
JPH0256830B2 (en)
JP2007073883A (en) Chip capacitor
JPH05218519A (en) Electrostrictive effect element
JPS58196072A (en) Electrostrictive effect element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPH04264784A (en) Electrostrictive effect element and manufacture thereof
JPH0256822B2 (en)
JPS61237413A (en) Manufacture of laminate ceramic capacitor
JP3058305B2 (en) Thermistor and manufacturing method thereof
JPS58151077A (en) Piezoelectric effect device
US4629928A (en) Electrode terminal structure for a piezoelectric polymer
JPS58196073A (en) Electrostrictive effect element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPS58196075A (en) Electrostrictive effect element
JP2882164B2 (en) Electrostrictive effect element and method of manufacturing the same
JPS6392068A (en) Green sheet lamination type piezoelectric lamination body
JPH0279482A (en) Electrostriction effect element and manufacture thereof
JPH02164085A (en) Electrostriction effect element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JPS61102078A (en) Laminated piezo-electric element
JPH09162451A (en) Piezo-electric multilayered body