JPS58195711A - Cooling device for transition piece - Google Patents

Cooling device for transition piece

Info

Publication number
JPS58195711A
JPS58195711A JP7658082A JP7658082A JPS58195711A JP S58195711 A JPS58195711 A JP S58195711A JP 7658082 A JP7658082 A JP 7658082A JP 7658082 A JP7658082 A JP 7658082A JP S58195711 A JPS58195711 A JP S58195711A
Authority
JP
Japan
Prior art keywords
cooling
air
gas turbine
piece
transition piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7658082A
Other languages
Japanese (ja)
Other versions
JPH0138214B2 (en
Inventor
Katsuaki Watanabe
渡辺 勝精
Seiichi Kirikami
桐上 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7658082A priority Critical patent/JPS58195711A/en
Publication of JPS58195711A publication Critical patent/JPS58195711A/en
Publication of JPH0138214B2 publication Critical patent/JPH0138214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve a cooling effect and a specific output efficiency of a high temperature gas turbine, by a method wherein a cooling pipe is installed around the transition piece of the gas turbine, and a cooling air is jetted against the local high temperature part of said piece through the nozzle of the cooling pipe. CONSTITUTION:In a high temperature gas turbine, fuel through a fuel feed pipe 7 is burned by a burner 4, and combustion gas 8 is introduced to the turbine 2 through a transition piece 3 to rotate the turbine 2 and drive a load device 9. In which case, the air extracted from a final stage of a compressor 1 is cooled by a cooler 5 to boost it into a pressure higher than an atmosphere pressure 17 by means of an atomizing air compressor 6. After the air is fed to a cooling pipe 12 through an air feed pipe 11 through a flow rate regulating orifice 10, a cooling air 16 is blown through a nozzle 13 against a high temperature part 15 of the transition piece 3 to cool the metal of said piece 3. This permits the effective cooling of said piece 3 and enables the improvement of the specific output efficiency of the gas turbine 2.

Description

【発明の詳細な説明】 本発明は、ガスタービンのト2ンジショ7ピース冷却f
&直に関する。時に、高温ガスタービンのトランジショ
ンピース1kJjii3s的に冷却する冷却装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a two-piece cooling system for a gas turbine.
& Direct related. Sometimes it relates to a cooling device that cools a transition piece of a high-temperature gas turbine.

高温ガスタービンは、一般に第1図に示すように、燃料
供給管7から燃料を導いてこt′L′t−燃焼器4で燃
焼させ、発生する高温高圧の燃焼ガス8をトランジショ
ンピース3t−介してタービン2に導いて該タービン2
を回転させ、負荷装置9を駆動させるようになっている
。(図中1は圧縮機で、ここで圧縮され次空気は冷却装
置5で冷却水Wにより冷却され、良に噴霧空気圧縮機6
を通して燃焼用空気として燃焼器4に導かれる。Wは冷
却水である。) しかし従来技術に6うては、トランジションピース3に
は特に冷却手段が楕じられておらず、これに伴って問題
が生じることがめった。
Generally, as shown in FIG. 1, a high-temperature gas turbine is constructed by introducing fuel from a fuel supply pipe 7 and combusting it in a combustor 4, and passing the generated high-temperature and high-pressure combustion gas 8 through a transition piece 3t. to the turbine 2.
is rotated to drive the load device 9. (1 in the figure is a compressor, and the air compressed here is cooled by cooling water W in a cooling device 5, and is sprayed into an air compressor 6.
is introduced into the combustor 4 as combustion air. W is cooling water. ) However, in the prior art, the transition piece 3 is not provided with any particular cooling means, and this often causes problems.

即ち例えば単筒燃焼器を有するガスタービンのトランジ
ションピースに於いては、全周の初段静翼に均等に流量
分配させるため構造が複雑になる。
That is, for example, in a transition piece of a gas turbine having a single-cylinder combustor, the structure becomes complicated because the flow is distributed evenly to the first-stage stationary blades all around the circumference.

このためトランジションピースの各部にかなりの温度差
が出るので、燃焼ガス温度を高くすると局部的にメタル
ljA度が限界埴を越えることがあり、冷却しないと間
聴である。
For this reason, there is a considerable temperature difference between each part of the transition piece, so if the temperature of the combustion gas is raised, the metal ljA degree may locally exceed the limit temperature, and unless it is cooled, it will be intermittent.

一方、ガスタービンの比出力効率同上を計るためには、
ガスタービンの燃焼温度を上げることが不可欠でるる。
On the other hand, in order to measure the specific output efficiency of the gas turbine,
It is essential to raise the combustion temperature of gas turbines.

ところが従来のトランジションピースは、上記の如く荷
に七nを冷却していないために該トランジションピース
に余り高温のガスを通じることができず、結局燃焼ガス
温度を低くおさえるしかなく、タービンの効率同上にC
工限界がめった。仮に冷却なしでfI&f18−臘を上
げようと思えば、耐熱性の萬い上2ミックス号の特殊な
材料で製作することなどが必要となり、その開発に多額
の費用と時間を景するという間聴が発生してしまう。
However, in the conventional transition piece, since the load is not cooled as described above, very high temperature gas cannot pass through the transition piece, and in the end, there is no choice but to keep the combustion gas temperature low, which reduces the efficiency of the turbine. niC
The work limit was almost reached. If we wanted to increase the fI and f18 without cooling, it would be necessary to make it from a special heat-resistant material, which would require a large amount of money and time to develop. will occur.

不発明の目的は、トフンジ7ヨンを冷却することによっ
て上記した間l@t−解消して、ガスタービンの比出力
効率同上t−達成し侍るとともに、その冷却は確定安定
になし得、かつ安価に得ることができるトランジショ7
ピース冷却装置會提供することにるる。
The object of the invention is to solve the above-mentioned problems by cooling the gas turbine, thereby achieving the specific output efficiency of the gas turbine, and at the same time, the cooling can be done reliably and stably, and at low cost. Transition 7 that can be obtained in
We will provide peace cooling equipment.

9[ 本発明は、トラ/ジ7ヨ/ピースの近傍に、)い ズルを備え九冷却管t−設i1これにエリ冷却空気β t−該ノズルから流出させ七トラ/ジ7ヨ/ピース′:
1 にl1lkつけ、トランジションピースのメタル温度を
下げることにより、トランジションピース形状には特に
変更を〃口える必要なく、前記目的を達成するものでる
る。
9 [The present invention is provided with a nozzle in the vicinity of the nozzle/piece, and the cooling air β is flowed out from the nozzle into the cooling pipe (t). ′:
By attaching 11lk to 1 and lowering the metal temperature of the transition piece, the above objective can be achieved without the need to make any particular changes to the shape of the transition piece.

$2図以下t#照して本発明の一実施例を説明するに先
立ち、本発明に至った背景について述べる。′s1図の
概略系統図に示すような従来のガスタービンに於ては、
今までの実験により、ガスタービン2の燃焼ガス温度を
高温にするには、トランジションピース3のメタルII
A度を限界以下に低くおさえるようにすnば良いことが
わかった。
Before explaining one embodiment of the present invention with reference to the figures below, the background to the present invention will be described. In a conventional gas turbine as shown in the schematic system diagram in Figure 's1,
Based on the experiments conducted so far, in order to increase the combustion gas temperature of the gas turbine 2, the metal II of the transition piece 3
It turns out that it is best to keep the A degree below the limit.

従って、本発明では、前記した間組を解決するために、
第2図、第3図に例示する如く、従来のものにオリフィ
ス10.空気導入管11.冷却管12t−追加して構成
するものである。
Therefore, in the present invention, in order to solve the above-mentioned problem,
As illustrated in FIGS. 2 and 3, the conventional orifice 10. Air introduction pipe 11. Cooling pipe 12t - This is an additional configuration.

以下、図面を参照して、本発明の一実施列につき説明す
る。本例の構造は、第2図にその概略系l1kt−示し
、]ig3図1に41部の峠細を示すようになっている
。即ち図示:Ωように、本例は噴霧空気圧縮機6より分
岐し7ji□i管に取付けたオリフィス10゜1 吐出ケーシング14′:よりタービン内部に入り冷却管
12と接続する空気導入管11.トランジションピース
3の廻りに取付けた円環状の冷却管12に設けたノズル
13とにより構成する。冷却管12へのノズル13の形
成は、第4図に示すとおりである。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The structure of this example is shown schematically in FIG. 2, and in FIG. That is, as shown in the figure, in this example, an orifice 10°1 is branched from the atomizing air compressor 6 and attached to a pipe 7ji□i.Discharge casing 14': An air introduction pipe 11. It consists of a nozzle 13 provided in an annular cooling pipe 12 attached around the transition piece 3. The formation of the nozzle 13 in the cooling pipe 12 is as shown in FIG.

この装置を用いての冷却は、圧縮機lのl&終段より抽
気した空気を、冷却器5にて冷却し、噴霧空気圧縮機6
により雰囲気圧17よりも昇圧し、流量調整オリフィス
10t−介して9気導入雷11により冷却管12に導き
、ノズル13よりトランジションピース3の高温s15
に冷却空気16t−吹き付けてトランジションピース3
のメタルヲ冷却する。冷却空気16の流量はオリフィス
10により調整する。具体的には高温@15の8部の温
度分布に応じて、冷却する部分に、冷却空気をノズル噴
射するように設計する。
Cooling using this device involves cooling the air extracted from the first and final stage of the compressor 1 with the cooler 5, and then using the spray air compressor 6.
The pressure is raised above the atmospheric pressure 17, and the 9 air is introduced into the cooling pipe 12 by the lightning 11 through the flow rate adjustment orifice 10t, and the high temperature s15 of the transition piece 3 is passed through the nozzle 13.
Spray 16 tons of cooling air onto transition piece 3.
Cool the metal. The flow rate of cooling air 16 is adjusted by orifice 10. Specifically, the nozzle is designed to inject cooling air into the part to be cooled according to the temperature distribution of the 8 parts of high temperature @15.

本実施例によれば、jgs図に示すようにトランジショ
ンピースメタルの温[t−約2000低下させることが
出来、メタル限界温度(約850 C。
According to this embodiment, as shown in the JGS diagram, the temperature of the transition piece metal can be lowered by approximately 2000 t, and the metal limit temperature (approximately 850 C).

実際には75部0程度で使用)まで使用する場合燃焼ガ
ス温度を240C上昇することが出来る。
In practice, when used at about 75 parts 0), the combustion gas temperature can be increased by 240C.

従って第6図に示すように、同一寸法形状のガスタービ
ンでも、従来に比し、出力、効率を大巾に向上させるこ
とが出来る。
Therefore, as shown in FIG. 6, even if the gas turbine has the same size and shape, the output and efficiency can be greatly improved compared to the conventional gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ぼ、従来のガスタービン系統概略を示す図、第2
図は、本発明の一実施例に係るガスタービン系統概略を
示す図、第3図は、該例において冷却管をガスタービン
に組込んだ状態を示す図、第4図は、該冷却管のノズル
部詳at示す図、第5図は、メタル温度と燃焼ガス温度
の関係を示す図、46図は、ガスタービンのサイクル計
算図である。 2・・・ガスタービン、3・・・トランジションピース
、12・・・冷却管、13・・・ノズル。 代理人 弁理士 秋本正実 #10 異2圀 63日 茅4−目 15″ ロ バと達力・スfLR(’C) $Z 目 比上内 (KWhp/s)
Figure 1 shows a schematic diagram of a conventional gas turbine system, Figure 2
3 is a diagram showing an outline of a gas turbine system according to an embodiment of the present invention, FIG. 3 is a diagram showing a state in which a cooling pipe is incorporated into the gas turbine in this example, and FIG. FIG. 5 is a diagram showing the details of the nozzle part, FIG. 5 is a diagram showing the relationship between metal temperature and combustion gas temperature, and FIG. 46 is a diagram showing the cycle calculation of the gas turbine. 2... Gas turbine, 3... Transition piece, 12... Cooling pipe, 13... Nozzle. Agent Patent Attorney Masami Akimoto #10 2 territories 63 days 4-eyes 15'' Dona to Tatsuryoku Su fLR ('C) $Z Mehijo (KWhp/s)

Claims (1)

【特許請求の範囲】[Claims] 1、高温ガスタービンのトランジションピースの廻りに
冷却管を設け、この冷却管により冷却空気を導き、該冷
却空気を冷却管に設けたノズルから流出させることによ
って、トランジションピースのメタル温度が尚くなる部
分を局部的に冷却−rる構成としたことを特徴とするト
2ンジショ7ピース冷却装置。
1. By providing a cooling pipe around the transition piece of a high-temperature gas turbine, guiding cooling air through this cooling pipe, and letting the cooling air flow out from a nozzle provided in the cooling pipe, the metal temperature of the transition piece can be further reduced. A two-piece 7-piece cooling system characterized by having a configuration in which parts are locally cooled.
JP7658082A 1982-05-10 1982-05-10 Cooling device for transition piece Granted JPS58195711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658082A JPS58195711A (en) 1982-05-10 1982-05-10 Cooling device for transition piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658082A JPS58195711A (en) 1982-05-10 1982-05-10 Cooling device for transition piece

Publications (2)

Publication Number Publication Date
JPS58195711A true JPS58195711A (en) 1983-11-15
JPH0138214B2 JPH0138214B2 (en) 1989-08-11

Family

ID=13609205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658082A Granted JPS58195711A (en) 1982-05-10 1982-05-10 Cooling device for transition piece

Country Status (1)

Country Link
JP (1) JPS58195711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097970A (en) * 2000-09-11 2002-04-05 General Electric Co <Ge> Compressor discharged bleed air circuit in gas turbine power generating facility and related method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097970A (en) * 2000-09-11 2002-04-05 General Electric Co <Ge> Compressor discharged bleed air circuit in gas turbine power generating facility and related method

Also Published As

Publication number Publication date
JPH0138214B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US11073084B2 (en) Turbocooled vane of a gas turbine engine
US8707672B2 (en) Apparatus and method for cooling a combustor cap
US6792756B2 (en) Gas supply control device for a gas storage power plant
EP0239020A2 (en) Gas turbine combustion apparatus
JP2010223222A (en) System and method for reintroducing combustion bypass flow of gas turbine
JPH07500165A (en) gas turbine cycle
EP3412972B1 (en) Gas turbine comprising a plurality of can-combustors
GB1013139A (en) Gas turbine engine
US6865892B2 (en) Combustion chamber/venturi configuration and assembly method
JPS58195711A (en) Cooling device for transition piece
US5337554A (en) Method for reducing the pressure of a gas from a primary network
GB2180053A (en) Inert gas production by gas turbine
DE102011053400A1 (en) Device and method for a combustion chamber device
JP3212895B2 (en) Gas turbine fuel supply device and control device therefor
JP2002071136A (en) Combustor liner
JPH0544494A (en) Cooling method for high temperature section of gas turbine
US20120180493A1 (en) Apparatus and method for controlling oxygen emissions from a gas turbine
JPS59160032A (en) Gas turbine
JPS6325317Y2 (en)
GB865544A (en) Turbines
JPH07332668A (en) Cooling structure for gas turbine combustor liner
JPH07190365A (en) Gas-turbine combustor
JPS61187538A (en) Cooling air control method of gas turbine
JPH08261463A (en) Gas turbine combustor
JPH0816455B2 (en) Method for cooling a gas turbine combustor