JPH07332668A - Cooling structure for gas turbine combustor liner - Google Patents

Cooling structure for gas turbine combustor liner

Info

Publication number
JPH07332668A
JPH07332668A JP13009394A JP13009394A JPH07332668A JP H07332668 A JPH07332668 A JP H07332668A JP 13009394 A JP13009394 A JP 13009394A JP 13009394 A JP13009394 A JP 13009394A JP H07332668 A JPH07332668 A JP H07332668A
Authority
JP
Japan
Prior art keywords
cooling
heat transfer
cooling air
liner
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13009394A
Other languages
Japanese (ja)
Inventor
Tamio Innami
民雄 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13009394A priority Critical patent/JPH07332668A/en
Publication of JPH07332668A publication Critical patent/JPH07332668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the temperature of a liner wall by a method wherein the cooling of the liner wall is accelerated by increasing a liner wall-cooling calorie and increasing the flow-in quantity of cooling air to a cooling air hole as well. CONSTITUTION:Expanded heat transmission surface upstream ends 10 are provided to be close to cooling air holes 11, on the outer peripheral side of a liner 2. The expanded heat transmission surface upstream end 10 is provided in such a manner to be projected on a vertical surface of the cooling air hole 11. Then, cooling air hole jetting axes are provided to be tilted in the flowing direction of a combustion gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン燃焼器ラ
イナの冷却構造に関する。
FIELD OF THE INVENTION The present invention relates to a cooling structure for a gas turbine combustor liner.

【0002】[0002]

【従来の技術】従来の技術としては、特公昭59−49493
号公報に記載のようにガスタービン燃焼器ライナの外側
を流れる冷却空気をライナの周方向に設けた複数の冷却
孔を通して燃焼ガスの流れるライナ内側に張出しリップ
を経て燃焼ガスの流れ方向に冷却空気を噴き出させる構
造となっていた。この構造では、ライナの冷却には主
に、ライナ外側面での冷却空気による対流冷却と、ライ
ナ外側の冷却空気側圧力と燃焼ガスの流れるライナ内側
圧力との圧力差によりライナ周方向に設けた冷却空気孔
を通って流れ込む冷却空気による膜冷却とによってライ
ナ壁の冷却を行っていた。上記構造となっている為に、
ライナ外側面は波打ち状になっていても、平面であり、
その平面が冷却表面積となっていた。冷却空気孔は、ラ
イナ外側と内側との連通孔として、ライナ周方向に複数
開孔されている構造であった。
2. Description of the Related Art As a conventional technique, Japanese Patent Publication Sho 59-49493 is available.
As described in the publication, cooling air flowing outside the gas turbine combustor liner is extended to the inside of the liner where the combustion gas flows through a plurality of cooling holes provided in the circumferential direction of the liner, and the cooling air flows in the flow direction of the combustion gas through a lip. It had a structure that spews out. In this structure, the liner is mainly provided in the circumferential direction of the liner by the convection cooling by the cooling air on the outer surface of the liner and the pressure difference between the pressure on the cooling air side on the outer side of the liner and the pressure on the inner side of the liner through which the combustion gas flows. The liner wall was cooled by film cooling with cooling air flowing through the cooling air holes. Due to the above structure,
Even if the outer surface of the liner is wavy, it is a flat surface,
The plane was the cooling surface area. The cooling air hole has a structure in which a plurality of cooling air holes are formed in the liner circumferential direction as communication holes between the outside and the inside of the liner.

【0003】[0003]

【発明が解決しようとする課題】燃焼器ライナの冷却を
行う際に、対流による冷却を強化することにより膜冷却
の受けもつ冷却熱量を低減させ、ひいては膜冷却に使わ
れる冷却空気量を減少させ、その余った空気を燃焼空気
として使用する。合せ冷却空気孔入口状態を改良するこ
とにより、冷却空気が冷却空気孔へ流入し易くする。
When the combustor liner is cooled, convection cooling is strengthened to reduce the amount of cooling heat that the film cooling takes, which in turn reduces the amount of cooling air used for film cooling. , Use the surplus air as combustion air. By improving the combined cooling air hole inlet state, cooling air can easily flow into the cooling air hole.

【0004】[0004]

【課題を解決するための手段】冷却空気の流れる燃焼器
ライナ外側に冷却空気と接触L、放熱を促進する拡大伝
熱面を設ける。拡大伝熱面の上流端は、膜冷却を行う為
の空気孔に近接するように設ける。拡大伝熱面の上流端
が、空気孔の垂直面上に突き出るように設ける。噴出軸
線が燃焼ガスの流れ方向に傾斜している冷却孔に近接し
て拡大伝熱面の上流端を設けることを特徴としている。
An enlarged heat transfer surface is provided on the outside of a combustor liner through which cooling air flows to make contact L with the cooling air and to promote heat dissipation. The upstream end of the expanded heat transfer surface is provided close to the air hole for film cooling. The upstream end of the enlarged heat transfer surface is provided so as to project above the vertical surface of the air hole. It is characterized in that the upstream end of the expanded heat transfer surface is provided in the vicinity of the cooling hole whose ejection axis is inclined in the flow direction of the combustion gas.

【0005】[0005]

【作用】冷却空気の流れる燃焼器ライナ外側に冷却空気
と接触する拡大伝熱面を設けたので、冷却空気温度をT
c、燃焼器ライナ壁の温度をTw、拡大伝熱面を設ける前
の表面積をA0、拡大伝熱面の表面積をA1、ライナ壁の
熱伝達率をα、冷却熱量をqとすると、冷却熱量qは次
式で表わされる。
Since the enlarged heat transfer surface that comes into contact with the cooling air is provided outside the combustor liner through which the cooling air flows, the temperature of the cooling air is reduced to T
c , the temperature of the combustor liner wall is T w , the surface area before providing the expanded heat transfer surface is A 0 , the surface area of the expanded heat transfer surface is A 1 , the heat transfer coefficient of the liner wall is α, and the cooling heat quantity is q. , The cooling heat quantity q is expressed by the following equation.

【0006】q=α(A0+A1)(Tw−Tc) 概略冷却熱量は拡大伝熱面の表面積が増加した分増加
し、一般に拡大伝熱面を設けたことにより熱伝達率αも
増加するのでその分も冷却熱量が増加する。ライナを冷
却する膜冷却の冷却空気は、冷却空気側の圧力と燃焼ガ
ス側との圧力差で燃焼ガス側へ冷却孔を通って流入する
が、冷却孔に近接させて拡大伝熱面の冷却空気の流れ方
向上流端を設けるので、拡大伝熱面の上流端に衝突する
冷却空気は減速され、圧力を回復するので一層冷却孔に
冷却空気が流入し易くなり、膜冷却の空気流量が増え
る。
Q = α (A 0 + A 1 ) (T w −T c ). The approximate cooling heat amount increases as the surface area of the expanded heat transfer surface increases. Generally, the heat transfer coefficient α is provided by providing the expanded heat transfer surface. Also increases, so the amount of cooling heat also increases accordingly. The film-cooling cooling air that cools the liner flows into the combustion gas side through the cooling hole due to the pressure difference between the cooling air side and the combustion gas side, but it is enlarged near the cooling hole to cool the heat transfer surface. Since the upstream end in the air flow direction is provided, the cooling air colliding with the upstream end of the expanded heat transfer surface is decelerated and the pressure is restored, so that the cooling air is more likely to flow into the cooling holes and the air flow rate for film cooling is increased. .

【0007】更に拡大伝熱面の上流端が、空気孔の垂直
面上に突き出した形状では、空気孔垂直面上の拡大伝熱
面上流端に衝突した冷却空気が、冷却空気の流れ方向に
流れようとする冷却空気と、冷却孔を通って燃焼ガス側
へ流入しようとする空気とが入り乱れ、拡大伝熱面上流
端の熱伝達率を一層増加させ、拡大伝熱面によるライナ
壁の冷却を一層促進させる。
Further, in the shape in which the upstream end of the expanded heat transfer surface is projected on the vertical surface of the air hole, the cooling air colliding with the upstream end of the expanded heat transfer surface on the vertical surface of the air hole is directed in the flow direction of the cooling air. Cooling air that is about to flow and air that is about to flow into the combustion gas side through the cooling holes are disturbed, further increasing the heat transfer coefficient at the upstream end of the expanded heat transfer surface, and cooling the liner wall by the expanded heat transfer surface. Further promote.

【0008】噴出軸が燃焼ガスの流れ方向に傾斜してい
る冷却孔に近接させて拡大伝熱面の先端を設けたもの
は、拡大伝熱面先端部での圧力増大と合せ、拡大伝熱面
上流端がガイドベーンの働きを合せ行うので冷却空気を
流れ易くするので冷却空気孔への流入空気量が増大す
る。
In the case where the tip of the enlarged heat transfer surface is provided in the vicinity of the cooling hole whose ejection axis is inclined in the flow direction of the combustion gas, the enlarged heat transfer is performed together with the pressure increase at the tip of the enlarged heat transfer surface. Since the upstream end of the surface also functions as a guide vane, it facilitates the flow of cooling air, increasing the amount of air flowing into the cooling air holes.

【0009】[0009]

【実施例】本発明の実施例を示す。図9はガスタービン
の構成図である。圧縮機にて加圧,昇温された空気は燃
焼器へ送られる。この空気は燃焼器では燃料を燃焼させ
更に高温の燃焼ガスとなってタービンへ送られる。この
高圧,高温ガスがタービンを回転させ動力を得ることが
出来る。例えば負荷として発電機を接続回転させれば電
気を得ることができる。
EXAMPLES Examples of the present invention will be shown. FIG. 9 is a configuration diagram of the gas turbine. The air pressurized and heated by the compressor is sent to the combustor. This air burns fuel in the combustor and becomes higher temperature combustion gas, which is sent to the turbine. This high-pressure, high-temperature gas can rotate the turbine to obtain power. For example, electricity can be obtained by connecting and rotating a generator as a load.

【0010】図10は前記した燃焼器の構成図である。
圧縮機1で加圧,昇温された空気は矢印で示した方向へ
送られ、別配管より供給される燃料がパイロットバーナ
4c,F1 燃料ノズル4a,F2 燃料ノズル4bより噴
射され、主燃焼室R1 ,副燃焼室R2 の燃焼ゾーンで燃
焼する。燃焼ガスはトラジションピース7を経てタービ
ン6へ送り込まれる。主燃焼室R1 のライナ2は、内側
を高温の燃焼ガスが流れ、ライナ2の外側は圧縮空気が
流れる。この圧縮空気の一部がライナ2壁に設けられた
冷却空気孔11を通ってライナ壁の膜冷却空気としてラ
イナ内側に流れ込む。このライナ2壁は、内側を流れる
高温の燃焼ガス(1450℃程度)により加熱され、ライ
ナ2壁温度は高温となる。一方、ライナ2壁の外側を流
れる空気は加圧,昇温されているとは言え、燃焼ガス温
度よりは低温(380℃程度)なので、ライナ2壁外側
を流れる空気にて、ライナ2壁温度が材料許容温度以内
となるように冷却する必要がある。
FIG. 10 is a block diagram of the above-mentioned combustor.
The air pressurized and heated by the compressor 1 is sent in the direction shown by the arrow, and the fuel supplied from another pipe is injected from the pilot burner 4c, F 1 fuel nozzle 4a, F 2 fuel nozzle 4b, Combustion occurs in the combustion zones of the combustion chamber R 1 and the auxiliary combustion chamber R 2 . The combustion gas is sent to the turbine 6 via the transition piece 7. High temperature combustion gas flows inside the liner 2 of the main combustion chamber R 1 , and compressed air flows outside the liner 2. A part of this compressed air flows through the cooling air holes 11 provided in the wall of the liner 2 to the inside of the liner as film cooling air for the liner wall. The liner 2 wall is heated by the high temperature combustion gas (about 1450 ° C.) flowing inside, and the liner 2 wall temperature becomes high. On the other hand, although the air flowing outside the wall of the liner 2 is pressurized and heated, the temperature is lower than the combustion gas temperature (about 380 ° C.). Must be cooled so that the temperature is within the allowable material temperature.

【0011】図1に示したように、空気の流れる主室の
ライナ2の外周面に、空気への放熱面積を増やすべく拡
大伝熱面9を設ける。拡大伝熱面上流端10と衝突した
空気が冷却空気孔11へ入り易くなるように拡大伝熱面
上流端10を冷却空気孔11に近接して設ける。拡大伝
熱面9の空気流れ方向の長さは、図2に示したように冷
却空気孔11と次の冷却空気孔11との間に連続してあ
っても良いが、図3に示したように拡大伝熱面上流端1
0が複数出来るように区切った方が、拡大伝熱面の上流
端のエッジ効果(前縁効果)によりライナ壁の冷却は更
に促進される。図4〜図7は、拡大伝熱面9の上流端が
冷却空気孔11の垂直面上に突き出るように設けた例で
ある。拡大伝熱面9の上流端のエッジ効果と合せ、拡大
伝熱面上流端10が冷却空気孔11への流入ガイドベー
ンの働きをするので冷却空気孔11へ冷却空気が入り易
くなる。図8に示した例は、拡大伝熱面9の上流端を冷
却空気孔11に近接させて設け、冷却空気孔噴射軸12
を燃焼ガスが流れた方向にα度傾斜させて設けたので、
冷却空気孔11を流れる空気は、拡大伝熱面上流端10
部での圧力回復、拡大伝熱面9の上流端がガイドベーン
の働きと合せ、流れ易くなる(リターンフローし易くな
る)。これまで冷却空気孔への冷却空気の流れ易さ、冷
却空気流量増大による冷却効果大の場合について述べた
が、ライナ壁の冷却に裕度がある場合には、冷却空気孔
11の径を絞って、冷却流入空気量を減らし、その減じ
た空気を予混合燃焼空気として使い、一層の低NOx化
を図る他の効果をもたらすこともできる。
As shown in FIG. 1, an enlarged heat transfer surface 9 is provided on the outer peripheral surface of the liner 2 of the main chamber through which air flows so as to increase the heat radiation area to the air. The expanded heat transfer surface upstream end 10 is provided close to the cooling air hole 11 so that the air that has collided with the expanded heat transfer surface upstream end 10 can easily enter the cooling air hole 11. The length of the enlarged heat transfer surface 9 in the air flow direction may be continuous between the cooling air hole 11 and the next cooling air hole 11 as shown in FIG. 2, but is shown in FIG. Enlarged heat transfer surface upstream end 1
If it is divided into a plurality of 0s, the cooling of the liner wall is further promoted by the edge effect (leading edge effect) at the upstream end of the expanded heat transfer surface. 4 to 7 are examples in which the upstream end of the enlarged heat transfer surface 9 is provided so as to protrude above the vertical surface of the cooling air hole 11. In addition to the edge effect of the upstream end of the enlarged heat transfer surface 9, the upstream end 10 of the enlarged heat transfer surface acts as an inflow guide vane into the cooling air hole 11, so that cooling air easily enters the cooling air hole 11. In the example shown in FIG. 8, the upstream end of the enlarged heat transfer surface 9 is provided close to the cooling air hole 11, and the cooling air hole injection shaft 12 is provided.
Is inclined by α degrees in the direction of combustion gas flow,
The air flowing through the cooling air holes 11 is the upstream end 10 of the expanded heat transfer surface.
The pressure recovery in the section and the upstream end of the expanded heat transfer surface 9 work together with the function of the guide vanes to facilitate the flow (easy return flow). Up to now, the case where the cooling air easily flows into the cooling air hole and the cooling effect is large by increasing the cooling air flow rate has been described. However, when the cooling of the liner wall has a margin, the diameter of the cooling air hole 11 is reduced. Thus, the amount of cooling inflow air can be reduced, and the reduced air can be used as premixed combustion air to bring about another effect of further reducing NOx.

【0012】ここでは主燃焼室R1 のライナ2の冷却に
ついて述べたが、図2に示す副燃焼室R2 の副室ライナ
5の冷却に対しても同様の構成とすることにより効果的
な冷却を行うことができる。
Although the cooling of the liner 2 of the main combustion chamber R 1 has been described here, a similar configuration is effective for the cooling of the sub chamber liner 5 of the auxiliary combustion chamber R 2 shown in FIG. Cooling can be done.

【0013】[0013]

【発明の効果】拡大伝熱面9を燃焼器ライナ外表面に設
けたので、拡大伝熱面の伝熱面積をA1 、冷却熱量をq
とすると q=α(A0+A1)(Tw−Tc) …(1) の関係が成り立ち、拡大伝熱面の伝熱面積が増加した
分、概略冷却熱量は増加する。
Since the enlarged heat transfer surface 9 is provided on the outer surface of the combustor liner, the heat transfer area of the expanded heat transfer surface is A 1 , and the cooling heat quantity is q.
Then, the relationship of q = α (A 0 + A 1 ) (T w −T c ) ... (1) is established, and the approximate cooling heat amount increases as the heat transfer area of the expanded heat transfer surface increases.

【0014】但し α:ライナ壁の熱伝達率,A0 :拡
大伝熱面を設ける前の表面積,Tw:ライナ壁の温度,
c :空気温度である。
Where α is the heat transfer coefficient of the liner wall, A 0 is the surface area before the enlarged heat transfer surface is provided, T w is the temperature of the liner wall,
Tc : Air temperature.

【0015】もとのライナ外壁平滑面に対し、冷却空気
流路面に拡大伝熱面9を設けたので平滑面の熱伝達率α
0 に対し α/α0>1 となりαが増大した分(1)式により冷却熱量が増加す
る。従って拡大伝熱面の面積増加分と合せ、熱伝達率の
増加分も冷却熱量を増加できるので拡大伝熱面を設ける
ことによりライナ壁を効果的に冷却することができる。
拡大伝熱面上流端10を冷却空気孔11に近接させて設
けたので、空気が拡大伝熱面上流端10に衝突,減速し
圧力を回復するので冷却空気孔11へ冷却空気が流入し
易くなり、冷却空気量を増加させることができ、膜冷却
によるライナ壁の冷却を効果的に行うことができる。
Since the expanded heat transfer surface 9 is provided on the cooling air passage surface with respect to the original smooth surface of the outer wall of the liner, the heat transfer coefficient α of the smooth surface is
Since α / α 0 > 1 with respect to 0, the amount of cooling heat increases according to the equation (1) as α increases. Therefore, since the amount of cooling heat can be increased by the increase in the heat transfer coefficient together with the increase in the area of the expanded heat transfer surface, the liner wall can be effectively cooled by providing the expanded heat transfer surface.
Since the enlarged heat transfer surface upstream end 10 is provided close to the cooling air hole 11, the air collides with the enlarged heat transfer surface upstream end 10 and decelerates to recover the pressure, so that the cooling air easily flows into the cooling air hole 11. Therefore, the amount of cooling air can be increased, and the liner wall can be effectively cooled by film cooling.

【0016】拡大伝熱面上流端10を冷却空気孔11の
垂直面上に突き出して設けたので、冷却空気が前記理由
で流入し易くなるのと合せ、拡大伝熱面上流端10が冷
却空気孔11への流入空気のガイドベーンとなり、一層
冷却空気孔11へ冷却空気が流入し易くなり、冷却空気
量を増加させることができるので膜冷却によるライナ壁
の冷却を効果的に行うことができる。
Since the upstream end 10 of the expanded heat transfer surface is provided so as to protrude above the vertical surface of the cooling air hole 11, the cooling air can easily flow into the cooling air hole 11 for the above-mentioned reason. It serves as a guide vane for the inflowing air into the holes 11, the cooling air is more likely to flow into the cooling air holes 11, and the amount of the cooling air can be increased, so that the liner wall can be effectively cooled by the film cooling. .

【0017】冷却空気孔11の噴射軸12方向を燃焼ガ
ス流れ方向に傾斜させたので、拡大伝熱面上流端10に
衝突した空気が冷却空気孔11に流入し易くなり、冷却
空気量が増えるのでライナ壁膜冷却の効果を促進するこ
とができる。
Since the direction of the injection axis 12 of the cooling air hole 11 is inclined in the combustion gas flow direction, the air colliding with the upstream end 10 of the enlarged heat transfer surface easily flows into the cooling air hole 11 and the amount of cooling air increases. Therefore, the effect of cooling the liner wall film can be promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】拡大伝熱面のライナ傾視部分図である。FIG. 1 is a partial perspective view of a liner of an enlarged heat transfer surface.

【図2】拡大伝熱面の構成を示すライナ側面の部分図で
ある。
FIG. 2 is a partial view of a side surface of a liner showing a configuration of an enlarged heat transfer surface.

【図3】同じくライナ側面の部分図である。FIG. 3 is a partial side view of the liner.

【図4】拡大伝熱面上流端10が冷却空気孔11の垂直
面上に突き出した状態を示すライナ側面の部分図であ
る。
FIG. 4 is a partial side view of the liner showing a state in which the upstream end 10 of the enlarged heat transfer surface projects onto the vertical surface of the cooling air hole 11.

【図5】同じくライナ側面の部分図である。FIG. 5 is a partial side view of the liner.

【図6】同じくライナ側面の部分図である。FIG. 6 is a partial side view of the liner.

【図7】同じくライナ側面の部分図である。FIG. 7 is a partial side view of the liner.

【図8】冷却空気孔の噴出軸線が燃焼ガス流れ方向に傾
斜した状態を示すライナ側面の部分図である。
FIG. 8 is a partial side view of the liner showing a state in which the ejection axis of the cooling air hole is inclined in the combustion gas flow direction.

【図9】ガスタービンの構成図である。FIG. 9 is a configuration diagram of a gas turbine.

【図10】燃焼器の構成断面図である。FIG. 10 is a cross-sectional view showing the structure of a combustor.

【図11】従来の膜冷却構造を示すライナ側面の部分図
である。
FIG. 11 is a partial side view of a liner showing a conventional film cooling structure.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ライナ、3…燃料、4a…F1 燃料ノ
ズル、4b…F2 燃料ノズル、4c…パイロットバー
ナ、5…副室ライナ、6…タービン、7…トラジション
ピース、8…リップ、9…拡大伝熱面、10…拡大伝熱
面上流端、11…冷却空気孔、12…冷却空気孔噴射
軸。
1 ... compressor, 2 ... liner, 3 ... fuel, 4a ... F 1 fuel nozzle, 4b ... F 2 fuel nozzle, 4c ... pilot burner, 5 ... subchamber liner, 6 ... turbine, 7 ... transition piece, 8 ... Lip, 9 ... Enlarged heat transfer surface, 10 ... Enlarged heat transfer surface upstream end, 11 ... Cooling air hole, 12 ... Cooling air hole injection shaft.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン燃焼器のライナ外周側に拡大
伝熱面を設け、冷却空気孔にその拡大伝熱面の上流端を
近接させて設けたことを特徴とするガスタービン燃焼器
ライナの冷却構造。
1. A gas turbine combustor liner characterized in that an enlarged heat transfer surface is provided on the outer peripheral side of the liner of the gas turbine combustor, and the upstream end of the expanded heat transfer surface is provided close to the cooling air hole. Cooling structure.
【請求項2】燃焼器ライナ外周側に設けた拡大伝熱面の
上流端を空気孔の垂直面に突き出して設けた事を特徴と
する請求項1記載のガスタービン燃焼器ライナの冷却構
造。
2. The cooling structure for a gas turbine combustor liner according to claim 1, wherein the upstream end of the enlarged heat transfer surface provided on the outer peripheral side of the combustor liner is provided so as to protrude to the vertical surface of the air hole.
【請求項3】燃焼器ライナ外周側に、空気孔の噴出軸方
向を燃焼ガスの流れ方向に傾斜させた空気孔に近接し
て、拡大伝熱面の上流端を設けた事を特徴とする請求項
1記載のガスタービン燃焼器ライナの冷却構造。
3. An upstream end of an enlarged heat transfer surface is provided on the outer peripheral side of the combustor liner, close to an air hole whose ejection axis direction is inclined in the flow direction of combustion gas. The cooling structure for a gas turbine combustor liner according to claim 1.
JP13009394A 1994-06-13 1994-06-13 Cooling structure for gas turbine combustor liner Pending JPH07332668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009394A JPH07332668A (en) 1994-06-13 1994-06-13 Cooling structure for gas turbine combustor liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009394A JPH07332668A (en) 1994-06-13 1994-06-13 Cooling structure for gas turbine combustor liner

Publications (1)

Publication Number Publication Date
JPH07332668A true JPH07332668A (en) 1995-12-22

Family

ID=15025801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009394A Pending JPH07332668A (en) 1994-06-13 1994-06-13 Cooling structure for gas turbine combustor liner

Country Status (1)

Country Link
JP (1) JPH07332668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292451A (en) * 2006-04-24 2007-11-08 General Electric Co <Ge> System for reducing pressure loss in gas turbine engine
JP2010175239A (en) * 2009-01-27 2010-08-12 General Electric Co <Ge> Flow conditioner for use in gas turbine component in which combustion performed
JP2015010526A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Combustor for gas turbine
JP2017180303A (en) * 2016-03-30 2017-10-05 株式会社Ihi Combustion device and gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292451A (en) * 2006-04-24 2007-11-08 General Electric Co <Ge> System for reducing pressure loss in gas turbine engine
JP2010175239A (en) * 2009-01-27 2010-08-12 General Electric Co <Ge> Flow conditioner for use in gas turbine component in which combustion performed
JP2015010526A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Combustor for gas turbine
JP2017180303A (en) * 2016-03-30 2017-10-05 株式会社Ihi Combustion device and gas turbine

Similar Documents

Publication Publication Date Title
US6398489B1 (en) Airfoil shape for a turbine nozzle
RU2179245C2 (en) Gas-turbine engine with turbine blade air cooling system and method of cooling hollow profile part blades
KR930003077B1 (en) Gas turbine combustion chamber
US11085644B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
US4805397A (en) Combustion chamber structure for a turbojet engine
JP3710510B2 (en) Cooling method for self-igniting combustion chamber
CA2579881C (en) Combustor exit duct cooling
US6311471B1 (en) Steam cooled fuel injector for gas turbine
EP0751345A1 (en) Fuel jetting nozzle assembly for use in gas turbine combustor
JPH1082527A (en) Gas turbine combustor
EP1154135A3 (en) Methods and apparatus for supplying cooling air to turbine engines
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
CA2137179A1 (en) Gas turbine vane cooling system
WO2002014672A9 (en) Steam injection nozzle design of gas turbine combustion liners for enhancing power output and efficiency
JPS6335897B2 (en)
US20020066273A1 (en) Plate fin and combustor using the plate fin
US20200102836A1 (en) Turbine blade having cooling hole in winglet and gas turbine including the same
US4944152A (en) Augmented turbine combustor cooling
JPS58195027A (en) Wing end cooling type combuster
JP2003201863A (en) Combustor and gas turbine with it
JP4317214B2 (en) Radial turbine and method for cooling nozzle thereof
JPH07332668A (en) Cooling structure for gas turbine combustor liner
JPS5872822A (en) Cooling structure for gas turbine combustor
US20090123267A1 (en) Inlet film cooling of turbine end wall of a gas turbine engine
GB2356041A (en) Wall element for combustion apparatus