JP2015010526A - Combustor for gas turbine - Google Patents

Combustor for gas turbine Download PDF

Info

Publication number
JP2015010526A
JP2015010526A JP2013135743A JP2013135743A JP2015010526A JP 2015010526 A JP2015010526 A JP 2015010526A JP 2013135743 A JP2013135743 A JP 2013135743A JP 2013135743 A JP2013135743 A JP 2013135743A JP 2015010526 A JP2015010526 A JP 2015010526A
Authority
JP
Japan
Prior art keywords
wall
combustor
gas turbine
liner
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013135743A
Other languages
Japanese (ja)
Other versions
JP6178640B2 (en
Inventor
和馬 廣坂
Kazuma Hirosaka
和馬 廣坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013135743A priority Critical patent/JP6178640B2/en
Publication of JP2015010526A publication Critical patent/JP2015010526A/en
Application granted granted Critical
Publication of JP6178640B2 publication Critical patent/JP6178640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustor for a gas turbine for promoting introduction and exhaust of cooling fluid into and from a gap between an inner wall and an outer wall in a liner having a double-wall structure.SOLUTION: In a combustor for a gas turbine, a liner 10 forming a combustion chamber has a double-wall structure, and a flow passage for air supplied to the combustor is provided on an outer periphery of the liner. A protrusion structure 40 is provided on an outer side of an outer wall 30 of the liner 10, and air holes 50, 60 are formed on upstream and downstream sides of the protrusion structure 40 when seen from an air flowing direction.

Description

本発明は、ガスタービン用燃焼器に関する。   The present invention relates to a combustor for a gas turbine.

ガスタービン用燃焼器に関する従来技術としては、例えば特許文献1に記載の技術がある。この特許文献1では、燃焼室を境界づける内側壁と外側壁とを備え、その内側壁と外側壁との間に冷却流体が貫流する隙間が空けられ、この隙間に開口する冷却流体導入路および隙間から冷却流体を排出する冷却流体排出路が設けられているタービンにおける密閉冷却形燃焼器において、冷却流体排出路が、燃焼器の軸方向に沿って延びるダクト状排出路構造を有し、この排出路構造が、その排出路構造間に配置された冷却流体導入路の入口構造によって中断されていることが記載されている。   As a prior art regarding the combustor for gas turbines, there exists a technique of patent document 1, for example. In Patent Document 1, an inner wall and an outer wall that delimit the combustion chamber are provided, and a gap through which the cooling fluid flows is formed between the inner wall and the outer wall, and a cooling fluid introduction path that opens into the gap is provided. In a hermetic cooling combustor in a turbine provided with a cooling fluid discharge path for discharging a cooling fluid from a gap, the cooling fluid discharge path has a duct-like discharge path structure extending along the axial direction of the combustor. It is described that the discharge channel structure is interrupted by the inlet structure of the cooling fluid introduction channel arranged between the discharge channel structures.

特開2004-197748号公報JP 2004-197748

前述の特許文献1では、密閉冷却型燃焼器において、燃焼室を境界づける内側壁と外側壁との間に冷却流体が貫流する隙間と、冷却流体導入路およびダクト状排出路構造を設け、導入路から隙間に導入された冷却流体が、燃焼器から除去すべき熱を吸収後、排出路より排出される構造としている。これに対して、燃焼室を包囲するライナの外周部に燃焼器に供給される空気が流れる流路を有する、開放冷却型燃焼器において、ライナを二重壁構造とする場合は、密閉冷却型燃焼器と同様に隙間に導入路を直接接続し、冷却流体を隙間に導入することはできない。   In the above-mentioned Patent Document 1, in a hermetic cooling type combustor, a clearance through which a cooling fluid flows between an inner wall and an outer wall that bound a combustion chamber, a cooling fluid introduction path, and a duct-like discharge path structure are provided and introduced. The cooling fluid introduced into the gap from the passage absorbs heat to be removed from the combustor and is then discharged from the discharge passage. On the other hand, in an open cooling combustor having a flow path through which air supplied to the combustor flows in the outer periphery of the liner surrounding the combustion chamber, when the liner has a double wall structure, a hermetic cooling type Like the combustor, the introduction path is directly connected to the gap, and the cooling fluid cannot be introduced into the gap.

本発明は、二重壁構造を有するライナにおける、内側壁と外側壁との間の隙間への冷却流体の導入および排出を促進するガスタービン用燃焼器を提供することを目的とする。   An object of the present invention is to provide a gas turbine combustor that facilitates introduction and discharge of cooling fluid into a gap between an inner wall and an outer wall in a liner having a double wall structure.

上記課題を解決するために、本発明は、燃焼室を形成するライナを二重壁構造とし、前記ライナの外周部に燃焼器に供給される空気の流路を有するガスタービン用燃焼器において、前記ライナの外側壁の外面側に突起構造物を設けるとともに、空気の流れ方向から見て前記突起構造物の上流側と下流側に空気孔を形成する。   In order to solve the above-mentioned problems, the present invention provides a gas turbine combustor having a double wall structure as a liner forming a combustion chamber and having a flow path of air supplied to the combustor on the outer periphery of the liner. A protrusion structure is provided on the outer surface side of the outer wall of the liner, and air holes are formed on the upstream side and the downstream side of the protrusion structure as viewed from the air flow direction.

本発明によれば、二重壁構造を有するライナにおける、内側壁と外側壁との間の隙間への冷却流体の導入および排出を促進するガスタービン用燃焼器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the combustor for gas turbines which accelerates | stimulates introduction and discharge | emission of the cooling fluid to the clearance gap between an inner wall and an outer wall in the liner which has a double wall structure can be provided.

本発明の実施例1による二重壁構造ライナの外形図の例である。It is an example of the external view of the double wall structure liner by Example 1 of this invention. 二重壁構造ライナの突起構造物周りの拡大断面図の例である。It is an example of the expanded sectional view around the protrusion structure of a double wall structure liner. 実施例2の二重壁構造ライナの外側壁の展開図の例である。It is an example of the expanded view of the outer side wall of the double wall structure liner of Example 2. FIG. 実施例3の二重壁構造ライナの外側壁の展開図の例である。It is an example of the expanded view of the outer side wall of the double wall structure liner of Example 3. FIG. 実施例4における二重壁構造ライナの厚み比と温度の関係図である。It is a related figure of the thickness ratio of the double wall structure liner in Example 4, and temperature. 実施例5の外側壁外面側の突起構造物付近の拡大断面図の例である。10 is an example of an enlarged cross-sectional view in the vicinity of a protruding structure on the outer wall outer surface side of Example 5. FIG.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例では、その内部空間に燃焼室を形成するライナの外周部に、燃焼器に供給される空気が流れる流路を有するガスタービン用燃焼器における、二重壁構造ライナ10の例を説明する。   In the present embodiment, an example of a double wall structure liner 10 in a gas turbine combustor having a flow path through which air supplied to the combustor flows in an outer peripheral portion of a liner that forms a combustion chamber in its internal space will be described. To do.

図1は、本実施例の二重壁構造ライナの構成図の例である。二重壁の外側の外部空間20には、冷却空気がライナの軸方向に流れており、二重壁の外側壁30の外面に、等間隔に空気の流れを受け止める方向で突起構造物40を設置する。   FIG. 1 is an example of a configuration diagram of a double wall structure liner of the present embodiment. In the outer space 20 outside the double wall, cooling air flows in the axial direction of the liner, and the protruding structure 40 is provided on the outer surface of the outer wall 30 of the double wall in a direction to receive the air flow at equal intervals. Install.

図2に、外側壁30に設けられた突起構造物40近傍の二重壁の断面を示す。外側壁30の外側に設けられた突起構造物40の流れに対する上流側と下流側において、外側壁30に空気孔(上流側空気孔50、下流側空気孔60)が設けられており、二重壁の外側の空間20から外側壁30と内側壁70の隙間空間80まで貫通している。突起構造物40より上流側では、流れが受け止められていることから圧力が増加し、一方で、突起構造物40より下流側の空間では、突起構造物上端で流れのはく離が発生することから、圧力が低下する。上流側と下流側での圧力差により、上流側の空気孔50を通過して、二重壁の隙間空間80に流入し、下流側の空気孔60を通過して外部空間20に排出される冷却空気の流れが促進される。ライナの軸方向には、突起構造物40が等間隔で設置されており、各突起構造物の上流側と下流側にはそれぞれ空気孔(50、60)が設けられている。なお、二重壁の内側壁70は、外側壁30にスペーサ(図示せず)を介して取り付けられており、構造的に外側壁と内側壁は一体となっている。   FIG. 2 shows a cross section of the double wall in the vicinity of the protruding structure 40 provided on the outer wall 30. Air holes (upstream air holes 50, downstream air holes 60) are provided in the outer wall 30 on the upstream side and the downstream side with respect to the flow of the protruding structure 40 provided on the outer side of the outer side wall 30. It penetrates from the space 20 outside the wall to the gap space 80 between the outer wall 30 and the inner wall 70. On the upstream side of the protruding structure 40, the pressure is increased because the flow is received. On the other hand, in the space downstream of the protruding structure 40, flow separation occurs at the upper end of the protruding structure. The pressure drops. Due to the pressure difference between the upstream side and the downstream side, the air passes through the upstream air hole 50, flows into the double-wall gap space 80, passes through the downstream air hole 60, and is discharged to the external space 20. The flow of cooling air is promoted. In the axial direction of the liner, protruding structures 40 are installed at equal intervals, and air holes (50, 60) are provided on the upstream side and the downstream side of each protruding structure, respectively. The double-wall inner wall 70 is attached to the outer wall 30 via a spacer (not shown), and the outer wall and the inner wall are structurally integrated.

本実施例の効果としては、開放冷却型燃焼器の二重壁構造のライナにおいて、外側壁30と内側壁70の隙間空間80への冷却空気の流入,排出を促進し、燃焼室に直接接している内壁側の冷却を促進し、内側壁の熱負荷を緩和する。例えば、上記突起構造物より上流側は冷却空気流れが受け止められるため隙間内部比べ圧力が高くなり、下流側は流れがよどむ領域となるため隙間内部に比べ圧力が低くなることから、上記突起構造物の上流側および下流側に形成された空気孔を通して、冷却空気の隙間への導入,排出が促進される。   As an effect of the present embodiment, in the liner of the double wall structure of the open cooling type combustor, the flow of cooling air into and out of the gap space 80 between the outer wall 30 and the inner wall 70 is promoted, and directly contacts the combustion chamber. The cooling of the inner wall side is promoted, and the thermal load on the inner wall is reduced. For example, since the cooling air flow is received on the upstream side from the protruding structure, the pressure is higher than the inside of the gap, and the downstream side is a region where the flow is stagnant, and thus the pressure is lower than the inside of the protruding structure. Through the air holes formed on the upstream side and the downstream side, the introduction and discharge of the cooling air into the gap are promoted.

本実施例では、実施例1のライナにおいて、二重壁の外側壁内面側にも突起構造物を設けた二重壁構造ライナの例を説明する。   In the present embodiment, an example of a double wall structure liner in which a protruding structure is provided on the inner surface side of the outer wall of the double wall in the liner of the first embodiment will be described.

図3は、実施例2における二重壁構造ライナ90の展開図の例である。実施例1と同様に、二重壁の外側壁30の外面には突起構造物40が等間隔に設置されている。本実施例では、突起構造物40は周方向にほとんど切れ目のない構造とし、例えば図3に点線で示すように周方向の全周にわたり矩形状の突起構造物40を設ける。また、外側壁内面側にも外面側と同様に、周方向の全周にわたり矩形状の突起構造物100を設ける。これは、実施例1にて内側壁を外側壁に取り付ける際に用いたスペーサ(図示せず)の代わりとして活用される。すなわち、内側壁70は突起構造物100を介して外側壁30に支持されている。このとき、外面側の突起構造物40と内面側の突起構造物100は交差するように配置されており、外面側突起構造物40の上流側に取り付けられた空気孔50を通して隙間空間80に取り込まれた冷却空気は、内面側の突起構造物100の間を流れる。   FIG. 3 is an example of a development view of the double wall structure liner 90 in the second embodiment. Similar to the first embodiment, protruding structures 40 are provided at equal intervals on the outer surface of the double wall outer wall 30. In this embodiment, the protruding structure 40 has a structure that is almost unbroken in the circumferential direction. For example, as shown by a dotted line in FIG. 3, a rectangular protruding structure 40 is provided over the entire circumference in the circumferential direction. Further, similarly to the outer surface side, a rectangular projection structure 100 is provided on the outer wall inner surface side along the entire circumference in the circumferential direction. This is utilized as a substitute for the spacer (not shown) used when attaching the inner wall to the outer wall in the first embodiment. That is, the inner wall 70 is supported by the outer wall 30 through the protruding structure 100. At this time, the protruding structure 40 on the outer surface side and the protruding structure 100 on the inner surface side are arranged so as to intersect with each other, and are taken into the gap space 80 through the air holes 50 attached to the upstream side of the protruding structure 40 on the outer surface side. The cooled cooling air flows between the protruding structures 100 on the inner surface side.

本実施例の効果としては、内面側に冷却空気用の流路110を設けることで、隙間空間80内の冷却空気流れを整流化し、内側壁70の特定部分のみが、隙間空間内に停留した冷却空気流れによって十分に冷却されなくなることを防ぐ。また、外側壁外面および内面に交差上に矩形状の突起構造物(40、100)を配置することで、外側壁の構造強度を強化し、内側壁も含めたライナ全体の構造強度を高める。なお、上記において突起構造物(40、100)の形は矩形状と記載したが、例えばLリブのように、流路を形成でき、また、取付けることにより強度が高まる形状としても良い。   As an effect of the present embodiment, by providing the cooling air flow path 110 on the inner surface side, the cooling air flow in the clearance space 80 is rectified, and only a specific portion of the inner wall 70 is retained in the clearance space. This prevents the cooling air flow from being sufficiently cooled. Further, by arranging rectangular projection structures (40, 100) on the outer wall outer surface and inner surface so as to intersect each other, the structural strength of the outer wall is strengthened, and the structural strength of the entire liner including the inner wall is increased. In addition, although the shape of the protruding structure (40, 100) is described as a rectangular shape in the above, a flow path can be formed, such as an L rib, and the shape can be increased in strength by being attached.

図3の二重壁構造ライナ90のうち、既に説明した図1に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。   In the double-walled structure liner 90 of FIG. 3, the description of the components having the same functions as those already described with reference to FIG. 1 is omitted.

本実施例では、実施例2のライナにおいて、外側壁と内側壁の隙間空間に設けられた冷却空気用の流路において、途中に流路をせき止める方向に障害物を設けた、二重壁構造ライナの例を説明する。   In the present embodiment, in the liner of the second embodiment, in the flow path for cooling air provided in the gap space between the outer wall and the inner wall, an obstacle is provided in the direction of blocking the flow path in the middle. An example of a liner will be described.

図4は、実施例3における二重壁構造ライナ120の展開図の例である。実施例2と同様に、二重壁の外側壁30の外面と内面に突起構造物(40、100)が等間隔に設置されており、それらは交差した位置関係となっている。本実施例においては、隙間空間80に設けられた流路110において、図4に示した位置関係で流路をせき止める障害物130を設ける。つまり、外側壁に設けられた冷却空気の流入側空気孔50と排出側空気孔60の中間で、かつ流入側空気孔50の上流側に障害物130を設ける。これにより、外側壁外面の突起構造物40の上流側から隙間空間80に流れ込んだ冷却空気は、同じ突起構造物40の下流側に設けられた排出側空気孔60より二重壁外側空間20に排出される。   FIG. 4 is an example of a development view of the double wall structure liner 120 in the third embodiment. Similar to the second embodiment, the protrusion structures (40, 100) are installed at equal intervals on the outer surface and the inner surface of the outer wall 30 of the double wall, and they are in a crossed positional relationship. In the present embodiment, in the flow path 110 provided in the gap space 80, an obstacle 130 is provided to block the flow path in the positional relationship shown in FIG. That is, the obstacle 130 is provided between the cooling air inflow side air hole 50 and the discharge side air hole 60 provided on the outer wall and upstream of the inflow side air hole 50. Thereby, the cooling air that has flowed into the gap space 80 from the upstream side of the protruding structure 40 on the outer surface of the outer wall enters the double wall outer space 20 from the discharge side air hole 60 provided on the downstream side of the same protruding structure 40. Discharged.

本実施例の効果としては、ある流入側空気孔50から隙間空間80に流入した冷却空気は、必ず最初の下流側にある排出側空気孔60で隙間空間80より排出されるため、隙間空間内に温まった冷却空気が留まることを防ぐことができ、内側壁70を冷却する効果を維持することができる。   As an effect of the present embodiment, the cooling air flowing into the clearance space 80 from a certain inflow side air hole 50 is always discharged from the clearance space 80 through the discharge side air hole 60 on the first downstream side. Therefore, it is possible to prevent the heated cooling air from staying, and to maintain the effect of cooling the inner wall 70.

本実施例では、実施例1のライナにおいて、内側壁の厚みを外側壁に比べ顕著に薄くし、内側壁の温度上昇を抑える構造としたライナの例を説明する。以下の式は、内外面に温度差のある円筒における、伝熱量を示す。   In the present embodiment, an example of a liner having a structure in which the thickness of the inner side wall is significantly thinner than that of the outer side wall to suppress the temperature rise of the inner side wall will be described. The following equation shows the amount of heat transfer in a cylinder having a temperature difference between the inner and outer surfaces.

Q=|Ti-To|/R ・・・(1)
R=ln(ro/ri)/(2πLλ) ・・・(2)
Q:伝熱量[W], Ti:内面側温度[℃], To:外面側温度[℃],R:熱抵抗[℃/W]
λ:熱伝導率[W/mm/K], ri:内径(半径)[mm], To:外径(半径)[mm],L:円筒長さ[mm]
図5に横軸にro/ri,縦軸にln(ro/ri)をとったグラフを示す。本実施例ではri=100 mmとしている。図5より、円筒の厚みが薄く外径が小さくなるにつれ、ln(ro/ri)がほぼ直線的に0に近づく。燃焼器ライナにおいて、同じ燃焼状態におけるライナの伝熱量Qおよび冷却空気の温度である外面側温度Toは、厚みによってほとんど変化しないと考えられる。また、ライナの材料により決定される熱伝導率λや長さLは定数である。式(1)(2)を変形すると、内面側温度Tiは(3)式にて表され、厚みが薄くなるにつれ、内面側温度は、直線的に外面側温度に近づく。
Q = | Ti-To | / R (1)
R = ln (ro / ri) / (2πLλ) (2)
Q: Heat transfer [W], Ti: Inner side temperature [° C], To: Outer side temperature [° C], R: Thermal resistance [° C / W]
λ: Thermal conductivity [W / mm / K], ri: Inner diameter (radius) [mm], To: Outer diameter (radius) [mm], L: Cylinder length [mm]
FIG. 5 shows a graph with ro / ri on the horizontal axis and ln (ro / ri) on the vertical axis. In this embodiment, ri = 100 mm. From FIG. 5, ln (ro / ri) approaches 0 almost linearly as the thickness of the cylinder is small and the outer diameter is reduced. In the combustor liner, it is considered that the heat transfer amount Q of the liner in the same combustion state and the outer surface side temperature To which is the temperature of the cooling air hardly change depending on the thickness. The thermal conductivity λ and the length L determined by the liner material are constants. When Expressions (1) and (2) are transformed, the inner surface side temperature Ti is expressed by Expression (3), and as the thickness decreases, the inner surface side temperature linearly approaches the outer surface side temperature.

Ti=Q/(2πLλ)×ln(ro/ri)+To ・・・(3)
以上より、内側壁の厚さを外側壁に比べて顕著に薄くすることで、内側壁内面側の温度上昇を抑え、内側壁が高温となることによる負荷を低減させることができる。
Ti = Q / (2πLλ) × ln (ro / ri) + To (3)
From the above, by making the thickness of the inner wall significantly thinner than that of the outer wall, it is possible to suppress the temperature rise on the inner side of the inner wall and to reduce the load caused by the inner wall becoming hot.

本実施例では、実施例1のライナにおいて、二重壁の外側壁外面側に設けた突起構造物の形状を、冷却空気流れに対する上流側は滑らかに立ち上がり、下流側は突起構造物の凸部最高点(A点)通過後の少しの区間は滑らかに下降した後に、急激に下降し外側壁30に到達する形状とし、それに伴い、空気孔の中心軸方向をライナ半径方向に対して冷却空気の流れ方向にやや傾けた構造とした、二重壁構造ライナの例を説明する。   In the present embodiment, in the liner of the first embodiment, the shape of the protruding structure provided on the outer surface side of the double wall is smoothly raised on the upstream side with respect to the cooling air flow, and the protruding portion of the protruding structure is on the downstream side. A small section after passing through the highest point (point A) is smoothly lowered and then rapidly lowered to reach the outer wall 30. Accordingly, the central axis direction of the air hole is set to be the cooling air with respect to the liner radial direction. An example of a double wall structure liner that is slightly inclined in the flow direction will be described.

図6は、実施例5における外側壁30外面側に設けた突起構造物40の断面図の例である。突起構造物40の効果は、実施例1に記載のとおり、突起構造物40にて流れを受け止め、突起構造物の上流側に周囲より圧力の高い領域、下流側に周囲より圧力の低い領域を形成することである。しかし、流れを受け止める効果が大きい場合、ライナにおける空気流れの圧力損失が増大し、ガスタービンの効率を低下させる原因となる。   FIG. 6 is an example of a cross-sectional view of the protruding structure 40 provided on the outer surface side of the outer wall 30 in the fifth embodiment. As described in the first embodiment, the effect of the protruding structure 40 is to receive a flow at the protruding structure 40 and to provide a region where the pressure is higher than the surroundings on the upstream side of the protruding structure and a region where the pressure is lower than the surroundings on the downstream side. Is to form. However, if the effect of catching the flow is large, the pressure loss of the air flow in the liner increases, causing the efficiency of the gas turbine to decrease.

本実施例の効果としては、突起構造物40上流側の冷却空気流れを完全に受け止めることなく、滑らかに突起構造物40の高さ方向側へ流すことで、流れの圧力損失を大きく増やすことなく、上流側空気孔50位置の圧力を高めることである。なお本実施例では、突起構造物40上流側の空気流れの速度成分(u1)は0ではないため、(4)式のベルヌーイ式によると、突起構造物上流側の圧力増加幅は小さくなり、隙間空間80に冷却空気を送り込む圧力差は、速度成分(u1)を0とする場合に比べ低下するが、突起構造物上流側空気孔50を冷却空気流れの方向に傾けることで、残留分の空気流れの速度成分のうち、上流側空気孔50の軸方向と同じ方向の速度成分は上流側空気孔を流入する冷却空気の速度成分としてそのまま利用する。 As an effect of the present embodiment, the flow of cooling air on the upstream side of the protruding structure 40 is not completely received, but smoothly flows to the height direction side of the protruding structure 40 without greatly increasing the pressure loss of the flow. It is to increase the pressure at the upstream air hole 50 position. In this embodiment, since the velocity component (u 1 ) of the air flow upstream of the protruding structure 40 is not 0, according to the Bernoulli equation (4), the pressure increase width on the upstream side of the protruding structure is reduced. The pressure difference at which the cooling air is sent into the gap space 80 is lower than that when the velocity component (u 1 ) is 0, but the residual pressure is reduced by tilting the protruding structure upstream air hole 50 in the direction of the cooling air flow. Of the speed component of the air flow, the speed component in the same direction as the axial direction of the upstream air hole 50 is used as it is as the speed component of the cooling air flowing into the upstream air hole.

1/2u0 2 + p0/ρ = 1/2u1 2 + (p0+Δp)/ρ ・・・(4)
u0:冷却空気速度[m/s], p0:冷却空気圧力[MPa],
u1:突起構造物上流側冷却空気速度[m/s], Δp: 突起構造物上流側圧力増加量[MPa]
また、下流側は形状が大きく変化する部分を持たせ、流れのはく離を促し、排出側空気孔付近の圧力低下を引き起こすとともに、なだらかな下降部分を設けることで、突起構造物40の後縁(点B)にてはく離した流れが外側壁に再付着する位置(点C)の突起物後縁(点B)からの距離を縮め、突起構造物40を乗り越え吸熱していない冷却空気流れと、排出側空気孔60から排出された吸熱した冷却空気が混ざり合い、次の流入側空気孔から流入する空気の温度が、冷却空気の平均温度に比べ高く保たれないようにしている。
1 / 2u 0 2 + p 0 / ρ = 1 / 2u 1 2 + (p 0 + Δp) / ρ (4)
u 0 : Cooling air speed [m / s], p 0 : Cooling air pressure [MPa],
u 1 : Cooling air speed on the protruding structure upstream [m / s], Δp: Increase in pressure on the protruding structure upstream [MPa]
Further, the downstream side has a part whose shape changes greatly, promotes flow separation, causes a pressure drop in the vicinity of the discharge side air hole, and provides a gentle descending part, thereby providing a trailing edge of the protruding structure 40 ( A position where the flow separated at the point B) is reattached to the outer wall (point C) by reducing the distance from the rear edge of the projection (point B), overcoming the projection structure 40, and the cooling air flow not absorbing heat; The heat-absorbed cooling air discharged from the discharge-side air holes 60 is mixed, so that the temperature of the air flowing in from the next inflow-side air hole is not kept higher than the average temperature of the cooling air.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10 二重壁構造ライナ
20 外部空間
30 二重壁の外側壁
40 突起構造物(外面側)
50 上流側空気孔
60 下流側空気孔
70 二重壁の内側壁
80 隙間空間
90 二重壁構造ライナ
100 突起構造物(内面側)
110 流路
120 二重壁構造ライナ
130 障害物
10 Double wall structure liner 20 External space 30 Double wall outer wall 40 Projection structure (outer surface side)
50 Upstream Air Hole 60 Downstream Air Hole 70 Double Wall Inner Wall 80 Gap Space 90 Double Wall Structure Liner 100 Protrusion Structure (Inner Surface Side)
110 Channel 120 Double-walled liner 130 Obstacle

Claims (8)

燃焼室を形成するライナを二重壁構造とし、前記ライナの外周部に燃焼器に供給される空気の流路を有するガスタービン用燃焼器において、
前記ライナの外側壁の外面側に突起構造物を設けるとともに、空気の流れ方向から見て前記突起構造物の上流側と下流側に空気孔を形成したことを特徴とするガスタービン用燃焼器。
A gas turbine combustor having a double wall structure as a liner forming a combustion chamber and having a flow path of air supplied to the combustor on the outer periphery of the liner.
A combustor for a gas turbine, wherein a projection structure is provided on an outer surface side of the outer wall of the liner, and air holes are formed on the upstream side and the downstream side of the projection structure as viewed from the air flow direction.
請求項1に記載のガスタービン用燃焼器において、
前記ライナの外側壁の内面側にも突起構造物を設けたことを特徴とするガスタービン用燃焼器。
The combustor for a gas turbine according to claim 1,
A combustor for a gas turbine, wherein a projection structure is provided on the inner surface side of the outer wall of the liner.
請求項2に記載のガスタービン用燃焼器において、
前記外側壁の外面側と内面側に設ける突起構造物は、互いが交差する位置関係となるように配置したことを特徴とするガスタービン用燃焼器。
The gas turbine combustor according to claim 2,
A combustor for a gas turbine, wherein the protruding structures provided on the outer surface side and the inner surface side of the outer wall are arranged so as to be in a positional relationship where they intersect each other.
請求項2に記載のガスタービン用燃焼器において、
前記ライナの内側壁は、外側壁の内面側に設けた突起構造物を介して支持されていることを特徴とするガスタービン用燃焼器。
The gas turbine combustor according to claim 2,
The gas turbine combustor is characterized in that the inner wall of the liner is supported via a protruding structure provided on the inner surface side of the outer wall.
請求項2に記載のガスタービン用燃焼器において、
前記外側壁の内面側に設けた突起構造物は複数個が形成されたものであって、該複数個の突起構造物により前記外側壁と内側壁の隙間空間に複数の流路を形成したことを特徴とするガスタービン用燃焼器。
The gas turbine combustor according to claim 2,
A plurality of protruding structures provided on the inner surface side of the outer wall are formed, and a plurality of flow paths are formed in a gap space between the outer wall and the inner wall by the plurality of protruding structures. A combustor for a gas turbine.
請求項5に記載のガスタービン用燃焼器において、
前記外側壁の外面側のある突起構造物の上流側空気孔とその上流側に位置する突起構造物の下流側空気孔との間の位置に対応する、前記外側壁の内面側の位置に、前記隙間空間の流路をせき止める障害物を設けたことを特徴とするガスタービン用燃焼器。
The gas turbine combustor according to claim 5,
At the position on the inner surface side of the outer wall, corresponding to the position between the upstream air hole of the protruding structure on the outer surface side of the outer wall and the downstream air hole of the protruding structure located on the upstream side, A combustor for a gas turbine, wherein an obstacle is provided to block the flow path of the gap space.
請求項1に記載のガスタービン用燃焼器において、
前記ライナの内側壁の厚みを外側壁よりも薄く形成したことを特徴とするガスタービン用燃焼器。
The combustor for a gas turbine according to claim 1,
A gas turbine combustor, wherein the inner wall of the liner is thinner than the outer wall.
請求項1に記載のガスタービン用燃焼器において、
前記外側壁の外面側に設けられた突起構造物の高さ形状は、空気の流れ方向からみて、上流側ではライナ半径方向外側に向かって滑らかに増加し、最高高さ位置からライナ半径方向内側に滑らかに減少し、その下流側では大きく減少するように形成するとともに、
前記空気孔の中心軸方向をライナ半径に対して空気の流れ方向に傾斜するように形成したことを特徴とするガスタービン用燃焼器。
The combustor for a gas turbine according to claim 1,
The height shape of the protruding structure provided on the outer surface side of the outer wall increases smoothly toward the outer side in the liner radial direction on the upstream side when viewed from the air flow direction, and the inner side in the liner radial direction from the highest height position. It is formed so that it decreases smoothly and greatly decreases on the downstream side,
A combustor for a gas turbine, wherein the central direction of the air hole is inclined with respect to a liner radius in an air flow direction.
JP2013135743A 2013-06-28 2013-06-28 Gas turbine combustor Active JP6178640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135743A JP6178640B2 (en) 2013-06-28 2013-06-28 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135743A JP6178640B2 (en) 2013-06-28 2013-06-28 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2015010526A true JP2015010526A (en) 2015-01-19
JP6178640B2 JP6178640B2 (en) 2017-08-09

Family

ID=52303904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135743A Active JP6178640B2 (en) 2013-06-28 2013-06-28 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JP6178640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180895A (en) * 2016-03-29 2017-10-05 三菱日立パワーシステムズ株式会社 Gas turbine combustor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133212A (en) * 1978-03-01 1979-10-16 Gen Electric Combustion device for lowwcalorific power fuel gas
JPS63135719A (en) * 1986-11-28 1988-06-08 Mitsubishi Heavy Ind Ltd Combustor
JPH0359317A (en) * 1989-07-26 1991-03-14 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Cooling structure of combustor of gas turbine
JPH07332668A (en) * 1994-06-13 1995-12-22 Hitachi Ltd Cooling structure for gas turbine combustor liner
JPH1082527A (en) * 1996-09-05 1998-03-31 Toshiba Corp Gas turbine combustor
US20100071382A1 (en) * 2008-09-25 2010-03-25 Siemens Energy, Inc. Gas Turbine Transition Duct
JP2012211749A (en) * 2011-03-31 2012-11-01 Ihi Corp Combustor for gas turbine engine and gas turbine engine
US20130086921A1 (en) * 2011-10-05 2013-04-11 General Electric Company Combustor and method for supplying flow to a combustor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133212A (en) * 1978-03-01 1979-10-16 Gen Electric Combustion device for lowwcalorific power fuel gas
JPS63135719A (en) * 1986-11-28 1988-06-08 Mitsubishi Heavy Ind Ltd Combustor
JPH0359317A (en) * 1989-07-26 1991-03-14 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Cooling structure of combustor of gas turbine
JPH07332668A (en) * 1994-06-13 1995-12-22 Hitachi Ltd Cooling structure for gas turbine combustor liner
JPH1082527A (en) * 1996-09-05 1998-03-31 Toshiba Corp Gas turbine combustor
US20100071382A1 (en) * 2008-09-25 2010-03-25 Siemens Energy, Inc. Gas Turbine Transition Duct
JP2012211749A (en) * 2011-03-31 2012-11-01 Ihi Corp Combustor for gas turbine engine and gas turbine engine
US20130086921A1 (en) * 2011-10-05 2013-04-11 General Electric Company Combustor and method for supplying flow to a combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180895A (en) * 2016-03-29 2017-10-05 三菱日立パワーシステムズ株式会社 Gas turbine combustor

Also Published As

Publication number Publication date
JP6178640B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
US9435536B2 (en) Gas turbine combustor equipped with heat-transfer device
US9249977B2 (en) Combustor with acoustic liner
CN103422990A (en) Cooling system and method for turbine system
US8438856B2 (en) Effusion cooled one-piece can combustor
US8490399B2 (en) Thermally isolated wall assembly
JP2018096376A (en) Vane cooling structure
JP6263365B2 (en) Gas turbine blade
US10837365B2 (en) Combustor panel, combustor, combustion device, gas turbine, and method of cooling combustor panel
JP2015075118A (en) Arrangement for cooling component in hot gas path of gas turbine
CN104613498B (en) Gas turbine combustor
US20160047312A1 (en) Gas turbine system
JP2015114097A (en) Wake reducing structure for turbine system
WO2012157498A1 (en) Gas turbine engine
CA2937405C (en) Cooling passages in a turbine component
US9400111B2 (en) Gas turbine combustor and gas turbine
JP2014227841A (en) Cooling structure of turbine blade
CN202419699U (en) Multi-inclined-hole flame tube wall plate, flame tube and gas turbine combustion chamber
US20100257863A1 (en) Combined convection/effusion cooled one-piece can combustor
JP6178640B2 (en) Gas turbine combustor
JP2017129107A (en) Exhaust frame
CN202813442U (en) Head level spacing sleeve of gas turbine combustor and gas turbine combustor
JP2013528738A5 (en)
JP6934350B2 (en) gas turbine
JP2016031032A (en) Cylinder head for internal combustion engine
JP6113586B2 (en) Condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170714

R150 Certificate of patent or registration of utility model

Ref document number: 6178640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250