JPS5872822A - Cooling structure for gas turbine combustor - Google Patents

Cooling structure for gas turbine combustor

Info

Publication number
JPS5872822A
JPS5872822A JP17006381A JP17006381A JPS5872822A JP S5872822 A JPS5872822 A JP S5872822A JP 17006381 A JP17006381 A JP 17006381A JP 17006381 A JP17006381 A JP 17006381A JP S5872822 A JPS5872822 A JP S5872822A
Authority
JP
Japan
Prior art keywords
wall
cooling
air
combustor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17006381A
Other languages
Japanese (ja)
Inventor
Akira Ozaka
尾坂 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17006381A priority Critical patent/JPS5872822A/en
Publication of JPS5872822A publication Critical patent/JPS5872822A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Abstract

PURPOSE:To improve cooling performance, by so constituting that inflow air between a casing and an external wall is led from an air opening of the external wall to an internal wall and a part of the air is led to a linear from an exhaust hole of an impinging part, in joint cooling of impingement cooling with film cooling. CONSTITUTION:Air flowed in a gap between a casing not illustrated in a sketch and an external wall 15 of a combustor from a compressor is spouted 12 from an air hole 8 for cooling toward an inner wall 16 and is run against the inner wall 16. The air is expanded radially centering around this colliding point and a part of the air is exhausted 18 within a liner from an exhaust hole 17 of the center part of the colliding part. With this, as for a jet flow 11 a flow between colliding parts is improved and thermal transfer rate is improved. The inside of the inner wall 16 is cooled from open ends of a turbine side of the external wall 15 and the inner wall 16 by a filmlike exhaust flow 13 of cooling air which has completed impingement cooling. With this constitution, cooling performance can be improved.

Description

【発明の詳細な説明】 本発明はインピンジメント冷却とフィルム冷却とを併用
する冷却構造に係り、特に、ガスタービン燃焼器に好適
な冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling structure that uses both impingement cooling and film cooling, and particularly to a cooling structure suitable for a gas turbine combustor.

近年、ガスタービンは効率向上を1指して燃焼ガスの温
度を高くする傾向にある。しかし、燃焼器の温度は使用
する材料の寿命や強度の点から決まる許容限度以下に保
たなければならない。そのため、燃焼器には何らかの方
法で冷却が施されており、これ1でに種々の冷却技術が
開発され、現在も盛んに研究が行われている。燃焼器の
冷却は、圧縮機からケーシングと燃焼器との間に流入し
た空気を用いて、対流冷却、フィルム冷却、インピンジ
メント冷却等の様々な冷却方法によって行われている。
In recent years, there has been a trend in gas turbines to increase the temperature of combustion gas in order to improve efficiency. However, the temperature of the combustor must be kept below acceptable limits determined by the longevity and strength of the materials used. Therefore, the combustor is cooled by some method, and various cooling techniques have been developed and are still being actively researched. The combustor is cooled by various cooling methods such as convection cooling, film cooling, and impingement cooling using air that flows from the compressor between the casing and the combustor.

なかでも、インピンプメント冷却とフィルム冷却とを併
用する冷却構造は燃焼ガス温度の上昇に伴って使用され
る方向にある。
Among these, cooling structures that use impingement cooling and film cooling in combination are being used as the temperature of combustion gas increases.

インピンジメント冷却とフィルム冷却とを併用した燃焼
器の構造を第1図に示す。第1図ではライナにのみイン
ピンジメント冷却とフィルム冷却とを併用した冷却構造
を適用しであるが、l・ランジションピースにも同様に
して適用できる。圧縮機1で加圧された空気はティフユ
ーザ2を通ってケーシング3とトランジションピース4
との間に流入する。ここでトランジションピース4のイ
ンピンジメント冷却あるいはフィルム冷却用の空気を除
いて大部分の空気けトランジションピース4の外側を強
制対流冷却し、ケーシング3とライナ5によって形作ら
れる環状空間に流れ込む。ライす5には希釈用空気孔6
.燃焼用空気孔7.冷却用空気孔8が多数あけられてお
り、環状空間の空気はこれらの穴への分岐を繰り返しな
がら燃料ノズル9に到達する。ライナ5内では燃料ノズ
ル9から噴射される燃料と空気とが混合し、燃焼が行な
われる。燃焼ガスは冷却用や希釈用の空気と混合し、所
定の温度、圧力となって;・ランジションピース4から
タービン10に供給される。インビンジメント冷却とフ
ィルム冷却とを併用する冷却構造を拡大して示したのが
第2図である。外壁15は階段状に作られており、その
内側に外壁15と間隔を隔てて、平行に内壁1Gが設け
られている。外壁16とケーシング3から成る空間に流
入した空気は外壁15にあけられた多数の冷却用空気孔
8から内壁16に向かって噴流12となって噴出され、
内壁16に衝突した後、外v1″c15と内壁16の間
を燃オ・1ノズル1則からタービン側に向かって流れ、
タービン側の開放端からライナ内へ放出される。この放
出流13はフィルム状となって、次の内壁16に沿って
流れ、高4.11の燃焼ガスと内壁16とを隔離し、か
つ、内壁16を冷却する。つまり、高温の燃焼ガスから
多くの熱を受ける内壁16は外側をインビンジメント冷
却、内側をフィルム冷却されている。
Figure 1 shows the structure of a combustor that uses both impingement cooling and film cooling. In FIG. 1, a cooling structure using both impingement cooling and film cooling is applied only to the liner, but it can be similarly applied to the l/transition piece. The air pressurized by the compressor 1 passes through the tiff user 2 to the casing 3 and transition piece 4.
flows between. Here, except for the air for impingement cooling or film cooling of the transition piece 4, most of the outside of the air transition piece 4 is forcedly cooled by convection, and the air flows into the annular space formed by the casing 3 and the liner 5. Air hole 6 for dilution in rice 5
.. Combustion air hole7. A large number of cooling air holes 8 are provided, and the air in the annular space reaches the fuel nozzle 9 while repeatedly branching into these holes. Inside the liner 5, fuel injected from the fuel nozzle 9 and air mix, and combustion occurs. The combustion gas is mixed with air for cooling and dilution, and is supplied to the turbine 10 from the transition piece 4 at a predetermined temperature and pressure. FIG. 2 is an enlarged view of a cooling structure that uses both impingement cooling and film cooling. The outer wall 15 is made in the shape of a step, and an inner wall 1G is provided in parallel to the outer wall 15 at a distance from the outer wall 15. The air that has flowed into the space formed by the outer wall 16 and the casing 3 is blown out as a jet 12 toward the inner wall 16 from a large number of cooling air holes 8 formed in the outer wall 15.
After colliding with the inner wall 16, it flows between the outer v1''c15 and the inner wall 16 from the combustion engine 1 nozzle 1 rule toward the turbine side,
It is discharged into the liner from the open end on the turbine side. This discharge stream 13 flows in the form of a film along the next inner wall 16, separating the combustion gases of height 4.11 from the inner wall 16 and cooling the inner wall 16. In other words, the inner wall 16, which receives a lot of heat from the high-temperature combustion gas, is impingement-cooled on the outside and film-cooled on the inside.

インビンジメント冷却の一個の空気孔8についてみると
、空気孔8から噴出した冷却空気は噴流12となって内
壁16に衝突し、その後、よどみ点を中心に内壁16に
沿って放射状に広がる。このため、よどみ点の付近では
高速な流れとなり、温度境界層の発達も少ないため高い
熱伝達率が得られるが、よどみ点から遠ざかるにつれて
、流速が遅くなり、熱伝達率も悪くなる。この結果、内
壁16の冷却は不均一となり、内壁16の温度は、噴流
12の衝突部で低く、噴流12の衝突部と衝突部の間で
高くなる。インピンジメント冷却の空気孔の代表的な配
列である基盤目配列と千鳥目配のときの内壁の温度分布
を第3図と第4図にそれぞれ示す。このような冷却の不
均一に起因する燃焼器の温度の不均一は、燃焼器の最高
温度の部分を材料の許容限度以下に押えるのに必要な冷
却空気量の増大、すなわち、タービンの効率低下を招く
し、熱応力の原因ともなり、ノ、1命や信頼性の低下を
もたらす。
Regarding one air hole 8 for impingement cooling, the cooling air ejected from the air hole 8 becomes a jet stream 12 that collides with the inner wall 16, and then spreads radially along the inner wall 16 centering on the stagnation point. Therefore, near the stagnation point, the flow becomes high speed and there is little development of a temperature boundary layer, resulting in a high heat transfer coefficient, but as the distance from the stagnation point increases, the flow velocity slows and the heat transfer coefficient deteriorates. As a result, the cooling of the inner wall 16 becomes non-uniform, and the temperature of the inner wall 16 is lower at the impingement portion of the jet 12 and higher between the impingement portions of the jet 12. Figures 3 and 4 respectively show the temperature distribution on the inner wall when the air holes are arranged in a base pattern and in a staggered pattern, which are typical arrangements of air holes for impingement cooling. Non-uniform combustor temperature due to such non-uniform cooling results in an increase in the amount of cooling air required to keep the hottest part of the combustor below material tolerance limits, which reduces turbine efficiency. It also causes thermal stress, resulting in loss of life and reduced reliability.

本発明の目的はインピンジメント冷却とフィルム冷却を
併用し、制用孔周辺の流わを義勇し、熱伝達率を高くす
ることにより冷却性能を向上させたガスタービン燃焼器
の冷却構造を提供するにある。
An object of the present invention is to provide a cooling structure for a gas turbine combustor that uses both impingement cooling and film cooling to improve cooling performance by increasing the flow around the control hole and increasing the heat transfer coefficient. It is in.

本発明の特徴は燃焼器の内壁の温度の高くなる噴流の衝
突部と衝突部の真ん中に穴をあけ、jlf来タービン側
の開放端から放出していた冷却空気の一部を排出するこ
とにより、流れが遅く、熱伝達率の悪い噴流の衝突部と
衝突部の間の流れをよくし、熱伝達率を高くする点にあ
る。
The feature of the present invention is that a hole is made in the middle of the collision part of the jet flow where the temperature of the inner wall of the combustor becomes high, and a part of the cooling air that was previously released from the open end on the turbine side is discharged. The purpose of this method is to improve the flow between the colliding parts of the jet stream, which has a slow flow and poor heat transfer coefficient, and to increase the heat transfer coefficient.

本発明の実施例群を沃5ないし第7図により説明する。Embodiments of the present invention will be explained with reference to FIGS. 5 to 7.

第5図でインビンジメント冷却とフィルム冷却とを併用
する冷却41゛り造の燃焼器の外壁15は階段状に作ら
れており、その内側に外A1.γ15と間隔を隔てて平
行に内壁16が設けられている。
In FIG. 5, the outer wall 15 of the combustor, which uses a combination of impingement cooling and film cooling, has a stepped structure, and the outer wall 15 has an outer wall 15 on the inside. An inner wall 16 is provided parallel to and spaced apart from γ15.

外壁15には適当な間隔で多数の冷却用空気孔8があけ
られ、圧縮機からケーシングと外壁15の間に流入した
空気が、この冷却用空気孔8から内壁16に向かって噴
出する。内壁16には外壁15にあけられた冷却用空気
孔8に対応して噴流12の衝突部と衝突部の真ん中に排
出孔17があけられている。外壁15の冷却用空気孔8
が基盤目配置、千鳥目配置のときの排出孔17の配置d
をそれぞれ第6図、第7図に示す。
A large number of cooling air holes 8 are formed in the outer wall 15 at appropriate intervals, and air flowing from the compressor between the casing and the outer wall 15 is blown out from the cooling air holes 8 toward the inner wall 16. In the inner wall 16, a discharge hole 17 is formed in correspondence with the cooling air hole 8 formed in the outer wall 15, between the collision parts of the jet stream 12 and the middle of the collision part. Cooling air hole 8 in outer wall 15
Arrangement d of the discharge holes 17 when is the base pattern arrangement and the staggered arrangement
are shown in FIGS. 6 and 7, respectively.

この冷却構造において、圧縮機からケーシングと燃焼器
の外壁15の間に流入した空気は、外壁15にあけられ
た多数の冷却用空気孔8から内壁16に向かって噴出さ
れる。内壁16の外側の冷却は、噴流12が内壁16に
衝突し、よどみ点を中心に内壁16に沿って放射状に広
がる過程で行われる。内壁16の噴流12の衝突部と衝
突部の真ん中に排出孔17をあけただめ、冷却空気の一
部がこの排出孔17からライナ内へ排出されることにな
り、噴流12の衝突部と衝突部の間の流れが改善され、
熱伝達率が高くなる。このため、内壁16の外側の冷却
性能は、噴流12の衝突部と衝突部の間の熱伝達率が高
くなった分だけ良好となる。内壁16の内側の今回jは
、外壁15と内壁16のタービン側の開放端からインピ
ンジメンI・冷却を終えた冷却空気がフィルム状の放出
流13となって、次の内壁16に沿って流れ、高温の燃
焼ガスと内壁16とを隔離するとともに、内壁16から
熱を奪うことによって行われる。JJI出孔17から排
出流18となってライナ内へ排出された一部を除き、大
部分の冷却空気H1、従来と同様に、開放端からフィル
ム状の放出流13となって次の内壁16に沿って流れ、
捷た制用孔17から1ノ1出流18となってライナ内へ
出た空気もフィルム冷却に使用されるので、冷却性能に
はほとんど悪影響を与えない。この結果、本発明の冷却
構造では少ない冷却空気量で温度分布が一様分布に近い
冷却性能のよい冷却効果が得られる。
In this cooling structure, air flowing from the compressor between the casing and the outer wall 15 of the combustor is blown out toward the inner wall 16 from a large number of cooling air holes 8 formed in the outer wall 15. Cooling of the outside of the inner wall 16 occurs in the process in which the jet stream 12 impinges on the inner wall 16 and spreads radially along the inner wall 16 with the stagnation point as the center. A discharge hole 17 is provided in the inner wall 16 between the collision part of the jet 12 and the collision part, and a part of the cooling air is discharged from this discharge hole 17 into the liner and collides with the collision part of the jet 12. Improved flow between departments,
Heat transfer coefficient increases. Therefore, the cooling performance of the outer side of the inner wall 16 is improved by the increase in the heat transfer coefficient between the collision parts of the jet flow 12. This time j inside the inner wall 16, the cooling air that has finished impingement I and cooling from the open ends of the outer wall 15 and the inner wall 16 on the turbine side becomes a film-like discharge flow 13 and flows along the next inner wall 16. This is done by isolating the high temperature combustion gas from the inner wall 16 and removing heat from the inner wall 16. Except for a part that is discharged from the JJI outlet 17 into the liner as a discharge stream 18, most of the cooling air H1 becomes a film-like discharge stream 13 from the open end and flows to the next inner wall 16, as in the conventional case. flows along the
Since the air that flows into the liner as a 1-in-1 outflow 18 from the cut-off control hole 17 is also used for film cooling, it has almost no adverse effect on the cooling performance. As a result, in the cooling structure of the present invention, a good cooling effect with a temperature distribution close to a uniform distribution can be obtained with a small amount of cooling air.

第8図、第9図は内壁16において、噴流12の衝突部
と衝突部の真ん中に中空の円柱19を設けたものである
。この構造では、円柱の中空部からライナ内へ冷却空気
を1ノ1出し、流J′1.を良くし、熱伝達率を高くす
るとともに、伝熱面積の増大による冷却性能の向上が行
われ良好な冷却性能が得られる。
In FIGS. 8 and 9, a hollow cylinder 19 is provided in the inner wall 16 between the collision parts of the jet flow 12 and the collision parts. In this structure, cooling air is blown out from the hollow part of the cylinder into the liner, and the flow J'1. In addition to improving the heat transfer coefficient and increasing the heat transfer area, the cooling performance is improved by increasing the heat transfer area, and good cooling performance is obtained.

本発明によれば噴流の衝突部と衝突部の間の流れを改善
することによって、高い熱伝達率を得て、冷却性能が良
くなり、少ない空気流量で高い冷却性能が得られ、その
結果ガスタービンの効率を向上させることができる。
According to the present invention, by improving the flow between the colliding parts of the jet, a high heat transfer coefficient is obtained and cooling performance is improved, and high cooling performance is obtained with a small air flow rate. Turbine efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスタービンの圧縮機と燃焼器とタービンの系
統図、第2図は従来の冷却構造を拡大した斜視図、第3
図、第4図は従来構造の燃焼器内壁の温度分布図、第5
図は本発明の一実施例である。冷却構造の斜視図、第6
図、第7図、第8図。 第9図は本発明の他の笑施例である冷却構造の鵬面図で
ある。 1・・・圧縮機%2・・・ディフューザ、3・・・ケー
シング、4・・・トランジションピース、5・・・ライ
ナ、6・・・希釈用空気孔、7・・・燃焼用空気孔、8
・・・冷却用空気孔、9・・・燃焼ノズル、10・・・
タービン、12・・・噴流、13・・・放出流、14・
・燃焼器外壁にあけられた冷却用空気孔の位置、15・
・・燃頬:器外壁、16・・・燃焼器内壁、17・・・
制用孔、18・・・1.11出流、51Jボ ロg マ l 49G ■暫 第  ろ  麿 ooo。 o、oo。 ■     ■     @    ■    O早 
7 国 /4 0    ■    OOO OOO○    ■ 茶  3  国 /4 ◎  ◎  ◎  ◎ O■   ■   Oo 早 9  閃 /4 ◎   O◎   @   ■ 0   ◎   @@@
Figure 1 is a system diagram of the gas turbine compressor, combustor, and turbine, Figure 2 is an enlarged perspective view of a conventional cooling structure, and Figure 3
Figure 4 is a temperature distribution diagram of the inner wall of a combustor with a conventional structure.
The figure shows one embodiment of the invention. Perspective view of cooling structure, No. 6
Figures 7 and 8. FIG. 9 is a perspective view of a cooling structure according to another embodiment of the present invention. 1...Compressor%2...Diffuser, 3...Casing, 4...Transition piece, 5...Liner, 6...Air hole for dilution, 7...Air hole for combustion, 8
...Cooling air hole, 9...Combustion nozzle, 10...
Turbine, 12... Jet stream, 13... Discharge stream, 14.
・Position of cooling air holes drilled in the combustor outer wall, 15・
・・Burning cheek: Outer wall of the combustor, 16... Inner wall of the combustor, 17...
Control hole, 18...1.11 outflow, 51J Borogma l 49G ■Temporary ooooo. o, oo. ■ ■ @ ■ O early
7 Country/4 0 ■ OOO OOO○ ■ Brown 3 Country/4 ◎ ◎ ◎ ◎ ○■ ■ Oo Early 9 Flash/4 ◎ ○◎ @ ■ 0 ◎ @@@

Claims (1)

【特許請求の範囲】[Claims] 1、多数の冷却用空気孔をもった外壁と、その外壁に平
行に設けられ、高温の燃焼ガスと接する内壁とからなる
燃焼器で、圧縮機からケーシングと前記外壁の間に流入
した空気を空気孔から前記内壁に向かって噴出させる冷
却構造で、前記内壁の噴流の衝突部とその衝突部の真ん
中に前記空気の一部をライナ内へ排出する排出孔を設け
たことを特徴とするガスタービン燃焼器の冷却構造。
1. A combustor consisting of an outer wall with numerous cooling air holes and an inner wall that is parallel to the outer wall and in contact with high-temperature combustion gas.The combustor uses air flowing from the compressor between the casing and the outer wall. A cooling structure in which the air is ejected from the air holes toward the inner wall, and the gas is provided with a collision part of the jet flow on the inner wall and a discharge hole in the middle of the collision part for discharging a part of the air into the liner. Turbine combustor cooling structure.
JP17006381A 1981-10-26 1981-10-26 Cooling structure for gas turbine combustor Pending JPS5872822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17006381A JPS5872822A (en) 1981-10-26 1981-10-26 Cooling structure for gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17006381A JPS5872822A (en) 1981-10-26 1981-10-26 Cooling structure for gas turbine combustor

Publications (1)

Publication Number Publication Date
JPS5872822A true JPS5872822A (en) 1983-04-30

Family

ID=15897937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17006381A Pending JPS5872822A (en) 1981-10-26 1981-10-26 Cooling structure for gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS5872822A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200025A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Gas turbine burner and its cooling method
EP0589520A1 (en) * 1992-09-24 1994-03-30 NUOVOPIGNONE INDUSTRIE MECCANICHE E FONDERIA S.p.A. Combustion system with low pollutant emission for gas turbines
US5435139A (en) * 1991-03-22 1995-07-25 Rolls-Royce Plc Removable combustor liner for gas turbine engine combustor
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
EP1104871A1 (en) * 1999-12-01 2001-06-06 Alstom Power UK Ltd. Combustion chamber for a gas turbine engine
US7900459B2 (en) 2004-12-29 2011-03-08 United Technologies Corporation Inner plenum dual wall liner
CH703657A1 (en) * 2010-08-27 2012-02-29 Alstom Technology Ltd Method for operating a burner arrangement and burner arrangement for implementing the process.
WO2014055887A2 (en) 2012-10-04 2014-04-10 United Technologies Corporation Gas turbine engine combustor liner
EP2770260A3 (en) * 2013-02-26 2015-09-30 Rolls-Royce Deutschland Ltd & Co KG Impact effusion cooled shingle of a gas turbine combustion chamber with elongated effusion bore holes
US9249977B2 (en) 2011-11-22 2016-02-02 Mitsubishi Hitachi Power Systems, Ltd. Combustor with acoustic liner
EP2292977A3 (en) * 2009-07-22 2016-05-18 Rolls-Royce plc Cooling arrangement for a combustion chamber

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200025A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Gas turbine burner and its cooling method
US5435139A (en) * 1991-03-22 1995-07-25 Rolls-Royce Plc Removable combustor liner for gas turbine engine combustor
EP0589520A1 (en) * 1992-09-24 1994-03-30 NUOVOPIGNONE INDUSTRIE MECCANICHE E FONDERIA S.p.A. Combustion system with low pollutant emission for gas turbines
US5381652A (en) * 1992-09-24 1995-01-17 Nuovopignone Combustion system with low pollutant emission for gas turbines
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
EP1104871A1 (en) * 1999-12-01 2001-06-06 Alstom Power UK Ltd. Combustion chamber for a gas turbine engine
JP2001227359A (en) * 1999-12-01 2001-08-24 Alstom Power Uk Ltd Combustion chamber for gas turbine engine
US7900459B2 (en) 2004-12-29 2011-03-08 United Technologies Corporation Inner plenum dual wall liner
EP2292977A3 (en) * 2009-07-22 2016-05-18 Rolls-Royce plc Cooling arrangement for a combustion chamber
CH703657A1 (en) * 2010-08-27 2012-02-29 Alstom Technology Ltd Method for operating a burner arrangement and burner arrangement for implementing the process.
EP2423599A3 (en) * 2010-08-27 2013-07-31 Alstom Technology Ltd Method for operating a burner arrangement and burner arrangement for implementing the method
US9157637B2 (en) 2010-08-27 2015-10-13 Alstom Technology Ltd. Burner arrangement with deflection elements for deflecting cooling air flow
JP2012047443A (en) * 2010-08-27 2012-03-08 Alstom Technology Ltd Method of operating burner arrangement and burner arrangement for implementing the same
US9249977B2 (en) 2011-11-22 2016-02-02 Mitsubishi Hitachi Power Systems, Ltd. Combustor with acoustic liner
WO2014055887A2 (en) 2012-10-04 2014-04-10 United Technologies Corporation Gas turbine engine combustor liner
EP2904236A4 (en) * 2012-10-04 2015-12-09 United Technologies Corp Gas turbine engine combustor liner
US10107497B2 (en) 2012-10-04 2018-10-23 United Technologies Corporation Gas turbine engine combustor liner
EP2770260A3 (en) * 2013-02-26 2015-09-30 Rolls-Royce Deutschland Ltd & Co KG Impact effusion cooled shingle of a gas turbine combustion chamber with elongated effusion bore holes
US9518738B2 (en) 2013-02-26 2016-12-13 Rolls-Royce Deutschland Ltd & Co Kg Impingement-effusion cooled tile of a gas-turbine combustion chamber with elongated effusion holes

Similar Documents

Publication Publication Date Title
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
US11085644B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
US4573865A (en) Multiple-impingement cooled structure
US7097418B2 (en) Double impingement vane platform cooling
US6428273B1 (en) Truncated rib turbine nozzle
US4526226A (en) Multiple-impingement cooled structure
KR100570149B1 (en) Gas turbine steam cooled vane
US6629817B2 (en) System and method for airfoil film cooling
US20030223862A1 (en) Methods and apparatus for cooling gas turbine engine nozzle assemblies
JPS58126402A (en) Aerofoil which can be cooled
US11773729B2 (en) Component for a gas turbine engine with a film hole
JP2015083916A (en) Transition duct assembly with modified trailing edge in turbine system
JPS5872822A (en) Cooling structure for gas turbine combustor
US9885245B2 (en) Turbine nozzles and cooling systems for cooling slip joints therein
US7011492B2 (en) Turbine vane cooled by a reduced cooling air leak
JPH0415378B2 (en)
US9988932B2 (en) Bi-cast turbine nozzles and methods for cooling slip joints therein
US20060039786A1 (en) Airfoil cooling passage trailing edge flow restriction
US6544001B2 (en) Gas turbine engine system
KR102433516B1 (en) Nozzle cooling system for a gas turbine engine
US10344599B2 (en) Cooling passage for gas turbine rotor blade
JPH08327064A (en) Gas turbine combustion device
JPH07332668A (en) Cooling structure for gas turbine combustor liner
JP7168926B2 (en) Film cooling structure
JP6767901B2 (en) Turbine blades and gas turbines equipped with them