JPH0544494A - Cooling method for high temperature section of gas turbine - Google Patents
Cooling method for high temperature section of gas turbineInfo
- Publication number
- JPH0544494A JPH0544494A JP20283591A JP20283591A JPH0544494A JP H0544494 A JPH0544494 A JP H0544494A JP 20283591 A JP20283591 A JP 20283591A JP 20283591 A JP20283591 A JP 20283591A JP H0544494 A JPH0544494 A JP H0544494A
- Authority
- JP
- Japan
- Prior art keywords
- gas turbine
- steam
- high temperature
- boiler
- compressed air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水蒸気を利用したガス
タービン高温部の冷却方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a high temperature part of a gas turbine using steam.
【0002】[0002]
【従来の技術】図4に従来のガスタービン高温部の冷却
方法の一例を示す。軸流空気圧縮機1を出た高圧の圧縮
空気は、ガスタービンの燃焼器2を経てタービン3を駆
動するが、その一部は外部に抽出され、空気冷却器4、
空気ろ過器5を経てタービンロータに流入し、タービン
ディスク及び動翼の冷却に供されている。2. Description of the Related Art FIG. 4 shows an example of a conventional method for cooling a high temperature part of a gas turbine. The high-pressure compressed air that has exited the axial-flow air compressor 1 drives the turbine 3 via the combustor 2 of the gas turbine, but part of it is extracted outside and the air cooler 4,
It flows into the turbine rotor through the air filter 5 and is used for cooling the turbine disk and the moving blades.
【0003】また圧縮機1の中間段から抽出された複数
段(図では3段)の中圧空気は、そのままタービンの中
間段に導入され、タービン静翼の冷却に供されている。The intermediate pressure air of a plurality of stages (three stages in the figure) extracted from the intermediate stage of the compressor 1 is directly introduced into the intermediate stage of the turbine and is used for cooling the turbine vanes.
【0004】[0004]
【発明が解決しようとする課題】前記の従来のガスター
ビン高温部の冷却方法においては、次のような問題点が
あった。The above-described conventional method for cooling the high temperature part of the gas turbine has the following problems.
【0005】1.空気冷却器では水又は空気等によって
圧縮機吐出空気が冷却されるが、冷却によってえられた
熱は水又は空気等に持ち去られ、利用されることなく系
外へ放出されていた。1. In the air cooler, the air discharged from the compressor is cooled by water or air, but the heat obtained by the cooling is carried away by the water or air and released to the outside of the system without being used.
【0006】2.ガスタービン燃焼器は、ガスタービン
高温化と共にその壁温が上昇し、寿命が短かくなるおそ
れがある。2. The wall temperature of the gas turbine combustor rises as the temperature of the gas turbine rises, and the life of the gas turbine combustor may be shortened.
【0007】本発明は、以上の問題点を解決することが
できるガスタービン高温部の冷却方法を提供しようとす
るものである。The present invention is intended to provide a method for cooling a high temperature part of a gas turbine which can solve the above problems.
【0008】[0008]
【課題を解決するための手段】1.本発明のガスタービ
ン高温部の冷却方法は、空気圧縮器からの圧縮空気を冷
却器において冷却したのちガスタービン高温部の冷却に
供するガスタービンにおいて、前記圧縮空気によって水
蒸気を発生するボイラを前記冷却器とし、同ボイラで発
生した水蒸気をガスタービン高温部へ導入するようにし
た。[Means for Solving the Problems] 1. A method for cooling a high temperature part of a gas turbine according to the present invention is a gas turbine that cools compressed air from an air compressor in a cooler and then cools a high temperature part of a gas turbine, wherein a boiler that generates steam by the compressed air is cooled The steam generated in the boiler was introduced into the high temperature part of the gas turbine.
【0009】2.本発明のガスタービン高温部の冷却方
法は、前記1の本発明において、ボイラで発生した水蒸
気を、ガスタービンの燃焼器の二重壁内に導き同二重壁
内を流して冷却を行ったのち、前記燃焼器の内部へ噴射
するようにした。2. In the method for cooling a high temperature part of a gas turbine of the present invention, in the above-mentioned first invention, steam generated in a boiler is introduced into a double wall of a combustor of a gas turbine to flow in the double wall for cooling. After that, the fuel was injected into the combustor.
【0010】[0010]
【作用】前記本発明1においては、ガスタービン高温部
を冷却する圧縮空気を冷却する際に圧縮空気より放出さ
れる熱によって、ボイラで水蒸気が発生し、この水蒸気
によってガスタービン高温部が冷却される。従って、圧
縮空気に加えて水蒸気によってガスタービン高温部の冷
却が行われ、効果的にガスタービン高温部が冷却され
る。In the first aspect of the present invention, the steam released in the boiler is generated by the heat released from the compressed air when cooling the compressed air for cooling the high temperature portion of the gas turbine, and the high temperature portion of the gas turbine is cooled by this steam. It Therefore, the high temperature portion of the gas turbine is cooled by the steam in addition to the compressed air, and the high temperature portion of the gas turbine is effectively cooled.
【0011】前記本発明2においては、前記本発明1に
おいて、ボイラで発生した水蒸気が、ガスタービンの高
温部である燃焼器の二重壁内に導かれて効果的な冷却が
行われる。According to the second aspect of the invention, in the first aspect of the invention, the steam generated in the boiler is introduced into the double wall of the combustor, which is a high temperature portion of the gas turbine, for effective cooling.
【0012】また、この水蒸気は燃焼器内に噴射される
ので、圧縮空気より得た熱が有効に燃焼器において回収
され、ガスタービンの熱効率が向上する。Further, since this steam is injected into the combustor, the heat obtained from the compressed air is effectively recovered in the combustor, and the thermal efficiency of the gas turbine is improved.
【0013】更に、燃焼器に噴射された水蒸気によっ
て、燃焼温度が低下し、NOX の発生が抑制される。Further, the steam injected into the combustor lowers the combustion temperature and suppresses the generation of NO x .
【0014】[0014]
【実施例】本発明の一実施例を図1ないし図3によって
説明する。1は軸流空気圧縮機、2はガスタービン燃焼
器で、同燃焼器2の燃焼ガスはカービン3へ導入されて
同タービン3を駆動するようになっており、また、軸流
空気圧縮機1はタービン3によって駆動されるようにな
っている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. Reference numeral 1 is an axial flow air compressor, 2 is a gas turbine combustor, the combustion gas of the combustor 2 is introduced into a carbine 3 to drive the turbine 3, and the axial flow air compressor 1 Are driven by the turbine 3.
【0015】前記軸流空気圧縮機1の中間段から抽出さ
れた複数段(図1では3段)の中圧空気は、図4に示す
場合におけると同様にタービン3の中間段に導入され、
タービン3の静翼の冷却に供されている。Intermediate pressure air of a plurality of stages (three stages in FIG. 1) extracted from the intermediate stage of the axial air compressor 1 is introduced into the intermediate stage of the turbine 3 as in the case shown in FIG.
It is used for cooling the stationary blades of the turbine 3.
【0016】前記軸流空気圧縮機1から吐出される高圧
の圧縮空気は、図1及び図3に示すように、空気ライン
21を経てボイラ6へ導入され、ボイラ6を出た圧縮空
気は、空気ろ過器5をもつ空気ライン22を経てタービ
ン3のロータに流入し、タービンディスク及び動翼の冷
却に供されている。The high-pressure compressed air discharged from the axial air compressor 1 is introduced into the boiler 6 through the air line 21 as shown in FIGS. 1 and 3, and the compressed air discharged from the boiler 6 is It flows into the rotor of the turbine 3 through an air line 22 having an air filter 5, and is used for cooling the turbine disk and the moving blades.
【0017】前記ボイラ6には、図1及び図3に示すよ
うに、水位調節弁18をもつ給水ライン24より給水が
供給され、空気ライン21より供給される圧縮空気と熱
交換して発生した水蒸気は、ドレンろ器19を経て水蒸
気ライン23に流入するようになっている。なお、図3
中、17は前記水位調節弁18を制御するボイラ6の水
面計、16はボイラ6の安全弁、25はボイラ6のブロ
ー水を排出するラインであり、また、20は水蒸気ライ
ン23に付設されたドレン弁である。As shown in FIGS. 1 and 3, the boiler 6 is supplied with water from a water supply line 24 having a water level control valve 18, and heat is generated by exchanging heat with the compressed air supplied from an air line 21. The steam flows through the drain filter 19 into the steam line 23. Note that FIG.
Among them, 17 is a water level gauge of the boiler 6 for controlling the water level control valve 18, 16 is a safety valve of the boiler 6, 25 is a line for discharging blow water of the boiler 6, and 20 is attached to a steam line 23. It is a drain valve.
【0018】前記ボイラ6からの水蒸気ライン23は、
ガスタービン燃焼器2に接続されている。ガスタービン
燃焼器2は、外筒7及びそれぞれ二重壁で構成される内
筒10と尾筒11を備え、内筒10の下流側に尾筒11
が取付けられている。8は外筒7内に設けられたヘッダ
で、同ヘッダ8に前記水蒸気ライン23が接続されてい
る。前記ヘッダ8には水蒸気配管9,9’が接続され、
同配管9,9’は、それぞれ前記内筒10と外筒11の
下流側において、二重壁内を下流側から上流側へ延びる
複数の水蒸気流溝に接続されている。The steam line 23 from the boiler 6 is
It is connected to the gas turbine combustor 2. The gas turbine combustor 2 includes an outer cylinder 7 and an inner cylinder 10 and a tail cylinder 11, each of which is composed of a double wall. The tail cylinder 11 is provided downstream of the inner cylinder 10.
Is installed. Reference numeral 8 is a header provided in the outer cylinder 7, and the water vapor line 23 is connected to the header 8. Steam pipes 9 and 9'are connected to the header 8,
The pipes 9 and 9 ′ are connected to a plurality of steam flow grooves extending from the downstream side to the upstream side in the double wall on the downstream sides of the inner cylinder 10 and the outer cylinder 11, respectively.
【0019】前記内筒10の上流側には、同内筒10の
二重壁内の水蒸気流溝を流れた水蒸気が導入され、これ
を内筒10内の一次燃焼域へ噴射する噴射マニホルド1
2が設けられている。また同噴射マニホルド12には、
前記尾筒11の二重壁内の水蒸気流溝を流れた水蒸気を
前記尾筒11の上流側から同マニホルド12へ導入する
水蒸気配管9''が接続されている。On the upstream side of the inner cylinder 10, the steam that has flowed through the steam flow grooves in the double wall of the inner cylinder 10 is introduced, and the steam is injected into the primary combustion zone in the inner cylinder 10 by the injection manifold 1.
Two are provided. The injection manifold 12 also has
A steam pipe 9 ″ for introducing the steam flowing through the steam flow groove in the double wall of the transition piece 11 into the manifold 12 from the upstream side of the transition piece 11 is connected.
【0020】なお、図2において、15は前記外筒7に
取付けられ、上流側から内筒10内へ燃料を噴射する燃
料ノズル、13は内筒10内の上流側において同燃料ノ
ズルの先端部を取囲んで設けられたスワーラ、14は同
スワーラ13の先端に設けられたフレームホルダであ
り、26はタービンロータ冷却空気の配管であり、白抜
き矢印は空気の流れを、黒矢印は水蒸気の流れをそれぞ
れ示す。In FIG. 2, 15 is a fuel nozzle attached to the outer cylinder 7 and injecting fuel into the inner cylinder 10 from the upstream side, and 13 is a tip portion of the fuel nozzle on the upstream side in the inner cylinder 10. A swirler provided to surround the swirler, 14 is a frame holder provided at the tip of the swirler 13, 26 is a turbine rotor cooling air pipe, a white arrow indicates an air flow, and a black arrow indicates steam. The flow is shown respectively.
【0021】本実施例では、軸流空気圧縮機1から吐出
される高圧の圧縮空気は、空気ライン21を通ってボイ
ラ6へ入り、同ボイラ6で冷却され、図4に示す従来の
場合と同様に、空気ろ過器5を経て空気ライン22を通
ってタービン3のロータ部へ流入して冷却を行う。一
方、ボイラ6においては、前記高圧空気と熱交換して水
蒸気が発生し、発生した水蒸気は、水蒸気ライン23を
通ってガスタービン燃焼器2へ導かれる。In this embodiment, the high-pressure compressed air discharged from the axial air compressor 1 enters the boiler 6 through the air line 21 and is cooled by the boiler 6, which is different from the conventional case shown in FIG. Similarly, it flows through the air filter 5 and the air line 22 into the rotor portion of the turbine 3 for cooling. On the other hand, in the boiler 6, heat is exchanged with the high-pressure air to generate steam, and the steam thus generated is guided to the gas turbine combustor 2 through the steam line 23.
【0022】水蒸気ライン23を通った水蒸気は、ガス
タービン燃焼器2のヘッダ8へ入り、更に、水蒸気配管
9を経て内筒10の下流側から二重壁内の水蒸気流溝
へ、水蒸気配管9’を経て尾筒11の下流側から二重壁
内の水蒸気流溝へ導入される。The steam passing through the steam line 23 enters the header 8 of the gas turbine combustor 2, and further passes through the steam pipe 9 from the downstream side of the inner cylinder 10 to the steam flow groove in the double wall, and the steam pipe 9 ', And is introduced into the steam flow groove in the double wall from the downstream side of the transition piece 11.
【0023】前記水蒸気は、内筒10の二重壁内の水蒸
気流溝内を下流側から上流側へ流れて噴射マニホルド1
2へ導入され、この間に内筒10を冷却する。また、前
記水蒸気は尾筒11の二重壁内の水蒸気流溝内を下流側
から上流側へ流れて、この間に尾筒11を冷却した上、
水蒸気配管9''を経て噴射マニホルド12へ導入され
る。The water vapor flows from the downstream side to the upstream side in the water vapor flow groove in the double wall of the inner cylinder 10 and the injection manifold 1
2 is introduced to cool the inner cylinder 10 during this period. In addition, the water vapor flows from the downstream side to the upstream side in the water vapor flow groove in the double wall of the transition piece 11, and cools the transition piece 11 during this period.
It is introduced into the injection manifold 12 via a steam line 9 ″.
【0024】以上のようにして噴射マニホルド12へ導
入された水蒸気は、噴射マニホルド12から内筒10の
一次燃焼域内へ噴射される。従って、水蒸気のもつ熱は
内筒10内に回収されることゝなり、また、水蒸気の噴
射によって燃焼温度を低下させてNOX の発生が抑制さ
れる。The water vapor introduced into the injection manifold 12 as described above is injected from the injection manifold 12 into the primary combustion region of the inner cylinder 10. Therefore, heat of steamゝwill be recovered in the inner cylinder 10, also occurs of the NO X lowers the combustion temperature by injecting water vapor is suppressed.
【0025】以上説明したように、本実施例において
は、ボイラ6によって冷却された圧縮空気によってター
ビン3のロータ部が冷却されること加えて、ボイラ6で
発生した水蒸気によって、ガスタービン燃焼器2の内筒
10と尾筒11を効果的に冷却することができる。As described above, in this embodiment, the rotor portion of the turbine 3 is cooled by the compressed air cooled by the boiler 6, and the gas turbine combustor 2 is generated by the steam generated in the boiler 6. The inner cylinder 10 and the transition cylinder 11 can be effectively cooled.
【0026】また、圧縮空気より熱を受けた水蒸気は、
内筒10と尾筒11の冷却後に内筒10内へ噴射され、
圧縮空気のもつ熱がガスタービン燃焼器2内で回収され
ることになり、ガスタービンの熱効率を向上させること
ができる。更に、内筒10内の一次燃焼域に噴射された
水蒸気は、燃焼温度を下げ、NOX の発生を抑制するこ
とができる。Further, the water vapor which receives heat from the compressed air is
After the inner cylinder 10 and the transition piece 11 are cooled, they are injected into the inner cylinder 10,
The heat of the compressed air is recovered in the gas turbine combustor 2, and the thermal efficiency of the gas turbine can be improved. Furthermore, water vapor is injected into the primary combustion zone of the inner cylinder 10 lowers the combustion temperature, it is possible to suppress the generation of NO X.
【0027】[0027]
【発明の効果】請求項1に記載の本発明は、空気圧縮器
からの圧縮空気によって、ボイラで水蒸気を発生させる
ことによって、前記圧縮空気が冷却されてガスタービン
高温部を冷却することができることに加えて、前記ボイ
ラで発生した水蒸気によってガスタービンの高温部を冷
却することができ、ガスタービン高温部の冷却を効果的
に行うことができる。According to the first aspect of the present invention, the compressed air from the air compressor is used to generate steam in the boiler, whereby the compressed air is cooled and the high temperature portion of the gas turbine can be cooled. In addition, the high temperature part of the gas turbine can be cooled by the steam generated in the boiler, and the high temperature part of the gas turbine can be effectively cooled.
【0028】請求項2に記載の本発明は、前記請求項1
に記載の本発明の効果に加えて、ボイラで発生した水蒸
気によってガスタービンの燃焼器を冷却しその寿命を長
くすることができる。The present invention according to claim 2 provides the above-mentioned claim 1.
In addition to the effect of the present invention described in (1), the steam generated in the boiler can cool the combustor of the gas turbine and prolong its life.
【0029】また、請求項2に記載の本発明は、従来系
外に放出されていた空気圧縮機から吐出される圧縮空気
の熱が、ボイラで発生する水蒸気を介してガスタービン
の燃焼器で回収されてガスタービンの熱効率を向上させ
ることができ、かつ、前記水蒸気の噴射によって同燃焼
器における燃焼温度を下げ、NOX の発生を抑制するこ
とができる。Further, in the present invention according to claim 2, the heat of the compressed air discharged from the air compressor, which is conventionally discharged to the outside of the system, is passed through the steam generated in the boiler to the combustor of the gas turbine. be recovered it is possible to improve the thermal efficiency of the gas turbine, and lowering the combustion temperature in the combustor by injection of the steam, it is possible to suppress the generation of NO X.
【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.
【図2】同実施例のガスタービン燃焼器の断面図であ
る。FIG. 2 is a cross-sectional view of the gas turbine combustor of the same embodiment.
【図3】同実施例のボイラの系統図である。FIG. 3 is a system diagram of the boiler of the same embodiment.
【図4】従来のガスタービンの高温部冷却方法の説明図
である。FIG. 4 is an explanatory diagram of a conventional method for cooling a high temperature part of a gas turbine.
1 軸流空気圧縮機 2 ガスタービン燃焼器 3 タービン 6 ボイラ 7 外筒 9,9’,9'' 水蒸気配管 10 内筒 11 尾筒 12 噴射マニホルド 1 Axial Flow Air Compressor 2 Gas Turbine Combustor 3 Turbine 6 Boiler 7 Outer Cylinder 9, 9 ', 9' 'Steam Pipe 10 Inner Cylinder 11 Tail Cylinder 12 Injection Manifold
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02C 7/18 E 7910−3G F23R 3/00 A 8503−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F02C 7/18 E 7910-3G F23R 3/00 A 8503-3G
Claims (2)
いて冷却したのちタービン高温部の冷却に供するガスタ
ービンにおいて、前記圧縮空気によって水蒸気を発生す
るボイラを前記冷却器とし、同ボイラで発生した水蒸気
をガスタービン高温部へ導入することを特徴とするガス
タービン高温部の冷却方法。1. A gas turbine which cools compressed air from an air compressor in a cooler and then cools a high temperature part of a turbine, wherein a boiler for generating steam by the compressed air is used as the cooler and is generated in the boiler. A method for cooling a high temperature part of a gas turbine, characterized in that steam is introduced into the high temperature part of the gas turbine.
ービンの燃焼器の二重壁内に導き同二重壁内を流して冷
却を行ったのち、前記燃焼器の内部へ噴射することを特
徴とする請求項1に記載のガスタービン高温部の冷却方
法。2. The steam generated in the boiler is introduced into the double wall of the combustor of the gas turbine to flow through the double wall for cooling and then injected into the combustor. The method for cooling a high temperature part of a gas turbine according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3202835A JP2984427B2 (en) | 1991-08-13 | 1991-08-13 | Cooling method of gas turbine high temperature part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3202835A JP2984427B2 (en) | 1991-08-13 | 1991-08-13 | Cooling method of gas turbine high temperature part |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0544494A true JPH0544494A (en) | 1993-02-23 |
JP2984427B2 JP2984427B2 (en) | 1999-11-29 |
Family
ID=16463983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3202835A Expired - Fee Related JP2984427B2 (en) | 1991-08-13 | 1991-08-13 | Cooling method of gas turbine high temperature part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2984427B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07301126A (en) * | 1994-04-28 | 1995-11-14 | Mitsubishi Heavy Ind Ltd | Gas turbine power generating plant |
WO1998046873A1 (en) * | 1997-04-15 | 1998-10-22 | Mitsubishi Heavy Industries, Ltd. | Cooling structure for combustor tail pipes |
US6173561B1 (en) * | 1997-02-12 | 2001-01-16 | Tohoku Electric Power Co., Inc. | Steam cooling method for gas turbine combustor and apparatus therefor |
JP2003074375A (en) * | 2001-09-04 | 2003-03-12 | Osaka Gas Co Ltd | Gas-turbine-incorporated boiler |
JP2006523294A (en) * | 2003-01-22 | 2006-10-12 | ヴァスト・パワー・システムズ・インコーポレーテッド | Reactor |
EP1967717A1 (en) * | 2007-03-07 | 2008-09-10 | Siemens Aktiengesellschaft | Gas turbine with a bypass conduit system |
EP2562369A1 (en) * | 2011-08-22 | 2013-02-27 | Alstom Technology Ltd | Method for operating a gas turbine plant and gas turbine plant for implementing the method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60137099D1 (en) | 2000-04-13 | 2009-02-05 | Mitsubishi Heavy Ind Ltd | Cooling structure for the end of a gas turbine combustor |
-
1991
- 1991-08-13 JP JP3202835A patent/JP2984427B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07301126A (en) * | 1994-04-28 | 1995-11-14 | Mitsubishi Heavy Ind Ltd | Gas turbine power generating plant |
US6173561B1 (en) * | 1997-02-12 | 2001-01-16 | Tohoku Electric Power Co., Inc. | Steam cooling method for gas turbine combustor and apparatus therefor |
WO1998046873A1 (en) * | 1997-04-15 | 1998-10-22 | Mitsubishi Heavy Industries, Ltd. | Cooling structure for combustor tail pipes |
US6220036B1 (en) | 1997-04-15 | 2001-04-24 | Mitsubishi Heavy Industries, Ltd. | Cooling structure for combustor tail pipes |
JP2003074375A (en) * | 2001-09-04 | 2003-03-12 | Osaka Gas Co Ltd | Gas-turbine-incorporated boiler |
JP2006523294A (en) * | 2003-01-22 | 2006-10-12 | ヴァスト・パワー・システムズ・インコーポレーテッド | Reactor |
EP1967717A1 (en) * | 2007-03-07 | 2008-09-10 | Siemens Aktiengesellschaft | Gas turbine with a bypass conduit system |
EP2562369A1 (en) * | 2011-08-22 | 2013-02-27 | Alstom Technology Ltd | Method for operating a gas turbine plant and gas turbine plant for implementing the method |
US9752504B2 (en) | 2011-08-22 | 2017-09-05 | Ansaldo Energia Ip Uk Limited | Method for operating a gas turbine plant and gas turbine plant for implementing the method |
Also Published As
Publication number | Publication date |
---|---|
JP2984427B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3239128B2 (en) | Gas turbine power plant and cooling method in gas turbine power plant | |
EP3091196B1 (en) | System and method for improving exhaust energy recovery | |
JP2005337261A (en) | Method and apparatus for operating gas turbine engine | |
JP3951909B2 (en) | Gas turbine combustor | |
JP3170686B2 (en) | Gas turbine cycle | |
JP2014181894A (en) | Flow sleeve for combustion module of gas turbine | |
JP2007182874A (en) | Thermal control of gas turbine engine ring for active clearance control | |
JP2004510096A (en) | Compressed air steam generator used in combustion turbine transition | |
EP1154135A3 (en) | Methods and apparatus for supplying cooling air to turbine engines | |
RU2405940C1 (en) | Turbine blade | |
CN1405438A (en) | Gas turbine and method for operating gas turbine | |
JP2013139784A (en) | Method and apparatus for operating gas turbine engine | |
JPH0544494A (en) | Cooling method for high temperature section of gas turbine | |
US10641174B2 (en) | Rotor shaft cooling | |
JPH0658167A (en) | Gas turbine device | |
JP2001107748A (en) | Gas turbine plant | |
JPH11200807A (en) | Coolant recovery type gas turbine, and its stationary blade | |
US7954324B2 (en) | Gas turbine engine | |
JP2588415Y2 (en) | gas turbine | |
JP2012145108A (en) | Apparatus and method for controlling oxygen emission from gas turbine | |
JP2006125403A (en) | Device for injecting water or steam into working medium in gas turbine facility | |
US10358979B2 (en) | Turbocooled vane of a gas turbine engine | |
JPS59160032A (en) | Gas turbine | |
JP2001500942A (en) | Device for mixing two fluid streams in a compressor | |
JPH10252497A (en) | Two fluid gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990831 |
|
LAPS | Cancellation because of no payment of annual fees |