JPS58195420A - Method of cooling power cable - Google Patents

Method of cooling power cable

Info

Publication number
JPS58195420A
JPS58195420A JP57077309A JP7730982A JPS58195420A JP S58195420 A JPS58195420 A JP S58195420A JP 57077309 A JP57077309 A JP 57077309A JP 7730982 A JP7730982 A JP 7730982A JP S58195420 A JPS58195420 A JP S58195420A
Authority
JP
Japan
Prior art keywords
oil
cable
oil passage
cooling
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57077309A
Other languages
Japanese (ja)
Inventor
正孝 望月
道雄 高岡
昭太郎 吉田
明石 一称
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP57077309A priority Critical patent/JPS58195420A/en
Publication of JPS58195420A publication Critical patent/JPS58195420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、ラジアルフロー型内部油冷式の電カケープ
ルの冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a radial flow internal oil-cooled power cable.

発明の背景を述べる。The background of the invention will be described.

r第1図、第2図」は、従来のラジアル70一型内部油
冷弐方式の説明図である。
1 and 2 are explanatory diagrams of a conventional radial 70 type internal oil cooling system.

10はケーブルの全体、12はその内部油通路、14は
導体、16は絶縁層、18は外部油通路、20はシース
である。なお、第1図においては、ケーブル10を内部
油通路12と外部油通路18だけで表わしている。
10 is the entire cable, 12 is its internal oil passage, 14 is a conductor, 16 is an insulating layer, 18 is an external oil passage, and 20 is a sheath. In FIG. 1, the cable 10 is shown only by an internal oil passage 12 and an external oil passage 18.

Aは一つの冷却区間で、通常その両端には給油接続箱2
2Aと油取り出し接続箱22Bとが設けられる。24は
冷却基地で、冷却装置26、加圧ポンプ28などを有す
る。
A is one cooling section, and there are usually two refueling junction boxes at both ends.
2A and an oil removal connection box 22B are provided. A cooling base 24 includes a cooling device 26, a pressure pump 28, and the like.

冷却基地24内において、加圧冷却された油(冷媒)は
、冷却区間Aの一端の、たとえば給油接続箱22Aにお
いて、ケーブル10の内部油通路12内に送り込まれる
。そして他端の油取り出し接続箱22Bに向って流れな
がら導体14を冷却する。
In the cooling station 24, pressurized and cooled oil (refrigerant) is fed into the internal oil passage 12 of the cable 10 at one end of the cooling section A, for example at the oil supply junction box 22A. The conductor 14 is then cooled while flowing toward the oil outlet connection box 22B at the other end.

またそれと同時に油は、絶縁層16の絶縁紙自身および
層間を半径方向に流れ(以下ラジアル70−という)、
外部油通路18に出る。7外部油通/ 路18に出た油は、たとえば内部油通路12内の油と同
方向に流れ、油取り出し接続箱22’Bにおいてケーブ
ル10外に取り出される。
At the same time, the oil flows in the radial direction (hereinafter referred to as radial 70-) through the insulating paper itself and between the layers of the insulating layer 16.
It exits to the external oil passage 18. The oil discharged to the external oil passage/path 18 flows, for example, in the same direction as the oil in the internal oil passage 12, and is taken out of the cable 10 at the oil extraction connection box 22'B.

そして冷却基地24において、再び加圧冷却されて、上
記同様にケーブル10内に送り込まれ、以下これを繰り
返す。
Then, at the cooling base 24, it is cooled under pressure again, and fed into the cable 10 in the same manner as described above, and this process is repeated thereafter.

このラジアルフロー型の冷却方式は、絶縁層16の見掛
は上の半径方向の熱抵抗を低減し、大容量の内部油冷式
ケーブルの実現を可能にする。
This radial flow type cooling system reduces the apparent radial thermal resistance of the insulation layer 16 and makes it possible to realize a high capacity internally oil-cooled cable.

しかし、このラジアルフロー型の冷却方式にも11、、
“ 次のような問題がある。  :・・。
However, this radial flow type cooling system also has 11...
“I have the following problems:...

すなわち、通常の内部油q+t、 <ラジアルフロー型
でない)に比べて、外部油通路18に相当高い温□□□
の油が大量に流れる。特に、第1図のように内部油通路
12、外部油通路18内を流れる油の方向が同じ場合は
、冷却区間Aの終りに近ずくはど、導体14の温度が上
昇するとともに、外部油通路18内の流量も温度も高く
なり、かつそれらの間の温噴差が小さくなる。その結果
導体14から半径方向に放散する熱量が少なくなって、
導体14の冷却効果が下り、そのために冷却区間Aの長
さが制限されるようにもなる。
In other words, compared to normal internal oil q + t (not radial flow type), the external oil passage 18 has a considerably higher temperature □□□
A large amount of oil flows. In particular, when the direction of the oil flowing in the internal oil passage 12 and the external oil passage 18 is the same as shown in FIG. The flow rate and temperature in the passage 18 become higher, and the temperature difference between them becomes smaller. As a result, the amount of heat dissipated in the radial direction from the conductor 14 is reduced,
The cooling effect of the conductor 14 decreases, which also limits the length of the cooling section A.

また洞道内布設ケーブルの場合は、洞道内部の温度を過
変に上昇させる恐れがある。
Furthermore, in the case of a cable installed inside a tunnel, there is a risk that the temperature inside the tunnel will rise excessively.

その結果導体14の温度より、むしろ洞道内温度によっ
て冷却区間Aの長さに制限を受ける場合も出てくる。
As a result, the length of the cooling section A may be limited by the temperature within the tunnel rather than by the temperature of the conductor 14.

一般に第7図に示したようなラジアルフロー型内部油冷
ケーブルの、ある区間の油の温度と流量の分布は、「第
3図(a)(b)Jに示したよう、1・ になっている。ご・:こては油の冷却基地24側を原点
にとり、冷却−:11地24からの冷却油を給油管を′
1・ 通して供給し、給油接続箱22Aからケーブルの   
1内部油通路内に給油したときの分布を示す。
Generally, the distribution of oil temperature and flow rate in a certain section of a radial flow type internal oil-cooled cable as shown in Figure 7 is 1. The origin of the iron is the oil cooling base 24 side, and the cooling oil from the cooling base 24 is connected to the oil supply pipe.
1. Supply the cable through the oil supply junction box 22A.
1 shows the distribution when oil is supplied into the internal oil passage.

この第3図(a)  (1:、)から、この区間内の油
の保有している。熱量は「結3図(C)」であられすこ
とができる。すなわち、外部油通路18を流れる油の流
量は、冷却基地24側に向って順次増大するため(冷却
基地近傍では内部油通路肉供給流量とほぼ等しくなる)
、その保有熱量も大きくなり、冷却基地24と給油接続
箱22A間の距離の1/3以内(冷却基地側からみて)
では、外部油通路内の油の熱量は全体の50% 以上と
なっている。
From this figure 3 (a) (1:,), oil is held within this section. The amount of heat can be expressed in "Conclusion 3 (C)". That is, since the flow rate of oil flowing through the external oil passage 18 increases gradually toward the cooling base 24 side (near the cooling base, it becomes almost equal to the internal oil passage meat supply flow rate).
, the amount of heat it possesses also increases, and is within 1/3 of the distance between the cooling base 24 and the refueling junction box 22A (as seen from the cooling base side).
In this case, the heat amount of the oil in the external oil passage is more than 50% of the total.

したがって、特にこの区間内において外部油通路内の油
を外へ取り出し冷却し、でやれば、油の保有熱量の半分
以上の保有熱量が取り出されるため、冷却効果はきわめ
て大きい。
Therefore, especially within this section, if the oil in the external oil passage is taken out to the outside and cooled, more than half of the heat held by the oil will be taken out, so the cooling effect will be extremely large.

この発明は、上記の点に着眼してなされたもので、「第
4図、第S図」のように、冷却区間A内に設けられてい
る普通接続箱30内において、油止め38を設けるとと
もに、その油止め68のすぐ近くの上流側から外部油通
路18内の油を取り出して冷却し、再び油止め38の下
流側から外部油通路18内に戻すようにしたものである
This invention has been made with attention to the above points, and as shown in "Fig. 4 and Fig. S", an oil stopper 38 is provided in the ordinary connection box 30 provided in the cooling section A. At the same time, the oil in the external oil passage 18 is taken out from the upstream side immediately near the oil stopper 68, cooled, and returned to the external oil passage 18 from the downstream side of the oil stopper 38.

実施例(第1図、第S図) 30は普通接続箱で、通常一つの冷却区間A内) に何箇所か設けられている。32は導体接続スリーブ、
34は補強絶縁層、36は接続管である。
Embodiment (Fig. 1, Fig. S) Reference numeral 30 denotes a normal connection box, which is usually provided at several locations within one cooling section A). 32 is a conductor connection sleeve;
34 is a reinforcing insulating layer, and 36 is a connecting pipe.

外部油通路18内に油止め68を設ける。これは外部油
通路18内を流れる油の流れを完全に止めるほど厳重な
ものでなくてもよい。たとえば補強絶縁層34と接続管
66との間に、リングをはめる程変のものでよい。
An oil stopper 68 is provided within the external oil passage 18. This need not be severe enough to completely stop the flow of oil within the external oil passage 18. For example, it may be so different that a ring is fitted between the reinforcing insulating layer 34 and the connecting pipe 66.

油止め68から見て、外部油通路18内の油の流れの上
流側に、油の取出し040を、また下流側に戻し口42
をそれぞれ設ける。
When viewed from the oil stopper 68, an oil outlet 040 is provided on the upstream side of the flow of oil in the external oil passage 18, and an oil return port 42 is provided on the downstream side.
are provided respectively.

44は油の冷却器で、たとえばファン46を備えた空冷
式の熱交換器からなる。
Reference numeral 44 denotes an oil cooler, for example, an air-cooled heat exchanger equipped with a fan 46.

外部油通路18内の温度の上昇した油は取出し口40か
らケーブル10の外に取り出され、冷却器44において
冷却されて、また戻し口42から外部油通路18内に戻
される。戻された油は従来同様に冷却区間Aの他端の油
止め接続箱22Bに向って流れる。
The oil whose temperature has increased in the external oil passage 18 is taken out of the cable 10 through the outlet 40, cooled in the cooler 44, and returned into the external oil passage 18 through the return opening 42. The returned oil flows toward the oil stopper connection box 22B at the other end of the cooling section A, as in the conventional case.

このような冷却部を設ける位置としては、外部油通路内
の油の流量が多くなる冷却ステーシラン側に近いなど冷
却効果は大きいが、冷却ステーションと給油接続箱のほ
ぼ中間点であってもよく、特に限定はされない。
The location where such a cooling section is provided is close to the cooling station run side where the flow rate of oil in the external oil passage is high, which will have a great cooling effect, but it may also be located approximately midway between the cooling station and the oil supply junction box. There are no particular limitations.

発明の効果 (1)外部油通路18内の油の温度が下がるので、上記
の外部油通路18内の油が高温のために生ずる問題が解
消される。特にラジアルフローケーブルでは、外部油通
路を流れる油が従来のOFケーブル等にくらべて格段に
多いので、その効果は大きい。
Effects of the Invention (1) Since the temperature of the oil in the external oil passage 18 is lowered, the above-mentioned problem caused by the high temperature of the oil in the external oil passage 18 is solved. In particular, in radial flow cables, the amount of oil flowing through the external oil passages is much larger than in conventional OF cables, so this effect is significant.

(2)普通接続箱30内において、外部油通路18内を
流れる油をケーブル10外に取り出すので、内部油通路
12内の油を取り出すのに比べてIJP+c、=*m″
″′°   謔。
(2) Since the oil flowing in the external oil passage 18 in the normal connection box 30 is taken out to the outside of the cable 10, compared to taking out the oil in the internal oil passage 12, IJP+c,=*m''
″′° 謔.

(3)ケーブルの布設ルート:(、・□中間に任意の位
置に団地などがあり、暖房や給湯のためのヒートポンプ
の熱源として使用したい要求のある場合にも応じられる
(3) Cable installation route: (,・□If there is a residential complex located somewhere in the middle and there is a request to use the cable as a heat source for a heat pump for heating or hot water supply, this can be accommodated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のラジアルフロー型内部油冷電カケープル
の冷却技術の説明図で、 第2図はそのケーブル10の拡大説明図、嬉3図(a)
(b)、(c)はそれぞれ第1図のケーブル内の油の温
度、流量、保有熱量の分布図、al1図は本発明の詳細
な説明図で、 第5図はその普通接続箱60の部分の拡大説明図。 10:ケーブル 12:内部油通路 14:導体 18:外部油通路 22A:給油接続箱 22B=油取り出し接続箱 24:冷却基地 60:普通接続、箱 ・Ill”、・ 38二油止め − 1 44:冷却器                   
1特許出願人  藤倉電線株式会社 代理人  国乎 啓次 第1f!!II 第3fljJ
Fig. 1 is an explanatory diagram of the cooling technology of a conventional radial flow type internal oil-cooled electric cable, Fig. 2 is an enlarged explanatory diagram of the cable 10, and Fig. 3 (a)
(b) and (c) are distribution diagrams of the temperature, flow rate, and retained heat of the oil in the cable shown in Figure 1, Figure al1 is a detailed explanatory diagram of the present invention, and Figure 5 is a diagram of the ordinary connection box 60. An enlarged explanatory diagram of a portion. 10: Cable 12: Internal oil passage 14: Conductor 18: External oil passage 22A: Oil supply connection box 22B = Oil removal connection box 24: Cooling base 60: Normal connection, box/Ill", 38 2 oil stops - 1 44: Cooler
1 Patent Applicant Fujikura Electric Cable Co., Ltd. Agent Kei Kuniya 1f! ! II 3rd fljJ

Claims (1)

【特許請求の範囲】 加圧冷却された絶縁油が、 冷却区間の一端からケーブルの内部油通路内に送り込ま
れて、冷却区間の他端に向って流れるとともに、絶縁層
内を半径方向に流れて外部油通路に出、外部油通路内を
流れて冷却区間の一端からケーブル外に取り出され、 再び加圧冷却されてケーブルの内部油通路内に送り込ま
れる、ラジアルフロー型内部油冷式の電カケープルの冷
却方法において、 前記冷却区間内に設けられている普通接続箱内において
、 外部油通路に油止めが設けられるとともに、その油止め
の上流側から外部油通路内を流れる油がケーブル外に取
り出され、冷却されて、前記油止めの下側において外部
油通路内に戻されるようにしたこと、 を特徴とする電カケープルの冷却方法。
[Claims] Pressurized and cooled insulating oil is fed into the internal oil passage of the cable from one end of the cooling section, flows toward the other end of the cooling section, and flows radially within the insulation layer. Radial-flow internal oil-cooled electric current flows through the external oil passage, is taken out of the cable from one end of the cooling section, is cooled under pressure again, and is sent into the internal oil passage of the cable. In the cable cable cooling method, an oil stop is provided in the external oil passage in a normal connection box provided in the cooling section, and the oil flowing in the external oil passage from the upstream side of the oil stop flows outside the cable. A method for cooling a power cable, characterized in that the power cable is taken out, cooled, and returned to an external oil passage below the oil stopper.
JP57077309A 1982-05-08 1982-05-08 Method of cooling power cable Pending JPS58195420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077309A JPS58195420A (en) 1982-05-08 1982-05-08 Method of cooling power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077309A JPS58195420A (en) 1982-05-08 1982-05-08 Method of cooling power cable

Publications (1)

Publication Number Publication Date
JPS58195420A true JPS58195420A (en) 1983-11-14

Family

ID=13630307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077309A Pending JPS58195420A (en) 1982-05-08 1982-05-08 Method of cooling power cable

Country Status (1)

Country Link
JP (1) JPS58195420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281919A (en) * 1985-10-01 1987-04-15 東京電力株式会社 Cooling method for power cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281919A (en) * 1985-10-01 1987-04-15 東京電力株式会社 Cooling method for power cable
JPH0328889B2 (en) * 1985-10-01 1991-04-22 Tokyo Denryoku Kk

Similar Documents

Publication Publication Date Title
US5979506A (en) Arrangement in a pipe bundle
US3800062A (en) Cooling method for transmission cables
CA3080220C (en) Cable assembly
JP6761829B2 (en) Superconducting cable
JPS58195420A (en) Method of cooling power cable
JPH10321055A (en) Electric wire cooling device
JPS5914313A (en) Method of cooling of cable
GB1109811A (en) Improvements in electric cable installations
JPS6281919A (en) Cooling method for power cable
US3511919A (en) Fluid-insulated power cables and joints and method of cooling
JPS6281918A (en) Cooling method for power cable
CN218548157U (en) Transformer device with parallel coolers
JPH0864041A (en) Superconducting cable
JPS6346645B2 (en)
JPH0226181Y2 (en)
JPH04241A (en) Stator winding cooler
JPH08308060A (en) Lead-sleeve method for of cable
JPS5850496B2 (en) Cooling device for conductor internal water cooling cable
JPS6122457Y2 (en)
JPS6219050Y2 (en)
JP2004199940A (en) Superconducting cable device
JPS59117442A (en) Coolant circulating device for rotary electric machine
JPS5875816A (en) Leaf winding transformer
JPS5852322B2 (en) electrical equipment
JPS58207816A (en) Cooling line for power cable