JPH0226181Y2 - - Google Patents
Info
- Publication number
- JPH0226181Y2 JPH0226181Y2 JP15744383U JP15744383U JPH0226181Y2 JP H0226181 Y2 JPH0226181 Y2 JP H0226181Y2 JP 15744383 U JP15744383 U JP 15744383U JP 15744383 U JP15744383 U JP 15744383U JP H0226181 Y2 JPH0226181 Y2 JP H0226181Y2
- Authority
- JP
- Japan
- Prior art keywords
- trough
- water
- tunnel
- cable
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
Landscapes
- Laying Of Electric Cables Or Lines Outside (AREA)
Description
[考案の技術分野]
本考案は洞道内間接冷却線路に係る。
[考案の技術的背景とその問題点]
洞道内に超高圧ケーブルを布設するには、洞道
内に設置したトラフ内下部に超高圧ケーブルを、
例えば3本俵積みのような状態で配置し、トラフ
内上部には水冷管を設置してトラフ内間接冷却を
行う。
上記のような線路の冷却設計を行う場合、温度
について種々の条件が与えられる。その一例を示
せば下記の通りである。
[Technical field of the invention] The invention relates to an indirect cooling line within a tunnel. [Technical background of the invention and its problems] In order to lay an ultra-high voltage cable inside a tunnel, the ultra-high voltage cable must be placed at the bottom of the trough installed inside the tunnel.
For example, they are arranged in three bales, and a water-cooled pipe is installed in the upper part of the trough to provide indirect cooling inside the trough. When performing a line cooling design as described above, various conditions regarding temperature are given. An example of this is as follows.
【表】
しかし乍ら、洞道内にトラフ内間接冷却の超高
圧ケーブルと併設された例えば22〜66kv級CVケ
ーブル、すなわち二次系ケーブルの通電による熱
負荷が大きい場合には次のような問題がある。
すなわち、二次系のケーブルはトラフ外に布設
されており、その冷却はトラフ内に設置した水冷
管によつてなされる。従つて、二次系のケーブル
の冷却は熱抵抗の大きなトラフを介して行われる
わけであり、冷却効率が悪く二次系ケーブルの熱
負荷によりトラフ内温度が上昇し、それを制限値
以下に保つことは困難である。
[考案の目的]
本考案は上記の事情に基きなされたもので、二
次系ケーブルの熱負荷が大きい場合に、洞道内温
度を制限値内に保持し得る洞道内間接冷却線路を
得ることを目的としている。
[考案の概要]
本考案の洞道内間接冷却線路は、洞道内のトラ
フにケーブルと共に布設した水冷管を、前記トラ
フ外に布設した二次系ケーブルの発熱による熱負
荷の大きな区域においてトラフ外に出し、これを
前記二次系ケーブルの近傍に配置したことを特徴
とする。
[考案の実施例]
第1図において、トラフ1内には図示省略のケ
ーブルと、図には1本のみが現われている2本の
水冷管2が収容されている。なお、この図におい
て3は洞道、R1,R2は二次系ケーブルの熱負荷
小の区域、R3はそれら区域にはさまれた二次系
ケーブルの熱負荷大の区域である。
而して、水冷管2は区域R3においてトラフ1
外に垂下されて二次系ケーブルに近接している。
上記の如くすることにより、負荷大なる二次系ケ
ーブルは熱抵抗の大きなトラフを介することなく
垂下した水冷管により冷却されることとなるの
で、効率よく冷却され従つて洞道内温度の上昇は
抑制される。
第2図は上記構成の本考案線路の事故時、定常
時の洞道内、導体それぞれの温度を同一水量で冷
却した従来線路のそれらと比較して示す。この図
中破線は本考案線路、点線は従来線路である。
この図から、従来線路では導体温度は制限値に
対し十分余裕があるのに洞道内温度は制限値を越
してしまつていることがわかる。これに対し、本
考案線路では従来線路よりも洞道内温度が低く保
たれていることがわかる。なお、この場合、導体
温度は従来線路よりも上昇するが制限値内にはお
さまつている。
第3図は本考案の他の実施例を示す。この実施
例は線路設計段階で二次系ケーブルの熱負荷の予
測ができない場合に適用する。この図において、
トラフ内に配置される水冷管2は或る長さの単位
水冷管2aに分割され、分割された単位水冷管2
a同志はヘッダ4で連結されている。
また、トラフ外には単位水冷管5aをヘッダ6
で連結して成る二次系ケーブル冷却用の水冷管5
が設けられ、各対向するヘッダ4,6間は連結管
7で連結されている。対向するヘッダ4,4間、
6,6間を連結する管路の連結管7、連結点の両
側および連結管7には、バルブ8,9,10,1
1,12が設けられている。
上記の構成において、連結管7のバルブ12を
閉じ、バルブ8,9を開けば、水冷水は水冷管2
内のみを流れる。一方、第3図左側の連結部の右
側のバルブ9、左側のバルブ10を閉じ、バルブ
12を開き、右側の連結部の左側のバルブ8、右
側のバルブ11を開けば、各連結点間の単位水冷
管2aには冷却水が流れず、連結部間の単位水冷
管5aに流れることとなる。なお、バルブの操作
によつて、冷却水の流れないまたは流れる単位水
冷管が複数本となるようにもできる。
従つて、線路完成後において二次系ケーブルの
熱負荷が大となつた区域において、上記のように
してトラフ外の単位水冷管に冷却水を流すように
できるので、第1図に示した実施例と同様の効果
を上げることができる。
[考案の効果]
上記から明らかなように、本考案によれば、二
次系ケーブルの熱負荷が大きい場合でも、洞道内
温度の上昇と抑制し得るので、線路安全上有益で
ある。なお、従来の線路と同様の冷却効果でよけ
れば、必要冷却水量が少くてよく、冷凍機の容量
が小さくてよいので、経済的な設備設計が可能で
ある。[Table] However, if the heat load due to the energization of a 22 to 66 kV class CV cable, i.e. a secondary cable, installed in a tunnel alongside an ultra-high voltage cable indirectly cooled in the trough, the following problems may occur. There is. That is, the secondary cable is installed outside the trough, and is cooled by a water-cooled pipe installed inside the trough. Therefore, cooling of the secondary system cable is performed via a trough with large thermal resistance, and the cooling efficiency is poor and the temperature inside the trough increases due to the heat load on the secondary system cable, and it is necessary to keep it below the limit value. It is difficult to maintain. [Purpose of the invention] The present invention was made based on the above circumstances, and aims to obtain an indirect cooling line in a tunnel that can maintain the temperature in the tunnel within a limit value when the heat load of the secondary cable is large. The purpose is [Summary of the invention] The indirect cooling line in a tunnel of the present invention connects a water-cooled pipe, which is installed together with a cable in a trough inside a tunnel, to the outside of the trough in an area where there is a large heat load due to the heat generated by the secondary cable installed outside the trough. It is characterized in that it is placed near the secondary system cable. [Embodiment of the invention] In FIG. 1, a trough 1 accommodates a cable (not shown) and two water-cooled pipes 2, only one of which is shown in the figure. In this figure, 3 is a tunnel, R 1 and R 2 are areas with a small heat load on the secondary cable, and R 3 is an area with a large heat load on the secondary cable sandwiched between these areas. Thus, the water-cooled pipe 2 is connected to the trough 1 in the area R3 .
It hangs outside and is close to the secondary cable.
By doing the above, the secondary cable, which has a large load, is cooled by the hanging water-cooled pipe without going through a trough with large thermal resistance, so it is efficiently cooled and the temperature rise in the tunnel is suppressed. be done. FIG. 2 shows a comparison between the temperature of the tunnel and the conductor of the inventive line having the above structure during an accident and during normal operation, compared with those of a conventional line cooled with the same amount of water. In this figure, the broken line is the line of the present invention, and the dotted line is the conventional line. From this figure, it can be seen that in the conventional line, although the conductor temperature has a sufficient margin with respect to the limit value, the temperature inside the tunnel exceeds the limit value. In contrast, it can be seen that the temperature inside the tunnel is kept lower in the invented line than in the conventional line. Note that in this case, the conductor temperature rises more than in the conventional line, but remains within the limit value. FIG. 3 shows another embodiment of the invention. This embodiment is applied when the heat load of the secondary cable cannot be predicted at the line design stage. In this diagram,
The water-cooled pipe 2 arranged in the trough is divided into unit water-cooled pipes 2a of a certain length, and the divided unit water-cooled pipes 2
comrades a are connected by header 4. In addition, a unit water cooling pipe 5a is installed outside the trough with a header 6.
A water-cooled pipe 5 for cooling the secondary system cable connected with
are provided, and the opposing headers 4 and 6 are connected by a connecting pipe 7. Between the opposing headers 4, 4,
There are valves 8, 9, 10, 1 on both sides of the connection point and on the connection pipe 7 of the pipeline connecting between 6 and 6.
1 and 12 are provided. In the above configuration, if the valve 12 of the connecting pipe 7 is closed and the valves 8 and 9 are opened, the water will be transferred to the water cooling pipe 2.
Flows only within. On the other hand, if valve 9 on the right and valve 10 on the left of the connection on the left in FIG. Cooling water does not flow into the unit water-cooled pipes 2a, but flows into the unit water-cooled pipes 5a between the connecting parts. In addition, by operating the valve, it is also possible to have a plurality of unit water cooling pipes in which the cooling water does not flow or flows. Therefore, in areas where the heat load on the secondary cable becomes large after the line is completed, cooling water can be made to flow into the unit water cooling pipes outside the trough as described above, so the implementation shown in Figure 1 can be used. You can achieve the same effect as in the example. [Effects of the invention] As is clear from the above, according to the present invention, even when the heat load on the secondary cable is large, the increase in temperature within the tunnel can be suppressed, which is beneficial in terms of railway safety. Note that if the cooling effect is similar to that of conventional lines, the required amount of cooling water may be small, and the capacity of the refrigerator may be small, making it possible to design the equipment economically.
第1図は本考案一実施例の概略断面図、第2図
はその効果を説明するグラフ、第3図は他の実施
例の配管図である。
1……トラフ、2……水冷管。
FIG. 1 is a schematic sectional view of one embodiment of the present invention, FIG. 2 is a graph explaining its effects, and FIG. 3 is a piping diagram of another embodiment. 1...Trough, 2...Water cooling pipe.
Claims (1)
管を、前記トラフ外に布設した二次系ケーブルの
発熱による熱負荷の大きな区域においてトラフ外
に出し、これを前記二次系ケーブルの近傍に配置
したことを特徴とする洞道内間接冷却線路。 A water-cooled pipe laid in a trough in a tunnel together with a cable is brought out of the trough in an area where there is a large heat load due to heat generated by the secondary cable laid outside the trough, and placed near the secondary cable. An indirect cooling line in a tunnel featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15744383U JPS6066226U (en) | 1983-10-12 | 1983-10-12 | Indirect cooling line in the tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15744383U JPS6066226U (en) | 1983-10-12 | 1983-10-12 | Indirect cooling line in the tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6066226U JPS6066226U (en) | 1985-05-10 |
JPH0226181Y2 true JPH0226181Y2 (en) | 1990-07-17 |
Family
ID=30347114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15744383U Granted JPS6066226U (en) | 1983-10-12 | 1983-10-12 | Indirect cooling line in the tunnel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6066226U (en) |
-
1983
- 1983-10-12 JP JP15744383U patent/JPS6066226U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6066226U (en) | 1985-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0226181Y2 (en) | ||
KR102350109B1 (en) | Non-outage cooling apparatus for heat exchange cooling of electric transformer and construction method thereof | |
WO1998001871A1 (en) | Cooling system for substation | |
DE3221848A1 (en) | Device for making the heat loss of transformers useful | |
JPH0131995Y2 (en) | ||
CN221071549U (en) | Cooling wall for blast furnace | |
JPS5937589Y2 (en) | Cooling circulating water tank | |
CN204792340U (en) | Bottom heat dissipation type transformer cooling device | |
CN111765327B (en) | High temperature pipeline insulation structure | |
JPS6141368Y2 (en) | ||
JPS5949478B2 (en) | Thermal expansion absorption device for liquid metal piping | |
JPS58184573A (en) | Cooling device for vacuum vessel of nuclear fusion device | |
JP2002184624A (en) | Self-cooling transformer | |
JPH033211A (en) | Electrical equipment with cooler | |
JP3093306B2 (en) | Emergency condenser system | |
JPS6122457Y2 (en) | ||
JPS61101012A (en) | Cooler of oil-filled electric device | |
JPH09320856A (en) | Cooling system for stationary induction apparatus | |
JPS6038261Y2 (en) | Cooling system | |
JPS6023487B2 (en) | Cooling system for oil-fed electrical equipment | |
JPS58142390U (en) | Heat exchanger for compressor | |
JPS5826517A (en) | Method of forcibly cooling power cable line | |
JPS6041209A (en) | Forced oil and air cooling type transformer | |
JPH0328888B2 (en) | ||
JPS58146799A (en) | Underground tank for storing low temperature liquefied gas |