JPS58195056A - Exhaust recirculation controlling method - Google Patents

Exhaust recirculation controlling method

Info

Publication number
JPS58195056A
JPS58195056A JP57077835A JP7783582A JPS58195056A JP S58195056 A JPS58195056 A JP S58195056A JP 57077835 A JP57077835 A JP 57077835A JP 7783582 A JP7783582 A JP 7783582A JP S58195056 A JPS58195056 A JP S58195056A
Authority
JP
Japan
Prior art keywords
egr
sensor
control
lockup
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57077835A
Other languages
Japanese (ja)
Inventor
Hiroki Matsuoka
松岡 広樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57077835A priority Critical patent/JPS58195056A/en
Publication of JPS58195056A publication Critical patent/JPS58195056A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:In an internal-combustion engine equipped with an automatic speed change gear having a lockup mechanism, to prevent the deterioration of drivability during lockup by lowering EGR upon locking up of said gear in the low speed rotary region of engine. CONSTITUTION:EGR control valve 24 provided in EGR path 23 is controlled to produce the optimal EGR in accordance to each operating parameter by means of a constant voltage controller 40 to be provided with the detected values from a suction air temperature sensor 28, throttle position sensor 29, water temperature sensor 30, O2 sensor 31, crank angle sensor 32, car speed sensor 35, etc. An electronic control section 40 will decide the speed change position and whether it is under lockup condition or not through the throttle opening and the function of a lockup device in an automatic speed change gear 36 while to lower EGR during lockup.

Description

【発明の詳細な説明】 本発明は自動変速機の入力側と出力側を直結する装置を
有する自動変速機を装備した排気環流型内燃機関の排気
環流制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust recirculation control method for an exhaust recirculation internal combustion engine equipped with an automatic transmission having a device that directly connects the input side and output side of the automatic transmission.

従来、自動変速機搭載車では動力伝達装置にトルクコン
バータを仲介しているため、エンジンの燃焼変動がトル
クコンバータに吸収されることで車両に撮動が伝達され
なくなり運転性の悪化がない。これに対して伝動系の1
に結機能を付加したダイブでは、直結時にエンジンの燃
焼変動を歯車変速機の場合と同様に受けることになる。
Conventionally, in cars equipped with automatic transmissions, a torque converter is used as an intermediary in the power transmission device, so engine combustion fluctuations are absorbed by the torque converter, so that no signal is transmitted to the vehicle, and drivability does not deteriorate. On the other hand, 1 of the transmission system
In a dive where a coupling function is added to the gearbox, when the gearbox is directly coupled, it will be subject to engine combustion fluctuations in the same way as a gear transmission.

従来の直結装置付自動変速機搭載車では、伝動系の直結
は高速時に限定されていたため、エンジンの燃焼変動も
少なく、特別な対策の必要がなかった。近年、燃費向上
対策として伝達効率の良い直結機能を低速領域あるいは
ローギヤ直結とすることが注目を集めた。このようなタ
イプでは直結時の運転性の悪化が問題となり、改善が求
められている。
In conventional vehicles equipped with automatic transmissions with direct coupling devices, direct coupling of the transmission system was limited to high speeds, so engine combustion fluctuations were small and no special measures were required. In recent years, as a measure to improve fuel efficiency, the direct coupling function with high transmission efficiency has attracted attention in the low speed range or low gear direct coupling. With these types, deterioration in drivability when directly coupled is a problem, and improvements are needed.

本発明は直結装置付自動変速機を装備した排気lla型
内燃機関の低回転域における性能を向上させるため、排
気環流量の調節を行なうもので、内燃機関の低回転域に
おいて変速機を直結する場合K、内燃機関の排気環流率
を低下させることを特徴とする排気環流制御法を提供す
る本のである。
The present invention adjusts the amount of exhaust recirculation in order to improve the performance in the low rotation range of an exhaust type internal combustion engine equipped with an automatic transmission with a direct coupling device. Case K is a book that provides an exhaust recirculation control method characterized by reducing the exhaust recirculation rate of an internal combustion engine.

以下、本発明の一実施例につぎ図によす説明する。Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明が適用される直結装置付自動変速機を装
備した燃料噴射装置付きの排気環流型内燃機関に対する
システム図である。エアクリーナ1から吸入された空気
はエアフローメータ2、絞り弁5.サージタンク4、吸
気ポート5、および吸気弁6を含む吸気通路12を介し
て内燃機関本体7の燃焼室8へ送られる。絞り弁3は運
転室の加速ペダル15に連動する。燃焼室8はシリンダ
ヘッド9、シリンダブロック10、およびピストン11
によって区画され、混合気の燃焼によって生成された排
気は排気弁15、排気ポート16、排気多岐管17、お
よび排気管18を介して大気へ放出される。吸気系バイ
パス通路21は絞v9fsの上流とサージタンク4とを
接続し、バイパス流量制御弁22は吸気系バイパス通路
21の流路哨面積を制御してアイドリング時のエンジン
回転速度を一定に維持する。窒素酸化物□の発生を抑制
するために排気を吸気系へ導く排気再循環通路弁23は
、排気多岐管17とサージタンク4とを接続し、オンオ
フ弁形式の排気再循環制御弁24は制御信号に応動して
排気再循環通路23を開閉する。
FIG. 1 is a system diagram of an exhaust recirculation internal combustion engine equipped with a fuel injection device and equipped with an automatic transmission with a direct coupling device to which the present invention is applied. The air sucked from the air cleaner 1 is passed through an air flow meter 2, a throttle valve 5. The air is sent to the combustion chamber 8 of the internal combustion engine main body 7 via an intake passage 12 that includes a surge tank 4, an intake port 5, and an intake valve 6. The throttle valve 3 is linked to an accelerator pedal 15 in the driver's cab. The combustion chamber 8 includes a cylinder head 9, a cylinder block 10, and a piston 11.
The exhaust gas produced by combustion of the air-fuel mixture is discharged to the atmosphere through an exhaust valve 15, an exhaust port 16, an exhaust manifold 17, and an exhaust pipe 18. The intake system bypass passage 21 connects the upstream side of the throttle v9fs and the surge tank 4, and the bypass flow control valve 22 controls the flow passage area of the intake system bypass passage 21 to maintain a constant engine speed during idling. . An exhaust gas recirculation passage valve 23 that guides exhaust gas to the intake system in order to suppress the generation of nitrogen oxides connects the exhaust manifold 17 and the surge tank 4, and an on-off valve type exhaust gas recirculation control valve 24 controls the The exhaust gas recirculation passage 23 is opened and closed in response to the signal.

各機関の計測はそれぞれの計測に適したセンサを配設し
て行なわれろ。吸気温センサ28はエアーフローメータ
2内に設けられて吸気温を検出する。スロットル位置セ
ンサ29は絞り弁3に設け、絞9弁3の開度な検出する
、水温センサ30はシリンダブロック10に取付け、冷
却水温度すなわち間接的にエンジン温度を検出する。酸
素濃度センサとして空燃比センサ31が排気多岐管17
の集合部に取付けられ、集合部における排気の酸素濃度
な検出する。クランク角センサ32は内燃機関本体7の
クランク軸(図示せず)に結合する配電器33に設けら
れ、配電器36の軸34の回転角から間接的にクランク
軸の角度を検出する。車速センサ35は自動変速機36
の出力幅側に設け、出力軸の回転速度を検出する。これ
らのセンサ2、28、29、30、31、32.35の
出力および蓄電池37の電圧は電子制御部40へ伝送さ
れる。電子制御部40はこれらの計測値に基づき、各部
の制御量を算出し、必要に応じた制御信号を発信する。
Measurements at each institution should be carried out by installing sensors suitable for each measurement. The intake air temperature sensor 28 is provided within the air flow meter 2 and detects the intake air temperature. A throttle position sensor 29 is installed on the throttle valve 3 to detect the opening of the throttle valve 3. A water temperature sensor 30 is installed on the cylinder block 10 to indirectly detect the cooling water temperature, that is, the engine temperature. An air-fuel ratio sensor 31 is connected to the exhaust manifold 17 as an oxygen concentration sensor.
It is attached to the collecting part of the exhaust gas and detects the oxygen concentration of the exhaust gas at the collecting part. The crank angle sensor 32 is provided on a power distributor 33 coupled to a crankshaft (not shown) of the internal combustion engine main body 7, and indirectly detects the angle of the crankshaft from the rotation angle of a shaft 34 of the power distributor 36. Vehicle speed sensor 35 is automatic transmission 36
is installed on the output width side of the output shaft to detect the rotational speed of the output shaft. The outputs of these sensors 2, 28, 29, 30, 31, 32.35 and the voltage of the storage battery 37 are transmitted to the electronic control unit 40. The electronic control section 40 calculates the control amount of each section based on these measured values, and transmits control signals as necessary.

燃料噴射系では、燃料噴射弁41が各気筒に対応して、
各吸気ポート5の近傍にそれぞれ設けられ、ポンプ42
は燃料タンク45からの燃料通路44を介して燃料噴射
弁41へ燃料を送る。電子制御部40は上記各センサか
らの入力信号をパラメータとして燃料噴射量を計算し、
算出された燃料噴射量に対応したパルス幅の電気パルス
を燃料噴射弁41へ伝送する。同様にして、電子制御部
40は、バイパス流量制御弁22、排気再循環制御弁2
4、自動変速機36の油圧制御回路用電磁弁45(第2
図、第5図)、および点火コイル46を制御する、点火
コイル46の二次側は配電433へ接続されている。
In the fuel injection system, the fuel injection valve 41 corresponds to each cylinder,
Each pump 42 is provided near each intake port 5.
sends fuel from the fuel tank 45 to the fuel injection valve 41 via the fuel passage 44. The electronic control unit 40 calculates the fuel injection amount using the input signals from each of the sensors as parameters,
An electric pulse having a pulse width corresponding to the calculated fuel injection amount is transmitted to the fuel injection valve 41. Similarly, the electronic control unit 40 controls the bypass flow control valve 22 and the exhaust recirculation control valve 2.
4. Solenoid valve 45 (second
5) and the secondary side of the ignition coil 46, which controls the ignition coil 46, is connected to a power distribution 433.

自動変速機36の直結装置として742図、第3図にブ
レーキバンド型の摩擦係合装置50を示す。自動変速機
36の油圧制御回路用電磁弁45に隣接して設けられた
変速弁51は運転室の変速レバーにより操作される手動
弁(図示せず)から圧油な送り、入力ポート52から出
力ポート53を経て油圧サーポ54の油室55へ至る圧
油を制御してブレーキバンド56を操作する。変速弁5
1には圧油の方向を制御するたメツスプール57が組込
まれ、このスプール57にはスプール57を電磁弁45
の方へ付勢するばね58が電磁弁45と反対側の1部に
取付けられている。スプール57の電磁弁45側端部は
電磁弁45のロッド59が当接し、電磁弁45が通電さ
れるとスプール57をばね58側へ押して油路を変える
As a direct connection device for the automatic transmission 36, a brake band type friction engagement device 50 is shown in FIG. 742 and FIG. A speed change valve 51 installed adjacent to a solenoid valve 45 for the hydraulic control circuit of the automatic transmission 36 receives pressurized oil from a manual valve (not shown) operated by a speed change lever in the driver's cab, and outputs it from an input port 52. The brake band 56 is operated by controlling the pressure oil flowing through the port 53 to the oil chamber 55 of the hydraulic servo 54. Speed change valve 5
1 has a built-in spool 57 for controlling the direction of pressure oil, and the spool 57 is connected to a solenoid valve 45.
A spring 58 is attached to a portion on the opposite side of the solenoid valve 45. The rod 59 of the solenoid valve 45 contacts the end of the spool 57 on the solenoid valve 45 side, and when the solenoid valve 45 is energized, the spool 57 is pushed toward the spring 58 side to change the oil path.

第2図に示すように電磁弁45が通電されてロッド59
がスプール57をばね58に抗して変位させた時、入力
ポート52と出力ポート55との接続が断たれ、油圧サ
ーポ54の油室55へ圧油が供給されず、ブレーキバン
ド56は保合状態になる。また、・再3図に示すように
電磁弁45への通電が切られると、ロッド59は電磁弁
45の中へ引込まれ、スプール57はばね58により電
磁弁45側へ移動し、入力ポート52と出力ポート53
とは接続されて、油圧サーポ54の油室55へ圧油が供
給され、ブレーキバンド56は解放状態になる。
As shown in FIG. 2, the solenoid valve 45 is energized and the rod 59
When the spool 57 is displaced against the spring 58, the input port 52 and the output port 55 are disconnected, pressure oil is not supplied to the oil chamber 55 of the hydraulic servo 54, and the brake band 56 is held. become a state. Also, as shown in Figure 3, when the power to the solenoid valve 45 is cut off, the rod 59 is retracted into the solenoid valve 45, the spool 57 is moved toward the solenoid valve 45 by the spring 58, and the input port 52 and output port 53
is connected, pressure oil is supplied to the oil chamber 55 of the hydraulic servo 54, and the brake band 56 is released.

以上のような各部の動きを制御する電子制御部40のブ
ロック図を第4図に示す。電子制御部40は、マイクロ
プロセッサからなる中央処理装置60、リードオンメモ
リ61、ランダムアクセスメモリ62、エンジン停止時
にも補助電源から給電されて記憶を保持できる不揮発性
記憶素子として別のランダムアクセスメモリ63、マル
チプレクサ付きアナログ/デジタル変換器64、および
バッファ付き人出力465が7(ス66を介して互いに
接続されている。マルチプレクサ付きアナログ/デジタ
ル変換器64にはエアフローメータ2、吸気温センナ2
B、水温センサ30、空燃比センサ31、および蓄電池
37の出力が各計測ケーブルを、介して伝送されて来る
。バッファ付き入出力器65ではスロットル位置センサ
29およびクランク角センサ32の出力がそれぞれの計
測ケーブルを介して伝送されて来るとともに、バイパス
流量制御弁22、排気再循環制御弁24、燃料噴射弁4
1、電磁弁45、および点火コイル46へ各伝送ケーブ
ルを介してて中央処理装置60からの制御命令により制
御信号を発信する。
FIG. 4 shows a block diagram of the electronic control section 40 that controls the movements of each section as described above. The electronic control unit 40 includes a central processing unit 60 consisting of a microprocessor, a read-on memory 61, a random access memory 62, and another random access memory 63 as a non-volatile memory element that can be supplied with power from an auxiliary power source and retain memory even when the engine is stopped. , a multiplexed analog-to-digital converter 64, and a buffered output 465 are connected to each other via a multiplexed analog-to-digital converter 64, an air flow meter 2, an intake air temperature sensor 2,
B, the outputs of the water temperature sensor 30, air-fuel ratio sensor 31, and storage battery 37 are transmitted via each measurement cable. In the buffered input/output device 65, the outputs of the throttle position sensor 29 and crank angle sensor 32 are transmitted via respective measurement cables, and the bypass flow control valve 22, exhaust recirculation control valve 24, and fuel injection valve 4 are also transmitted.
1. A control signal is transmitted to the solenoid valve 45 and the ignition coil 46 via each transmission cable in response to a control command from the central processing unit 60.

以下では、上記制御系による排気環流制御法の具体例と
して、自動変速機の変速位置信号を識別信号とし、吸入
空気量およびエンジン回転数を4#にして制御を行なう
方法を説明する。
Below, as a specific example of the exhaust recirculation control method using the above-mentioned control system, a method will be described in which the shift position signal of the automatic transmission is used as the identification signal, and the intake air amount and engine rotational speed are set to 4#.

本制御用プログラムでは、各計測信号の覗込みおよび制
御信号の発信を実時間処理するため、メインルーテンで
は絞り芹3の開度と電磁弁6の通電状態を入力データと
して、その結果により変速位置を判定するとともに、吸
入空気量、エンジン回転数等の各計測信号の取込み、制
御条件の設定、および演算処理を行ない、一定時間間隔
ごとに割込む、割込みルーチンでは制御条件の識別と排
気再循環制御弁への制御信号の発信を行なわせる。
In this control program, in order to process the observation of each measurement signal and the transmission of control signals in real time, the main routine uses the opening degree of the throttle valve 3 and the energization state of the solenoid valve 6 as input data, and uses the results to determine the shift position. In addition to determining the intake air amount and engine speed, it also captures various measurement signals such as intake air amount and engine speed, sets control conditions, and performs arithmetic processing, and interrupts at fixed time intervals.The interrupt routine identifies control conditions and performs exhaust gas recirculation. A control signal is sent to the control valve.

第5霞で示すようにメインルーチンでは、スタート後、
ステップ1000で吸入電気量を調節する絞り升5の開
度なスロットル位置センサ29ょ9人力し、続けてステ
ップ1010で自動変速機36の油圧制御回路用電W1
1弁45の通′It吠態を中央処理装置の主記憶装置か
ら引出す。ステップ1020では絞り弁3の開度と電磁
弁45の通電状態より自動変速機56の変速位置と直結
状態か否かを判定し、直結状態になっていればステップ
1030へ、直結状態でなければステップ1040へ分
岐する。ステップ1030では直結フラッグF1を1と
する。これに対してステップ1040では直結フラッグ
F1を0にする。その後、ステップ1050に進み、排
気環流制御の条件判定を行なう。このステップでは、例
えば水温60℃以上になっている場合に排気環流を行な
わせる場合、水温センサ50からの計測信号を判定条件
60℃により評価し、高ければステップ1060へ進み
、低ければステップ1000へ戻る。
As shown in the fifth haze, in the main routine, after the start,
In step 1000, the throttle position sensor 29, which controls the opening of the throttle box 5 that adjusts the amount of intake electricity, is manually operated, and then in step 1010, the electric power W1 for the hydraulic control circuit of the automatic transmission 36 is applied.
1 valve 45 is retrieved from the main memory of the central processing unit. In step 1020, it is determined from the opening degree of the throttle valve 3 and the energization state of the solenoid valve 45 whether or not the shift position of the automatic transmission 56 is in a direct connection state. If it is in a direct connection state, the process proceeds to step 1030; The process branches to step 1040. In step 1030, the direct connection flag F1 is set to 1. On the other hand, in step 1040, the direct connection flag F1 is set to 0. Thereafter, the process proceeds to step 1050, where conditions for exhaust gas recirculation control are determined. In this step, for example, if exhaust recirculation is to be performed when the water temperature is 60°C or higher, the measurement signal from the water temperature sensor 50 is evaluated based on the judgment condition of 60°C, and if it is high, the process proceeds to step 1060, and if it is low, the process proceeds to step 1000. return.

ステップ1060では、エアーフローメータ2から吸入
空気の流量Qと、クランク角センサ52からクランク角
ACをデータとして取込む。次にステップ1070に進
み、クランク角Acυ)受信時間を積算してエンジン回
転数Ngを算出し、さらに流量Qとエンジン回転数Ng
との比Q/Ngを計算する。次のステップ1080で(
i、排気再儂環制御弁24の制御量EGR=f(Q、N
g)につき、離散データNg、Q/NRより補間して求
め、求めた値をランダムアクセスメモリ62の記憶場所
EGRに記録する。次のステップ1090では、ステッ
プ1030またはステップ1040 で定義された直結
フラッグF1が1すなわち直結状態であるか否かを判定
し、F1=0であればステップ1100へ進み、F1=
0であればステップ1000ヘ戻る。
In step 1060, the intake air flow rate Q from the air flow meter 2 and the crank angle AC from the crank angle sensor 52 are taken in as data. Next, the process proceeds to step 1070, where the engine rotation speed Ng is calculated by integrating the crank angle Acυ) reception time, and further the flow rate Q and the engine rotation speed Ng are calculated.
Calculate the ratio Q/Ng. In the next step 1080 (
i, control amount EGR of the exhaust recirculation control valve 24 = f (Q, N
g) is determined by interpolation from the discrete data Ng, Q/NR, and the determined value is recorded in the storage location EGR of the random access memory 62. In the next step 1090, it is determined whether the direct connection flag F1 defined in step 1030 or step 1040 is 1, that is, the direct connection state, and if F1=0, the process advances to step 1100, and F1=0.
If it is 0, the process returns to step 1000.

ステップ1100では、自前変速機が直結されている場
合の排気再循環量を修正するための修正係数A(≦1)
を既存の制御量EGRに乗じ、制御量EGRを修正する
。修正後の制御量EGRを再度ランダムアクセスメモリ
62の記憶場所EGRに記録する。ステップ1100が
終了した懐はステップ1000ヘ戻り、メインルーチン
の各ステップを繰返す。
In step 1100, a correction coefficient A (≦1) is used to correct the amount of exhaust gas recirculation when the own transmission is directly connected.
is multiplied by the existing control amount EGR to correct the control amount EGR. The corrected control amount EGR is recorded again in the memory location EGR of the random access memory 62. After step 1100 is completed, the process returns to step 1000 and repeats each step of the main routine.

割込みルーチンは4ミリ秒ごとに割込みな何なう。割込
みが行なわれた場合、第6川に示すようにまずステップ
2010で制御時間を算出するためEGRカウンタEC
に1を加算する。次にステップ2020でECがあらか
じめ設定された係数Bとの大小を判定する。ECがBよ
り小さければステップ2050ヘジャンプし、ECがB
以上になっていればステップ2030へ進む。ステップ
2030ではECを0に戻し、ステップ2040で制御
フラッグF2を1にする。ステップ2050では制御フ
ラッグF2が1であるが否が、すなわち排気再循環量の
調節を行なう時間に達したか否かを判定し、F2=1で
あればステップ2060へ進み、F2=0であればメイ
ンルーチンへ戻る。ステップ2060−ではランダムア
クセスメモリEGRに記憶させている制御量に従って、
バッファ付入出器65を介して排気再循環制御弁24を
操作する。制御弁24の操作後、ステップ2070で制
御フラッグF2を0にしてからメインルーチンに戻る、 上記説明では排気環流制御を行なう方法な独立したプロ
グラムの形で示したが、より広範囲の制御を行なうもの
の中の一つのサブルーチン・サブプログラムとして構成
してもよく、上記制御方法はほとんどそのままの形でサ
ブプログラム化できる。また上記方法では吸入空気量お
よびエンジン回転数に基づき制御量を定めているが、燃
料噴射量、空燃比、または、排気多岐管に新たにに圧力
センサを設けて排気圧を基礎にする等も有効な方法とな
ろう。
The interrupt routine interrupts every 4 milliseconds. When an interrupt is performed, first, in step 2010, the EGR counter EC is used to calculate the control time, as shown in the sixth line.
Add 1 to . Next, in step 2020, it is determined whether EC is larger or smaller than a preset coefficient B. If EC is less than B, jump to step 2050, and if EC is less than B.
If it is above, the process advances to step 2030. In step 2030, EC is returned to 0, and in step 2040, control flag F2 is set to 1. In step 2050, it is determined whether the control flag F2 is 1 or not, that is, whether the time to adjust the amount of exhaust gas recirculation has been reached.If F2=1, the process advances to step 2060; returns to the main routine. In step 2060-, according to the control amount stored in the random access memory EGR,
The exhaust gas recirculation control valve 24 is operated via the buffered inlet/outlet device 65. After operating the control valve 24, the control flag F2 is set to 0 in step 2070, and the process returns to the main routine. In the above explanation, the method for controlling exhaust gas recirculation was shown in the form of an independent program, but although it performs a wider range of control, It may be configured as one of the subroutines/subprograms, and the above control method can be converted into a subprogram almost as is. In addition, in the above method, the control amount is determined based on the intake air amount and engine speed, but it is also possible to base the control amount on the fuel injection amount, air-fuel ratio, or exhaust pressure by installing a new pressure sensor in the exhaust manifold. It would be an effective method.

制御範囲は動力系の特性に合わせて設定されるが、極端
な例を挙げれば、変速機の直結後、排気再循環量を減少
させて行き、最終的には排気再循環量を零として、排気
再循環制御弁を閉じてしまう場合まで制御範囲に入れる
ならば、本制御法は非常に制御範囲の広い方法となる。
The control range is set according to the characteristics of the power system, but in an extreme example, after the transmission is directly connected, the amount of exhaust recirculation is reduced, and eventually the amount of exhaust recirculation is reduced to zero. If the control range includes the case where the exhaust gas recirculation control valve is closed, this control method has a very wide control range.

以上のように本発明による制御方法では、自動変速機の
直結時と直結しない状態におけるエンジンの制御内容が
変更でき、直結しない状態では運転性を考慮することな
く燃費と有害ガス放出量の調節を行ない、直結時には排
気環流率を調節して動力性能を向上させることができる
As described above, with the control method according to the present invention, it is possible to change the engine control contents when the automatic transmission is directly connected and when it is not directly connected, and when it is not directly connected, fuel consumption and harmful gas emissions can be adjusted without considering drivability. When connected directly, the exhaust recirculation rate can be adjusted to improve power performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される直結装置付自動変速機を装
備した燃料噴射装置付排気環流型内燃機関のシステム図
、第2図は変速機の直結状態を示すブレーキバンド型摩
擦係合装置のシステム図、第3図は変速機の直結状態を
はずしたブレーキバンド型摩擦係合装置のシステム図、
第4図は電子制御装置、のブロック図、第5図は本発明
の制御方法を実現するためのメインルーチン、第6図は
本発明の制御方法を実現するための割込みルーチン。 2・・・エアフローメーター、3・・・絞り弁、4・・
・サージタンク、17・・・排気多岐管、23・・・排
気再循環通路、24・・・排気再循環制御弁、28・・
・吸気温センサ、29・・・スロットル位置センサ、3
0・・・水温センサ、31・・・空燃比センサ、32・
・・クランク角センサ、33・・・配電器、34・・・
軸、35・・・車速センサ、36・・・自動変速機、4
0・・・電子制御部、41・・・燃料噴射弁、45・・
・油圧制御回路用電磁弁、50・・・摩擦係合装置、5
1・・・変速弁、60・・・中央処理装置、61・・・
リードオンメモリ、62・・・ランダム・アクセス・メ
モリ、63・・・ランダムアクセスメモリ、64・・・
マルチプレクサ付アナログ/デジタル変換器、65・・
・バッファ付き入出力器、66・・・パス。 A・・・修正係数、Ac・・・クランク角、B・・・係
数、EGR・・・制御量、EC・・・EGRカウンタ、
F1・・・直結フラッグ、F、・・・制御フラッグ、N
B・・・エンジン回転数、Q・・・流量。 特許出願人  トヨタ自動車工業株式会社才5 図 才6 ヅ
Fig. 1 is a system diagram of an exhaust recirculation type internal combustion engine with a fuel injection device equipped with an automatic transmission with a direct coupling device to which the present invention is applied, and Fig. 2 is a brake band type friction engagement device showing a state in which the transmission is directly coupled. Figure 3 is a system diagram of the brake band type friction engagement device with the transmission not directly connected.
FIG. 4 is a block diagram of the electronic control device, FIG. 5 is a main routine for implementing the control method of the present invention, and FIG. 6 is an interrupt routine for implementing the control method of the present invention. 2... Air flow meter, 3... Throttle valve, 4...
・Surge tank, 17...Exhaust manifold, 23...Exhaust gas recirculation passage, 24...Exhaust gas recirculation control valve, 28...
・Intake temperature sensor, 29... Throttle position sensor, 3
0... Water temperature sensor, 31... Air-fuel ratio sensor, 32...
...Crank angle sensor, 33...Distributor, 34...
Axis, 35...Vehicle speed sensor, 36...Automatic transmission, 4
0...Electronic control unit, 41...Fuel injection valve, 45...
・Solenoid valve for hydraulic control circuit, 50...Friction engagement device, 5
1... Speed change valve, 60... Central processing unit, 61...
Read-on memory, 62... Random access memory, 63... Random access memory, 64...
Analog/digital converter with multiplexer, 65...
- Buffered input/output device, 66...pass. A... Correction coefficient, Ac... Crank angle, B... Coefficient, EGR... Control amount, EC... EGR counter,
F1... Direct connection flag, F,... Control flag, N
B...Engine speed, Q...Flow rate. Patent applicant Toyota Motor Corporation Sai5 Zusai6 ㅅ

Claims (1)

【特許請求の範囲】[Claims] (1)  入力側と出力側を直結する装置を有する自動
変速機を備えた排気環流型内燃機関の排気環流制御方法
において、内燃機関の低速回転域で自動変速機を直結し
た時、排気環流率を低下させることを特徴とする排気環
流制御法。
(1) In an exhaust recirculation control method for an exhaust recirculation type internal combustion engine equipped with an automatic transmission having a device that directly connects the input side and the output side, when the automatic transmission is directly connected in the low speed rotation range of the internal combustion engine, the exhaust recirculation rate An exhaust recirculation control method characterized by reducing the
JP57077835A 1982-05-10 1982-05-10 Exhaust recirculation controlling method Pending JPS58195056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077835A JPS58195056A (en) 1982-05-10 1982-05-10 Exhaust recirculation controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077835A JPS58195056A (en) 1982-05-10 1982-05-10 Exhaust recirculation controlling method

Publications (1)

Publication Number Publication Date
JPS58195056A true JPS58195056A (en) 1983-11-14

Family

ID=13645093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077835A Pending JPS58195056A (en) 1982-05-10 1982-05-10 Exhaust recirculation controlling method

Country Status (1)

Country Link
JP (1) JPS58195056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693225A (en) * 1985-03-06 1987-09-15 Mazda Motor Corporation Exhaust gas recirculation system for automatic transmission vehicle
JPH04350351A (en) * 1991-05-28 1992-12-04 Nissan Motor Co Ltd Exhaust gas recirculation device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618056A (en) * 1979-07-20 1981-02-20 Fuji Heavy Ind Ltd Egr controller for automobile automatic speed changing device mounted with torque converter
JPS57342A (en) * 1980-06-02 1982-01-05 Nissan Motor Co Ltd Engine controller for vehicle mounting lock-up automatic speed changer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618056A (en) * 1979-07-20 1981-02-20 Fuji Heavy Ind Ltd Egr controller for automobile automatic speed changing device mounted with torque converter
JPS57342A (en) * 1980-06-02 1982-01-05 Nissan Motor Co Ltd Engine controller for vehicle mounting lock-up automatic speed changer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693225A (en) * 1985-03-06 1987-09-15 Mazda Motor Corporation Exhaust gas recirculation system for automatic transmission vehicle
JPH04350351A (en) * 1991-05-28 1992-12-04 Nissan Motor Co Ltd Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
US4721083A (en) Electronic control system for internal combustion engine with stall preventive feature and method for performing stall preventive engine control
US5727528A (en) Control apparatus and control method of internal combustion engine
US6047681A (en) Process and apparatus for adjusting the torque of an interal-combustion engine
EP0142101A2 (en) Automotive engine control system capable of detecting specific engine operating conditions and projecting subsequent engine operating patterns
GB2270115A (en) I.c. engine exhaust gas recirculation system.
US5701867A (en) Apparatus for controlling the speed of an engine
GB2049229A (en) System and method for controlling egr in internal combustion engine
JP3641914B2 (en) Control device for internal combustion engine
US4572029A (en) Speed change control method and device of automatic transmission for vehicle
EP0866219B1 (en) Fuel cut control apparatus for internal combustion engine
JPS5857072A (en) Ignition timing controlling method of electronic control engine
KR0149512B1 (en) Internal combustion engine air supply system
CA1334069C (en) Auxiliary air amount control system for internal combustion engines at deceleration
US4750466A (en) Exhaust gas recirculation method for internal combustion engines for automotive vehicles
KR20000070312A (en) Device for controlling an internal combustion engine with controlled ignition and direct injection
JPS5853647A (en) Fuel injection method of electronically controlled engine
JPS58195056A (en) Exhaust recirculation controlling method
JPH08144811A (en) Fuel supply amount controller for internal combustion engine with supercharger
JPH01267318A (en) Controller for supercharged engine
JPH0520578B2 (en)
JPS5853659A (en) Method of controlling air-fuel ratio in internal- combustion engine
JPH025074Y2 (en)
JPS5865353A (en) Speed change method of automatic speed change gear
JPS58195030A (en) Fuel cutting-off method of automotive electronic control fuel injection internal-combustion engine
JPH02104927A (en) Fuel supply control method for internal combustion engine