JPS58194925A - Production of porous membrane - Google Patents

Production of porous membrane

Info

Publication number
JPS58194925A
JPS58194925A JP7728682A JP7728682A JPS58194925A JP S58194925 A JPS58194925 A JP S58194925A JP 7728682 A JP7728682 A JP 7728682A JP 7728682 A JP7728682 A JP 7728682A JP S58194925 A JPS58194925 A JP S58194925A
Authority
JP
Japan
Prior art keywords
membrane
accelerator
polymer
charged particles
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7728682A
Other languages
Japanese (ja)
Inventor
Koji Matsuda
松田 耕自
Sadayoshi Mukai
向井 貞喜
Hidetoshi Kita
英敏 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP7728682A priority Critical patent/JPS58194925A/en
Publication of JPS58194925A publication Critical patent/JPS58194925A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To produce a porous membrane of a uniform pore diameter, by irradiating a polymer membrane with charged particles accelerated by an accelerator and then etching the membrane. CONSTITUTION:A polymer membrane (e.g., polycarbonate membrane) is irradiated with charged particles accelerated by an ion accelerator and then immersed in an etchant such as NaOH or HNO3 to dissolve the part damaged by the impinging particles and form a porous membrane of a uniform pore diameter. EFFECT:The irradiation energy of charged particles can easily be adjusted according to the thickness of a polymer membrane. This process is applicable to polymer membranes of various thicknesses, and the size of pores can be controlled by changing the kind of ions emitted from an accelerator.

Description

【発明の詳細な説明】 この発明は、高分子膜に孔径の均一な多孔を形成する多
孔性膜の製造方法に関し、製造装置の小型化、簡便化を
はかるとともに、高分子膜の厚プに応じて照射する荷電
粒子のエネルギを容易に可変し得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a porous membrane in which pores of uniform pore size are formed in a polymer membrane. The purpose is to easily change the energy of charged particles to be irradiated accordingly.

通常、高分子多孔性材料は、各種工業分野から医療分野
に至るまで広く関、しがもたれている材料であり、孔径
がnnmの微多孔性材料から500μm程度の多孔性材
料のものまで、種々の孔径形態のものが多方面にわたり
利用されている。
Normally, porous polymer materials are widely used in various industrial fields to medical fields, and there are various types of materials ranging from microporous materials with pore diameters of nm to porous materials of about 500 μm. These pore sizes are used in a wide variety of fields.

従来の多孔性膜の製造方法としては、つきの3つの主要
な方法がある。
There are three main methods for producing conventional porous membranes.

その1つは、粒子を化学的または熱的に結合する方法で
あり、焼結法と呼はれている。
One of them is a method of bonding particles chemically or thermally, and is called a sintering method.

他の1つは、空孔となる部分にあらかじめ水や溶剤に可
溶な無機あるいは有機物質を充てんした状態で成形し、
その成形復元てん物を溶出することにより多孔体を得る
方法であり、塩類溶出法または溶剤揮発法と呼ばれてい
る。
The other method is to fill the pores with an inorganic or organic substance that is soluble in water or a solvent before molding.
This is a method of obtaining a porous body by eluting the molded and reconstituted material, and is called a salt elution method or a solvent volatilization method.

さらに他の1つは、高分子フィルムに機械的または化学
的に孔をあける方法であり、それぞれ延伸法および放射
線照射法と呼ばれている。
Yet another method is to mechanically or chemically create holes in a polymer film, which are called a stretching method and a radiation irradiation method, respectively.

ところで、前記の方法により得られる多孔性膜は、放射
#!照射法を除き、全て孔径が不均一でスポンジ状の複
雑な形状の孔をもっており、微粒子の高度な分別ろ過が
不可能である。
By the way, the porous film obtained by the above method has radiation #! With the exception of the irradiation method, all methods have pores with uneven pore sizes and complex sponge-like shapes, making it impossible to perform highly selective filtration of fine particles.

一方、放射線照射法は、核分裂反応によって生ずる核分
裂片をポリカーボネート膜に照射し、化学エツチング処
理して多孔性膜を得る方法であり、膜に形成される孔の
形状は直線状で孔径が均一であり、他の方法により得ら
れる多孔性膜とは異なつた特徴をもっている。しかし、
原子炉の核分裂片を使用するため、使用上の制約が大き
く、危険性をともなうため簡便な照射線源ではなく、さ
らに、照射される粒子のエネルギが一定で固定されてお
り、かつ、分布しているため、膜厚の大きいものに対し
ては適用することができない。
On the other hand, the radiation irradiation method is a method in which a polycarbonate membrane is irradiated with fission fragments produced by a nuclear fission reaction and chemically etched to obtain a porous membrane.The pores formed in the membrane are linear in shape and have uniform pore diameters. It has characteristics different from porous membranes obtained by other methods. but,
Because nuclear fission fragments from a nuclear reactor are used, there are significant restrictions on its use and it is dangerous, so it is not a simple irradiation source.Furthermore, the energy of the irradiated particles is fixed and distributed. Therefore, it cannot be applied to thick films.

この発明は、前記の点に留意してなされたものであり、
げ“11番こより加速した荷電粒子を高分子膜に照射し
、該照射ののち前記高分子膜をエツチング処理し、前記
高分子膜に孔径の均一な多孔を形成することを特徴とす
る多孔性膜の製造方法である。
This invention was made with the above points in mind,
A method of porosity characterized in that a polymer membrane is irradiated with charged particles accelerated from the 11th beam, and after the irradiation, the polymer membrane is etched to form pores with uniform pore diameters in the polymer membrane. This is a method for manufacturing a membrane.

したがって、加速器を使用しているため発生する荷電粒
子が高エネルギであ、・す、しかも加速器は機械線源で
あるため、電源を1゛断つと荷電粒子の発よ 生を即座に止めることができへ取り扱いかきわめて簡単
であり、従来の原子炉4使用する場合のような制約も危
険性もなく、JR造装置の大幅な小型化、簡便化が可能
である。さらに、照射法も荷電粒子線を走査することに
より均一な照射が可)Pである。その上、照射される高
分子膜の厚さに応じて照射する荷電粒子のエネルギを容
易に変えることができ、種々の厚さの高分子膜に適用で
きる。
Therefore, since an accelerator is used, the charged particles generated are of high energy.Furthermore, since the accelerator is a mechanical radiation source, the generation of charged particles cannot be stopped immediately if the power is cut off. It is extremely easy to handle, has no restrictions or dangers like when using a conventional nuclear reactor, and can significantly downsize and simplify JR manufacturing equipment. Furthermore, the irradiation method is P, which allows uniform irradiation by scanning a charged particle beam. Furthermore, the energy of the charged particles to be irradiated can be easily changed depending on the thickness of the polymer film to be irradiated, so that it can be applied to polymer films of various thicknesses.

また、加速器から取り出されるイオンの種類を変えるこ
とにより、孔1の大きさを制御することができる。
Further, the size of the hole 1 can be controlled by changing the type of ions taken out from the accelerator.

なお、加速器としては、イオン源として高周波放亀形、
デュオ・プラズマトロン形、電子振動形。
In addition, the accelerator is a high-frequency radial type ion source,
Duo plasmatron type, electronic vibration type.

スパッタ形等を用いたイオン加速器であれば、いずれの
ものでも使用できる。
Any ion accelerator using a sputter type or the like can be used.

また、荷電粒子としては、照射される高分子膜を貫通で
きるエネルギを有するものであればよい。
Furthermore, any charged particles may be used as long as they have energy that can penetrate the irradiated polymer membrane.

さらに、高分子膜としては、ポリカーボネナト。Furthermore, as a polymer membrane, polycarbonate is used.

ホリエチレンテレフタレート、硝酸セルロース。Polyethylene terephthalate, cellulose nitrate.

61セルロースンボリフツ化ビニリデン、ポリテトラフ
ルオロエンレン、ポリアクリロニトリル等を利用するこ
と訃できる。
61 cellulose, vinylidene fluoride, polytetrafluoroene, polyacrylonitrile, etc. can be used.

′1゜ また、エツチング剤としては、水酸化ナトリウム、重ク
ロム酸力IJ 4のアルカリ溶液、硝酸、硫酸等の酸性
溶液など、入射粒子により損傷を受けた部分を溶出させ
ることのできる溶剤であれば、いずれでもよい・ つぎに、この発明の多孔性膜の製造方法の実施例につい
て説明する0 実施例1 厚さ10μmのポリカーボネート膜に加速器により加速
されたイオン電流180fiAの窒素イオンを照射後、
60℃の6Nの水酸化ナトリウム溶液に浸漬してエツチ
ングし、水洗ののち空気中で乾燥し、走査型電子顕微鏡
により孔径、孔密度を観察した結果、1μmの均一な孔
径で、孔密度が2X106j固/crAの多孔性膜であ
った。
'1゜In addition, as an etching agent, any solvent capable of eluting areas damaged by incident particles may be used, such as sodium hydroxide, an alkaline solution of dichromic acid (IJ4), or an acidic solution such as nitric acid or sulfuric acid. Next, an example of the method for manufacturing a porous membrane of the present invention will be described.Example 1 After irradiating a polycarbonate membrane with a thickness of 10 μm with nitrogen ions at an ionic current of 180 fiA accelerated by an accelerator,
It was etched by immersing it in a 6N sodium hydroxide solution at 60°C, washed with water, and then dried in the air. The pore size and pore density were observed using a scanning electron microscope. As a result, the pore size was uniform, 1 μm, and the pore density was 2×106j. It was a solid/crA porous membrane.

実施例2 厚さ12μmのポリエチレンテレフタレート膜番こ加速
器により加速されたイオン電流5onAのへIJウムイ
オンを照射後、60℃の6Nの水酸化ナトリウム溶液に
浸漬してエツチングし、そののち水洗して風乾し、走査
型電子顕微鏡で観察した結果、0.6μmの均一な孔径
で、孔密度が1 ×106個/ crjlの多孔性膜で
あった0 実施例3 厚さ20μmのポリアクリロニトリル膜に加速器により
加速されたイオン電流180pAのヘリウムイオンを照
射後、40℃の6Nの水酸化ナトリウム溶液に浸漬して
エツチングし、水洗ののち空気中で乾燥し、走査型電子
顕微鏡で観察した結果、0.5゜μmの均一な孔径で、
孔密度が4 X 10’ a/caの多孔性膜であった
Example 2 After irradiating IJium ions with an ion current of 5 onA accelerated by a polyethylene terephthalate film accelerator with a thickness of 12 μm, etching was performed by immersing in a 6N sodium hydroxide solution at 60°C, then washing with water and air drying. However, as a result of observation with a scanning electron microscope, it was found to be a porous membrane with a uniform pore diameter of 0.6 μm and a pore density of 1 × 106/crjl. After irradiation with helium ions with an accelerated ion current of 180 pA, it was etched by immersion in a 6N sodium hydroxide solution at 40°C, washed with water, dried in the air, and observed with a scanning electron microscope. Uniform pore diameter of ゜μm,
It was a porous membrane with a pore density of 4 x 10' a/ca.

実施例4 厚さ9μmのポリフッ化ビニリデン膜に加速器により加
速されたイオン′亀流80 VIAのヘリウムイオンを
照射後、60℃の6Nの水酸化ナトリウム溶液に浸漬し
てエツチングし、水洗ののち空気中で乾燥し、走査型゛
電子顕微鏡で観察した結果、0.1μmの均一な孔径で
、孔密度がI X 10’個/CIの多孔性膜であった
Example 4 A polyvinylidene fluoride film with a thickness of 9 μm was irradiated with helium ions of 80 VIA of ions accelerated by an accelerator, etched by immersion in a 6N sodium hydroxide solution at 60°C, washed with water, and then exposed to air. The film was dried in a vacuum chamber and observed under a scanning electron microscope. As a result, it was found to be a porous film with a uniform pore diameter of 0.1 μm and a pore density of I x 10'/CI.

代理人弁理士藤田龍太部Representative Patent Attorney Ryuta Fujita

Claims (1)

【特許請求の範囲】[Claims] ■ 加速器により加速した荷電粒子を高分子膜に照射し
、該照射ののち前記高分子膜をエツチング処理し、前記
高分子膜に孔径の均一な多孔を形成することを特徴とす
る多孔性膜の#!遣方法。
(2) A porous membrane characterized in that a polymer membrane is irradiated with charged particles accelerated by an accelerator, and after the irradiation, the polymer membrane is etched to form pores with uniform pore diameters in the polymer membrane. #! How to send.
JP7728682A 1982-05-08 1982-05-08 Production of porous membrane Pending JPS58194925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7728682A JPS58194925A (en) 1982-05-08 1982-05-08 Production of porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7728682A JPS58194925A (en) 1982-05-08 1982-05-08 Production of porous membrane

Publications (1)

Publication Number Publication Date
JPS58194925A true JPS58194925A (en) 1983-11-14

Family

ID=13629621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7728682A Pending JPS58194925A (en) 1982-05-08 1982-05-08 Production of porous membrane

Country Status (1)

Country Link
JP (1) JPS58194925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059058A (en) * 2010-12-09 2011-05-18 中山国安火炬科技发展有限公司 Safeguard structure used in nuclepore membrane production process and production method of nuclepore membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411971A (en) * 1977-06-30 1979-01-29 Japan Atom Energy Res Inst Production of porous film of polyvinylidene fluoride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411971A (en) * 1977-06-30 1979-01-29 Japan Atom Energy Res Inst Production of porous film of polyvinylidene fluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059058A (en) * 2010-12-09 2011-05-18 中山国安火炬科技发展有限公司 Safeguard structure used in nuclepore membrane production process and production method of nuclepore membrane

Similar Documents

Publication Publication Date Title
US3303085A (en) Molecular sieves and methods for producing same
US3802972A (en) Process for making cylindrical holes in a sheet material
US3607680A (en) Methof for producing a device for transmitting an electron beam
KR101383758B1 (en) Method of forming porous carbon structure and porous carbon structure prepared by the same
US6861006B2 (en) Method for creating pores in a polymer material
JP2687142B2 (en) Method for manufacturing porous polyimide film
JP2012229309A (en) Method for manufacturing porous film
JPS58194925A (en) Production of porous membrane
KR20160008899A (en) Niobium etching methods of heavy ion cavity by using a composition of mild mixed-acid.
JPS6029742B2 (en) Method for producing porous polyvinylidene fluoride membrane
KR102559591B1 (en) Method for preparation of nano rod by laser ablation
US4115303A (en) Method of fabrication of porous macromolecular materials having an internal lining and materials obtained by means of said method
JPH0360713A (en) Porous carbon membrane and its production
JP3647009B2 (en) Manufacturing method of microporous membrane using electron beam
US11011340B2 (en) Ion generation composite target and laser-driven ion acceleration apparatus using the same
JPH0338227A (en) Preparation of porous polymer membrane
JPH02180624A (en) Manufacture of porous polymer membrane
JPS59117546A (en) Manufacture of porous polymeric film
JPH02180625A (en) Porous polymer membrane
JPS6152175B2 (en)
JPH03273038A (en) Porous polyetheretherketone film and its preparation
JPH04252237A (en) Porous high molecular membrane and production thereof
JPH02244002A (en) Formation of optical diffraction grating core for injection molding
RU2056150C1 (en) Tracks etching speed increasing method
JPH03217219A (en) Production of porous polymer film