JPS6029742B2 - Method for producing porous polyvinylidene fluoride membrane - Google Patents

Method for producing porous polyvinylidene fluoride membrane

Info

Publication number
JPS6029742B2
JPS6029742B2 JP7825577A JP7825577A JPS6029742B2 JP S6029742 B2 JPS6029742 B2 JP S6029742B2 JP 7825577 A JP7825577 A JP 7825577A JP 7825577 A JP7825577 A JP 7825577A JP S6029742 B2 JPS6029742 B2 JP S6029742B2
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
membrane
charged particles
producing porous
fluoride membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7825577A
Other languages
Japanese (ja)
Other versions
JPS5411971A (en
Inventor
睦英 古牧
重男 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP7825577A priority Critical patent/JPS6029742B2/en
Publication of JPS5411971A publication Critical patent/JPS5411971A/en
Publication of JPS6029742B2 publication Critical patent/JPS6029742B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多孔性高分子膜の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a porous polymer membrane.

詳しくは耐食性、耐候性に優れた多孔性高分子膜の製造
方法に関する。さらに具体的には多孔性ポリフッ化ビニ
リデン膜の製造方法に関する。従釆、直線状の均一孔径
の貫通孔から成る多孔性高分子膜としてはポリカーボネ
ート、ポリエチレンテレフタレート、硝酸セルロース、
酢酸セルロース等の多孔性膜が知られているが、いづれ
も耐食性、耐膜性が十分でない。また耐食性、耐候性の
優れたものとして多孔性フッ素樹脂膜があるが、フッ素
樹脂粒子の暁結またはフッ素樹脂組織の絡み合わせによ
って作られたもので孔の蓬状が複雑で孔径が均一でなく
、かつ孔密度と孔径の調節が容易でない。本発明の目的
はこのような欠点のない任意に選択できる孔数および孔
径を有する耐食性耐候性の優れた多孔性高分子膜の製造
方法を提供することである。
Specifically, the present invention relates to a method for producing a porous polymer membrane with excellent corrosion resistance and weather resistance. More specifically, the present invention relates to a method for producing a porous polyvinylidene fluoride membrane. Porous polymer membranes consisting of linear through-holes with uniform pore diameters include polycarbonate, polyethylene terephthalate, cellulose nitrate,
Porous membranes such as cellulose acetate are known, but none of them have sufficient corrosion resistance or membrane resistance. In addition, porous fluororesin membranes have excellent corrosion resistance and weather resistance, but they are made by agglomeration of fluororesin particles or entanglement of fluororesin structures, and the pores have a complicated shape and the pore diameter is not uniform. , and it is not easy to adjust the pore density and pore diameter. The object of the present invention is to provide a method for producing a porous polymer membrane having an arbitrarily selected number and diameter of pores and having excellent corrosion resistance and weather resistance without such drawbacks.

而して本発明の目的は、ポリフツ化ビニリデン膜を活性
ガス雰囲気中で荷電粒子によって照射し、ついで化学薬
品でエッチングすることから成る本発明の多孔性高分子
膜の製造方法によつて達成される。本発明はポリフッ化
ビニリデン膜を指性ガス、例えば酸素、オゾンの雰囲気
中で荷電粒子、例えば核分裂片で照射して荷電粒子の直
線状通路を生ぜしめ、これを化学薬品、例えば水酸化ナ
トリウム水溶液でエッチングして荷電粒子通路を中心と
した貫通孔を形成せしめるものである。本発明における
荷電粒子としては腰を貫通し得る十分なエネルギーを有
するもので、核分裂性物質の核分裂によって得られる核
分裂片、加速器より得られる各種の高エネルギー粒子、
放射性同位元素の崩壊により得られるQ粒子が使用でき
る。
The object of the present invention is thus achieved by the method for producing a porous polymer membrane of the present invention, which comprises irradiating the polyvinylidene fluoride membrane with charged particles in an active gas atmosphere and then etching it with chemicals. Ru. The present invention involves irradiating polyvinylidene fluoride membranes with charged particles, e.g., fission fragments, in an atmosphere of a gas, e.g., oxygen, ozone, to create a linear path for the charged particles, which is then exposed to a chemical, e.g., an aqueous solution of sodium hydroxide. This method forms a through hole centered on the charged particle passage. Charged particles in the present invention have enough energy to penetrate the waist, including fission fragments obtained by fission of fissile materials, various high-energy particles obtained from accelerators,
Q particles obtained by decay of radioactive isotopes can be used.

これらの荷電粒子の物質貫通距離はその粒子の種類、エ
ネルギーおよび対象の被照射物質によって定まる。従っ
て与えられた荷電粒子に応じて膜の厚さ、活性ガスの圧
力等を調節して荷電粒子をして膜を貫通せしめることが
必要である。得られる多孔性膜の孔数は照射した荷電粒
子の数に等しく照射条件によって任意に選ぶことができ
る。また孔径はエッチング条件によって任意によって調
節することができる荷電粒子の照射は活性ガス雰囲気中
で行われるが、活性ガスとしては酸素、オゾン、酸化窒
素のごとき酸化性ガスを使用する。活性ガスは荷電粒子
と高分子物質の相互作用によって生成する化学種と反応
してこれを速かにエッチング可能な化合物に変える作用
をする。ポリフツ化ビニリデンは化学薬品に対する耐食
性が大きいが、活性ガス雰囲気中で荷電粒子を照射する
ことによって、荷電粒子通路周辺の速かなエッチングが
可能になる。エッチング剤としては水酸化ナトリウムの
ようなアルカリ性溶液、重クロム酸カリの硫溶液のよう
な酸化性溶液等、あるいは、これらにアルコ−ル類や界
面活性剤を添加したものが用いられる。
The distance through which these charged particles penetrate through a material is determined by the type of the particle, its energy, and the target material to be irradiated. Therefore, it is necessary to make the charged particles penetrate the membrane by adjusting the thickness of the membrane, the pressure of the active gas, etc., depending on the charged particles. The number of pores in the resulting porous membrane is equal to the number of irradiated charged particles and can be arbitrarily selected depending on the irradiation conditions. Further, the pore diameter can be arbitrarily adjusted by adjusting etching conditions. The irradiation with charged particles is performed in an active gas atmosphere, and an oxidizing gas such as oxygen, ozone, or nitrogen oxide is used as the active gas. The active gas reacts with the chemical species generated by the interaction between the charged particles and the polymeric material and quickly converts them into compounds that can be etched. Polyvinylidene fluoride has high corrosion resistance against chemicals, but by irradiating it with charged particles in an active gas atmosphere, rapid etching around the charged particle passages becomes possible. As the etching agent, an alkaline solution such as sodium hydroxide, an oxidizing solution such as a sulfuric solution of potassium dichromate, or a mixture thereof with an alcohol or a surfactant can be used.

次に実施例について本発明を説明する。実施例 1 図面に示すごとく、厚さ9.4ムmのポリフッ化ビニリ
デン膜3と厚さ1000Aの天然ウラン4を黍着したア
ルミニウム箔1を、コリメータ2をはさんで向い合わせ
て125Tonの酸素を充填した石英管に入れ、日本原
子力研究所のJRR−4原子炉で照射した。
Next, the present invention will be explained with reference to examples. Example 1 As shown in the drawing, a polyvinylidene fluoride film 3 with a thickness of 9.4 mm and an aluminum foil 1 coated with natural uranium 4 with a thickness of 1000 A were placed facing each other with a collimator 2 in between and exposed to 125 tons of oxygen. was placed in a quartz tube filled with 300 ml of silica, and irradiated with the JRR-4 nuclear reactor at the Japan Atomic Energy Research Institute.

原子炉の熱中性子によって天然ウランに含まれるU−2
35原子が核分裂をおこし、核分裂片が矢印の方向にコ
リメータを通って膜を入射する。
U-2 contained in natural uranium by thermal neutrons in a nuclear reactor
35 atoms undergo nuclear fission, and the fission fragments pass through the collimator in the direction of the arrow and enter the membrane.

コリメータが設けられているため、核分裂片は、膜面に
垂直に近い角度で入射する。上述の膜の厚さ、ウランの
厚さ、酸素圧力は、膜に入射した核分裂片がすべて膜を
貫通するようにさめた値である。原子炉で照射したのち
、膜を65℃の1州水酸化ナトリウム溶液に浸し、蝿拝
しながらエッチングを行った。
Because the collimator is provided, the fission fragments are incident on the membrane surface at an angle close to perpendicular. The above-mentioned membrane thickness, uranium thickness, and oxygen pressure are values such that all fission fragments incident on the membrane penetrate the membrane. After irradiation in a nuclear reactor, the film was immersed in a sodium hydroxide solution at 65° C. and etched while it was exposed.

原子力出力1000KW、照射時間10分のとき、照射
条件から計算した孔密度は2×1ぴケ/めであり、また
エッチング時間が6餌時間のとき、試料膜の気体透過係
数から求めた孔径は300Aであるが、電子顕微鏡観察
による孔密度、孔径の測定結果も、ほ)、これに等しく
、且つ孔径が均一であることが認められた。得られた多
孔性ポリフッ化ビニリデン膜を70qoの濃硝酸に7日
間浸したときの重量変化は、もとのポリフッ化ビニリデ
ン膜に対する値とかわりなく、優れた耐食性が保持され
ていることを確認した。
When the nuclear power output is 1000 KW and the irradiation time is 10 minutes, the pore density calculated from the irradiation conditions is 2 × 1 pike/me, and when the etching time is 6 etching hours, the pore diameter calculated from the gas permeability coefficient of the sample film is 300 A. However, the results of measuring the pore density and pore diameter by electron microscopy were also found to be equal to these, and the pore diameters were found to be uniform. When the obtained porous polyvinylidene fluoride membrane was immersed in 70 qo concentrated nitric acid for 7 days, the weight change was the same as that of the original polyvinylidene fluoride membrane, confirming that it maintained excellent corrosion resistance. .

また液/固体界面張力が小さいというポリフッ化ビニリ
デンの特性も原子炉照射とケツチング処理によって変化
しないことを確認した。耐食性、耐候性にすぐれた多孔
性ポリフッ化ビニリデン膜は、工業、医学、生化学等の
分野で広い用途を有するものと思われる。
It was also confirmed that polyvinylidene fluoride's characteristic of low liquid/solid interfacial tension did not change due to nuclear irradiation and butting treatment. Porous polyvinylidene fluoride membranes with excellent corrosion resistance and weather resistance are expected to have wide applications in fields such as industry, medicine, and biochemistry.

孔の形状が直線状で、孔径の均一性にすぐれ、目的に応
じて孔密度と孔径を容易に調節できる点で、既存の多孔
性フッ素樹脂膜では達成できない高度の利用に供し得ら
れるものと考えられる。
The pores are linear in shape, the pore diameter is highly uniform, and the pore density and pore diameter can be easily adjusted depending on the purpose, making it suitable for advanced applications that cannot be achieved with existing porous fluororesin membranes. Conceivable.

【図面の簡単な説明】[Brief explanation of the drawing]

図はポリフッ化ビニリデン膜の核分裂片による照射の説
明図である。
The figure is an explanatory diagram of irradiation with fission fragments of a polyvinylidene fluoride film.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフツ化ビニリデン膜を活性ガス雰囲気中で荷電
粒子によつて照射し、ついでこれを化学的にエツチング
することから成る多孔性ポリフツ化ビニリデン膜の製造
方法。
1. A method for producing a porous polyvinylidene fluoride film, which comprises irradiating the polyvinylidene fluoride film with charged particles in an active gas atmosphere and then chemically etching it.
JP7825577A 1977-06-30 1977-06-30 Method for producing porous polyvinylidene fluoride membrane Expired JPS6029742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7825577A JPS6029742B2 (en) 1977-06-30 1977-06-30 Method for producing porous polyvinylidene fluoride membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7825577A JPS6029742B2 (en) 1977-06-30 1977-06-30 Method for producing porous polyvinylidene fluoride membrane

Publications (2)

Publication Number Publication Date
JPS5411971A JPS5411971A (en) 1979-01-29
JPS6029742B2 true JPS6029742B2 (en) 1985-07-12

Family

ID=13656877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7825577A Expired JPS6029742B2 (en) 1977-06-30 1977-06-30 Method for producing porous polyvinylidene fluoride membrane

Country Status (1)

Country Link
JP (1) JPS6029742B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
JPS58194925A (en) * 1982-05-08 1983-11-14 Nissin Electric Co Ltd Production of porous membrane
JPS6038723U (en) * 1983-08-22 1985-03-18 日新電機株式会社 porous polymer film
JPH01105120U (en) * 1987-12-29 1989-07-14
CN1101252C (en) * 1999-12-17 2003-02-12 清华大学 Process for preparing nuclear-tracking polypropylene membrane
US7597815B2 (en) * 2003-05-29 2009-10-06 Dressel Pte. Ltd. Process for producing a porous track membrane
JP2008525180A (en) * 2004-12-22 2008-07-17 ドレセル プライヴェイト リミテッド Membrane card and method for producing and using the same
JP6044895B2 (en) 2012-03-30 2016-12-14 日東電工株式会社 Method for producing porous polymer film and porous polymer film
JP2014189654A (en) 2013-03-27 2014-10-06 Nitto Denko Corp Method for manufacturing porous polymer film
JP2014189655A (en) 2013-03-27 2014-10-06 Nitto Denko Corp Method for manufacturing porous polymer film and porous polymer film

Also Published As

Publication number Publication date
JPS5411971A (en) 1979-01-29

Similar Documents

Publication Publication Date Title
US3612871A (en) Method for making visible radiation damage tracks in track registration materials
US3662178A (en) Track-registration process
JPS6029742B2 (en) Method for producing porous polyvinylidene fluoride membrane
Noé et al. Self-radiation effects on the lattice parameter of 244CmO2
Komaki Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride
Mazzei et al. Radiation grafting studies of acrylic acid onto cellulose triacetate membranes
US4115303A (en) Method of fabrication of porous macromolecular materials having an internal lining and materials obtained by means of said method
JP2687142B2 (en) Method for manufacturing porous polyimide film
Miller et al. Quantitative studies of radiation-induced reactions. Part 2.—The oxidation of ferrous sulphate by alpha-particles
Drach et al. Effect of oxygen on response of plastic and glass track detectors
Ramasubramanian Lithium uptake and the corrosion of zirconium alloys in aqueous lithium hydroxide solutions
Causey et al. The effects of neutron irradiation on the trapping of tritium in graphite
CN1043129C (en) Nuclear track microporous membrane and making method thereof
Wright The problem of dosimetry in the pile
Pedraza et al. Radium concentration in building materials measured by nuclear track detectors
Eiland et al. Measurements of the 59Ni (n, α) cross section for thermal neutrons
Aitken et al. The pile-neutron absorption cross-section of samarium-149
Campbell et al. Effects of Alloying and Irradlation on the Oxidation Behaviour of Zirconium Alloys
JPH02180624A (en) Manufacture of porous polymer membrane
Alvani et al. Effect of purge gas oxidizing potential on tritium release from Li-ceramics and on its permeation through 316L SS clads under irradiation (TRINE experiment)
Mayo et al. Interaction of deuterons with O16 and Ni58
JPH02180625A (en) Porous polymer membrane
Varro et al. Study of the transport process of uranyl ions in an ion-exchange membrane by solid-state track detector fissionography
SU894923A1 (en) Method for producing nuclear filters
Ashraf Chaudry et al. Separation of Mo-99 and Tc-99m by using TOA-xylene based supported liquid membrane